Feature

Vinylation of Iododifluoromethylated Alcohols via a Light-Promoted Intramolecular Atom-Transfer Reaction

Α

Liubov I. Panferova Marina I. Struchkova Alexander D. Dilman*[©]

N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation adil25@mail.ru

Received: 16.05.2017 Accepted after revision: 06.07.2017 Published online: 07.08.2017 DOI: 10.1055/s-0036-1590855; Art ID: ss-2017-z0331-fa

Abstract A method for the synthesis of *gem*-difluorohomoallylic alcohols by the substitution of iodine in the iododifluoromethyl group by a vinyl fragment is described. The reaction proceeds via an intramolecular iodine atom transfer followed by β -elimination. The reaction is performed in the presence of an iridium photocatalyst, *fac*-lr(ppy)₃, and triphenylphosphine under irradiation with light-emitting diodes.

Key words organofluorine compounds, photocatalysis, silicon reagents, radical reaction, atom transfer

The synthesis of organofluorine compounds has become an intensively investigated area in recent years,¹ apparently, owing to the importance of such compounds in medicinal chemistry² and materials science.³ Though diverse approaches for the preparation of fluorinated molecules can be envisaged,¹ classical ionic reactions⁴ and transition-metal-catalyzed cross-couplings⁵ have dominated the field for a long time. In contrast, reactions involving fluorinated radicals have come to the fore within the last decade.⁶ The advent of photoredox catalysis with visible light⁷ has further advanced the scope of methods for the generation of fluorinated radicals.⁸

Because of a strong electron-withdrawing effect, fluorine atoms facilitate the reductive generation of radical species from perfluorinated substrates.⁹ In this regard, electron-deficient sulfonium salts (e.g., Umemoto's reagents)¹⁰ or Togni's iodanes¹¹ are the most easily reducible reagents, which are typically used as sources of the trifluoromethyl radical.¹² At the same time, radical processes involving partially fluorinated substrates have been less elaborated,¹³ which may be associated with difficult access to the corresponding precursors (e.g., partially fluorinated iodides).

Recently, we reported the fluoroalkylation of carbonyl compounds and iminium ions with iododifluoromethyl¹⁴ and phosphinyldifluoromethyl¹⁵ nucleophilic reagents, and

demonstrated that the primary addition products of these reactions can serve as sources of radicals under photoredox conditions¹⁶ (Scheme 1). Herein, we apply this concept for reactions of compounds **2** containing a double bond as a part of the silyl fragment. The silicon tether makes the radical attack intramolecular, thereby alleviating the regioselectivity problem.¹⁷ At the same time, facile C–Si bond cleavage reinstates the double bond affording alcohols **3**, with the overall sequence corresponding to the substitution of iodine in substrates **1**¹⁸ by the vinyl group.¹⁹

Scheme 1 Applications of difluorinated radicals

Silyl ether **2a**, obtained from iododifluoromethyl-substituted alcohol **1a** ($R = 4-ClC_6H_4$) and chloro(dimethyl)vinylsilane, was evaluated under various conditions upon irradiation with a strip of either blue or 400 nm light-emitting diodes for 2 hours (Table 1). There was virtually no reaction until a combination of sodium acetate with a substoichiometric amount (0.2 equiv) of triphenylphosphine was used (entry 6). The application of 400 nm light was also important, allowing for about 90% conversion of substrate **2a** after 2 hours, as there was no reaction with blue light without a photocatalyst (entry 7). Further addition of 0.25 mol% *fac*-Ir(ppy)₃ provided a significant rate acceleration, and complete conversion was observed within 15 minutes! However, for generality, the reactions were typically performed

В

for 2 hours (entry 10). Based on ¹H and ¹⁹F NMR analysis, the product is formed as a mixture of several compounds of general structure 4 differing in the silicon substituent Y, presumably acetate or siloxane.

To obviate the prior isolation of silyl ethers 2, the whole sequence involving silvlation/radical vinylation/desilvlation was performed in a one-pot manner. Thus, alcohols 1 were treated with chloro(dimethyl)vinylsilane and triethylamine, followed by addition to the same flask of sodium acetate, triphenylphosphine, and the photocatalyst under irradiation (400 nm). Then, the mixture was treated with ammonium fluoride, and worked up. A series of alcohols was subjected to this radical vinylation of the iododifluoromethyl group (Table 2). Various aromatic and heteroaromatic substrates provided good vields of products. The reaction tolerates ester and nitrile groups, and works well with electrondonating and electron-withdrawing substituents, as well as substituents at the ortho-position. The substrate 1q obtained from an enolizable aliphatic aldehyde also provided product **3q**, although in a decreased yield of 60%. However, the iododifluoromethylated alcohol derived from acetophenone gave a complex mixture of products.

Concerning the mechanism, we believe that the reaction proceeds via an atom transfer/radical addition (ATRA) process.^{20,21} The reaction presumably starts with the formation of a halogen-bonded complex²² between the iododifluoromethyl group and the phosphine²³ (Scheme 2). This complex can lead to radical 5 either with assistance of light or by reduction with the photoexcited iridium(III) complex. Subsequent exo-dig cyclization with the formation of a fivemembered ring proceeds rapidly, leading to radical 6. Though oxidation of the primary radical with iridium(IV) is, in principle, possible, a chain process seems more likely. Thus, transfer of the iodine atom from the starting iodide 2 can regenerate radical 5 along with formation of iodide 7. The latter species undergoes rapid fragmentation with con-

Biographical Sketches

Liubov Panferova studied at the Higher Chemical College of the Russian Academy of Sciences, and performed undergraduate work in the group of Prof.

Vladimir Grushin at the Institute of Chemical Research of Catalonia, Spain. In 2015 she joined the group of A. D. Dilman as a graduate student at the Zelinsky

Institute of Organic Chemistry. She is interested in organoelement and organofluorine compounds.

Marina Struchkova graduated from Moscow State University in 1968, and obtained her Ph.D. in 1977 from the Moscow University of Chemical Technology. Then, she joined the NMR laboratory of the Zelinsky Institute of Organic Chemistry. Her major interests involve NMR spectroscopy.

Alexander Dilman received his Ph.D. from the Zelinsky Institute of Organic Chemistry in 2001 (with Prof. S. L. loffe). Then, he spent one year as a postdoc in the group of Prof. H. B. Kagan at the Université Paris-Sud, France. In 2003 he returned to the Zelinsky Institute and started independent work. In 2008 he completed his habilitation studies (Dr. Sci. in Russia),

and in 2011 he became a Head of Laboratory. His current interests include the chemistry of organofluorine compounds.

Syn thesis

L. I. Panferova et al.

certed breaking of carbon-iodine and carbon-silicon bonds.²⁴ This β -elimination may be facilitated by acetate anion, which can coordinate to the silicon atom.

In summary, a convenient method for the formal substitution of iodine in iododifluoromethylated alcohols by the vinyl group is described. The reaction process involves a sequence of transformations, such as silylation, light-mediated atom transfer, and desilylation, which are performed in a one-pot manner by consecutive addition of the required reagents. A combination of sodium acetate, triphenylphosphine, and 400 nm light irradiation is a key feature responsible for the reaction efficiency.

Table 1 Optimization Studies			
	$\begin{array}{c} Me \\ Me \\ Si \\ F \\ F \\ 2a, R = 4-CiC_6H_4 \end{array} \xrightarrow{reagents} Me \\ MeCN, rt, 2h \\ MeCN, rt, 2h \\ F \\ F \\ 4 \end{array} Me \\ F \\ $	H R F 3a	F
Entry	Reagents (equiv)	LED	Yield (%) of 4 ª
1	-	400 nm	0
2	NaOAc (2)	400 nm	0
3	NaOAc (2), Eosin Y-Na ₂ (0.02)	blue	0
4	NaOAc (2), Ru(bipy) ₃ (BF ₄) ₂ (0.005)	blue	0
5	NaOAc (2), lr(ppy) ₃ (0.005)	400 nm	0
6	NaOAca (2), Ph ₃ P (0.2)	400 nm	85 ^b
7	NaOAc (2), Ph ₃ P (0.2)	blue	0
8	Ph ₃ P (0.2)	400 nm	<3
9	NaOAc (2), Ph ₃ P (0.2), Ru(bipy) ₃ (BF ₄) ₂ (0.005)	blue	52
10	NaOAc (2), Ph ₃ P (0.2), Ir(ppy) ₃ (0.0025)	400 nm	91 (91) ^c

^a Determined by NMR analysis of the reaction mixture.

^b Incomplete conversion; 5% of starting **2a**. ^c Isolated yield of **3a**.

С

Table 2 (continued)

^a Isolated yield.

^b Irradiation reaction time: for **3m**, 6 h; for **3p**, 5 h; for **3q**, 15 h.

All reactions were performed under an argon atmosphere. Acetonitrile was distilled twice, from P₂O₅ and CaH₂ successively, and stored over 3 Å molecular sieves. 1,2-Dimethoxyethane was distilled from LiAlH₄. Column chromatography was carried out employing silica gel (230-400 mesh). Precoated silica gel plates F-254 were used for analytical TLC; visualization was with UV light and/or acidic aqueous KMnO₄ solution. NMR spectra were recorded in CDCl₃ using residual solvent signal as internal standard on a Bruker AM 300 MHz spectrometer. IR spectra were recorded on a Bruker alpha-T spectrophotometer. High-resolution mass spectra were measured on a Bruker micrOTOF II spectrometer using electrospray ionization (ESI) and a time-of-flight mass analyzer. The measurements were done in a positive ion mode (interface capillary voltage: 4500 V) or in a negative ion mode (3200 V), with a mass range from m/z 50 to m/z 3000. For 400 nm light irradiation, a strip of diodes 2x smd 3528 (Arlight RT 2-5000 12V UV400 2X) was used. Starting compounds **1a–d**, **f**, **j**, **k**, **n**, **p**^{14c} and 1q^{18a} have been described previously.

Starting Iododifluoromethylated Alcohols 1e, g–i, l, m, o; General Procedure

A mixture of NaI (750 mg, 5 mmol) and LiBr (57 mg, 0.66 mmol) was dried for 3 min under reduced pressure (0.5 mmHg) using a heat gun. After the mixture was cooled to room temperature, 1,2-dimethoxyethane (2 mL), $Me_3SiCF_2Br^{25}$ (609 mg, 3 mmol), and aldehyde (2 mmol) were added, and the mixture was stirred at 80 °C for 2–7 h and

Feature

then cooled to room temperature. For the workup, for compounds **1e**,**g**-**i**,**l**,**m**, concentrated hydrochloric acid (500μ L) was added [for **1o**, trifluoroacetic acid (0.36 mL, 4.8 mmol) and KHF₂ (187 mg, 2.4 mmol) were added], and the mixture was stirred for 2 h. Then, EtOAc (5.0 mL), saturated aqueous Na₂CO₃ (2.0 mL), and sodium thiosulfate pentahydrate (333 mg, 1.33 mmol) were added, and stirring was continued for 5 min. The organic layer was separated, and the aqueous layer was extracted with EtOAc ($2 \times 3 \text{ mL}$). The combined organic layers were filtered through Na₂SO₄ and concentrated, and the residue was purified by column chromatography.

1-(1,1'-Biphenyl-4-yl)-2,2-difluoro-2-iodoethanol (1e)

Reaction time: 2 h.

Yield: 691 mg (96%); white crystals; mp 106–107 °C.

 $R_f = 0.33$ (hexanes/EtOAc, 6:1).

IR (KBr): 3344, 1486, 1168, 1102, 941, 753, 699 cm⁻¹.

 $^{13}C{^1H}$ NMR (75 MHz, CDCl₃): δ = 142.5, 140.5, 133.6 (d, J = 2.9 Hz), 129.0, 128.5, 127.8, 127.3, 127.2, 107.9 (dd, J = 318.9, 316.7 Hz), 80.1 (t, J = 23.5 Hz).

¹⁹F NMR (282 MHz, CDCl₃): δ = -48.7 (dd, *J* = 181.2, 7.5 Hz, 1 F), -53.8 (dd, *J* = 180.9, 11.0 Hz, 1 F).

HRMS (ESI): $m/z [M + Na]^+$ calcd for $C_{14}H_{11}F_2IONa$: 382.9715; found: 382.9697.

2,2-Difluoro-2-iodo-1-(3,4,5-trimethoxyphenyl)ethanol (1g) Reaction time: 7 h.

Reaction time: 7 n.

Yield: 598 mg (80%); white crystals; mp 174–175 $^\circ\text{C}.$

 $R_{f} = 0.36$ (hexanes/EtOAc, 1:1).

IR (KBr): 3419, 1597, 1514, 1460, 1420, 1334, 1235, 1131, 966, 644 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 6.70 (s, 2 H), 4.63 (ddd, *J* = 11.2, 7.2, 4.2 Hz, 1 H), 3.88 (s, 6 H), 3.87 (s, 3 H), 2.91 (d, *J* = 4.2 Hz, 1 H).

 $^{13}C\{^{1}H\}$ NMR (75 MHz, CDCl₃): δ = 153.3, 139.0, 130.0, 107.7 (dd, J = 320.1, 317.2 Hz), 105.4, 80.2 (t, J = 22.9 Hz), 61.0, 56.4.

¹⁹F NMR (282 MHz, CDCl₃): δ = -48.4 (dd, *J* = 181.1, 7.2 Hz, 1 F), -53.5 (dd, *J* = 181.0, 11.2 Hz, 1 F).

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₁H₁₄F₂IO: 374.9909; found: 374.9899; m/z [M + Na]⁺ calcd for C₁₁H₁₃F₂IONa: 396.9724; found: 396.9719.

1-(2,6-Dimethoxyphenyl)-2,2-difluoro-2-iodoethanol (1h)

Reaction time: 3 h.

Yield: 612 mg (89%); white crystals; mp 58-59 °C.

 $R_{f} = 0.21$ (hexanes/EtOAc, 6:1).

IR (KBr): 3411, 1505, 1463, 1216, 1100, 1039, 985, 708, 545 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.01 (d, J = 2.9 Hz, 1 H), 6.90 (dd, J = 9.0, 2.9 Hz, 1 H), 6.85 (d, J = 9.0 Hz, 1 H), 5.17–5.00 (m, 1 H), 4.16 (d, J = 7.3 Hz, 1 H), 3.81 (s, 3 H), 3.78 (s, 3 H).

 $^{13}C{^1H}$ NMR (75 MHz, CDCl₃): δ = 153.6, 151.8, 123.4, 115.5, 115.4, 112.6, 106.5 (dd, J = 322.0, 318.9 Hz), 76.9 (dd, J = 24.5, 23.0 Hz), 56.4, 55.9.

¹⁹F NMR (282 MHz, CDCl₃): δ = -48.8 (dd, *J* = 177.0, 7.4 Hz, 1 F), -52.8 (dd, *J* = 177.0, 13.3 Hz, 1 F).

HRMS (ESI): $m/z [M + Na]^+$ calcd for $C_{10}H_{11}F_2IO_3Na$: 366.9613; found: 366.9614.

1-(2,4-Dichlorophenyl)-2,2-difluoro-2-iodoethanol (1i)

Reaction time: 2 h.

Yield: 600 mg (85%); colorless oil.

 $R_{f} = 0.34$ (hexanes/EtOAc, 7:1).

IR (film): 3426, 1591, 1476, 1382, 1165, 1105, 1083, 937, 856, 795, 595 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 7.62 (d, *J* = 8.5 Hz, 1 H), 7.42 (d, *J* = 2.2 Hz, 1 H), 7.31 (dd, *J* = 8.5, 2.2 Hz, 1 H), 5.32 (ddd, *J* = 10.6, 7.6, 4.9 Hz, 1 H), 3.66 (d, *J* = 4.9 Hz, 1 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 136.2, 134.9, 131.0 (d, J = 2.1 Hz), 130.8, 129.6, 127.6, 105.9 (dd, J = 322.0, 319.4 Hz), 75.9 (dd, J = 25.0, 22.9 Hz).

¹⁹F NMR (282 MHz, CDCl₃): δ = -50.4 (br d, J = 182.3 Hz, 1 F), -53.5 (dd, J = 182.3, 10.6 Hz, 1 F).

Anal. Calcd for C₈H₅Cl₂F₂IO: C, 27.22; H, 1.43. Found: C, 27.25; H, 1.27.

2,2-Difluoro-2-iodo-1-(naphthalen-1-yl)ethanol (11)

Reaction time: 4 h.

Yield: 581 mg (87%); yellow oil.

*R*_f = 0.21 (hexanes/EtOAc, 20:1).

IR (film): 3436, 1167, 1091, 1010, 931, 781 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 8.04 (d, J = 8.2 Hz, 1 H), 8.00–7.87 (m, 3 H), 7.68–7.49 (m, 3 H), 5.61 (ddd, J = 11.2, 6.7, 4.5 Hz, 1 H), 2.93 (d, J = 4.5 Hz, 1 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 133.8, 131.4, 130.5 (d, J = 2.3 Hz), 130.3, 129.1, 126.8, 126.7, 126.0, 125.2, 123.2, 108.1 (t, J = 321.0 Hz), 76.3 (t, J = 23.8 Hz).

¹⁹F NMR (282 MHz, CDCl₃): δ = -46.5 (dd, *J* = 180.0, 6.7 Hz, 1 F), -51.2 (dd, *J* = 180.0, 11.2 Hz, 1 F).

HRMS (ESI): $m/z [M + Na]^+$ calcd for $C_{12}H_9F_2IONa$: 356.9558; found: 356.9569.

1-(Anthracen-9-yl)-2,2-difluoro-2-iodoethanol (1m)

Reaction time: 4 h.

Yield: 691 mg (90%); yellow crystals; mp 119-121 °C.

*R*_f = 0.28 (hexanes/EtOAc, 6:1).

IR (KBr): 3523, 1167, 1078, 912, 860, 730, 692, 580 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 8.91 (br, 1 H), 8.56 (s, 1 H), 8.14 (br, 1 H), 8.04 (d, J = 8.3 Hz, 2 H), 7.70–7.42 (m, 4 H), 6.69 (ddd, J = 18.3, 9.0, 4.5 Hz, 1 H), 3.21 (d, J = 4.5 Hz, 1 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 142.0 (d, *J* = 2.4 Hz), 132.3 (d, *J* = 1.8 Hz), 132.2 (d, *J* = 1.9 Hz), 131.3, 130.7, 128.6, 127.6, 122.9 (dd, *J* = 249.9, 246.5 Hz), 118.7, 112.4, 73.7 (dd, *J* = 31.0, 27.6 Hz).

¹⁹F NMR (282 MHz, CDCl₃): δ = -46.4 (dd, *J* = 176.0, 9.0 Hz, 1 F), -47.1 (dd, *J* = 176.0, 18.3 Hz, 1 F).

HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₆H₁₁F₂IONa: 406.9715; found: 406.9719.

2,2-Difluoro-2-iodo-1-(thien-2-yl)ethanol (10)

Reaction time: 4 h.

Yield: 348 mg (60%); yellow oil.

*R*_f = 0.20 (hexanes/EtOAc, 6:1).

IR (film): 3423, 1419, 1161, 1097, 983, 924, 708, 600 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.41 (d, *J* = 5.5 Hz, 1 H), 7.22 (d, *J* = 3.5 Hz, 1 H), 7.07 (dd, *J* = 5.1, 3.4 Hz, 1 H), 4.92 (td, *J* = 8.6, 5.1 Hz, 1 H), 3.10 (d, *J* = 5.3 Hz, 1 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 137.2 (d, *J* = 3.4 Hz), 127.8, 127.1, 106.2 (t, *J* = 318.9 Hz), 77.2 (t, *J* = 25.2 Hz).

¹⁹F NMR (282 MHz, CDCl₃): δ = -50.3 (dd, J = 182.1, 8.3 Hz, 1 F), -53.9 (dd, J = 182.2, 9.4 Hz, 1 F).

HRMS (ESI): $m/z \ [M + Na]^+$ calcd for $C_6H_5F_2IOSNa$: 312.8960; found: 312.8966.

[1-(4-Chlorophenyl)-2,2-difluoro-2-iodoethoxy](dimethyl)vinylsilane (2a)

Chloro(dimethyl)vinylsilane (342 μ L, 2.2 mmol) and triethylamine (344 μ L, 2.4 mmol) were added to a solution of alcohol **1a** (R = 4-ClC₆H₄; 636 mg, 2 mmol) in dichloromethane (2 mL) at room temperature. The mixture was stirred for 1 h. Then, water (5 mL) was added, and the mixture was extracted with hexane (3 × 10 mL). The combined extracts were filtered through Na₂SO₄ and concentrated under reduced pressure, and the residue was purified by column chromatography (hexane/EtOAc, 20:1).

Yield: 707 mg (88%); colorless oil.

 $R_f = 0.60$ (hexanes/EtOAc, 20:1).

IR (film): 1491, 1408, 1256, 1155, 1129, 1093, 1003, 860, 841, 791 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 7.44 (d, *J* = 8.5 Hz, 2 H), 7.38 (d, *J* = 8.5 Hz, 2 H), 6.20–6.03 (m, 2 H), 5.90–5.76 (m, 1 H), 4.57 (dd, *J* = 9.9, 7.4 Hz, 1 H), 0.31 (s, 3 H), 0.24 (s, 3 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 136.1, 135.2, 134.8 (d, *J* = 3.6 Hz), 134.8, 129.7, 128.5, 108.0 (t, *J* = 318.1 Hz), 79.9 (t, *J* = 24.3 Hz), -1.5. ¹⁹F NMR (282 MHz, CDCl₃): δ = -48.2 (dd, *J* = 179.7, 7.4 Hz, 1 F), -53.9 (dd, *J* = 179.7, 9.9 Hz, 1 F).

Anal. Calcd for $C_{12}H_{14}CIF_2IOSi:$ C, 35.79; H, 3.50. Found: C, 35.74; H, 3.43.

Vinylation Reaction; General Procedure

Chloro(dimethyl)vinylsilane (171 µL, 1.1 mmol) and triethylamine (172 µL, 1.2 mmol) were added to a solution of an alcohol **1** (1 mmol) in acetonitrile (1.5 mL) at room temperature, and the mixture was stirred for 2 h. Then, AcONa (164 mg, 2 mmol), triphenylphosphine (52.4 mg, 0.2 mmol), and *fac*-Ir(ppy)₃ (1.6 mg, 0.0025 mmol) were added. The reaction vessel was irradiated with 400 nm LEDs (for **3a**–**1**,**n**,**o**, 2 h; for **3m**, 6 h; for **3p**, 5 h; for **3q**, 15 h); during irradiation the mixture was cooled with room temperature water. Ammonium fluoride (370 mg, 10 mmol) was added, and the mixture was stirred at room temperature (for **3a–d**, 2 h; for **3e–j,1,m,p,q**, 6 h; for **3k,n,o**, 15 h). For the workup, the mixture was diluted with water (5 mL) and extracted with hexane/EtOAc (2:1, 3 × 10 mL). The combined extracts were filtered through Na₂SO₄ and concentrated under reduced pressure, and the residue was purified by column chromatography.

1-(4-Chlorophenyl)-2,2-difluorobut-3-en-1-ol (3a)²⁶

Yield: 173 mg (79%); light-yellow oil. $R_f = 0.36$ (hexanes/EtOAc, 2:1). F

Syn thesis

L. I. Panferova et al.

¹H NMR (300 MHz, CDCl₃): δ = 7.40–7.29 (m, 4 H), 5.93–5.75 (m, 1 H), 5.58 (d, J = 17.1 Hz, 1 H), 5.48 (d, J = 10.9 Hz, 1 H), 4.88 (dt, J = 10.5, 3.7 Hz, 1 H), 2.69 (d, J = 3.7 Hz, 1 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 134.7, 134.2, 129.2 (t, *J* = 26.3 Hz), 129.1, 128.5, 122.1 (t, *J* = 9.4 Hz), 119.5 (t, *J* = 244.2 Hz), 75.4 (t, *J* = 30.5 Hz).

¹⁹F NMR (282 MHz, CDCl₃): δ = -108.3 (dt, *J* = 246.6, 10.5 Hz, 1 F), -110.4 (dt, *J* = 246.6, 10.5 Hz, 1 F).

Methyl 4-(2,2-Difluoro-1-hydroxybut-3-en-1-yl)benzoate (3b)²⁷

Yield: 220 mg (91%); white crystals; mp 53-54 °C.

 $R_f = 0.23$ (hexanes/EtOAc, 4:1).

¹H NMR (300 MHz, CDCl₃): δ = 7.94 (d, J = 8.2 Hz, 2 H), 7.46 (d, J = 6 Hz, 2 H), 5.94–5.75 (m, 1 H), 5.52 (d, J = 17.4 Hz, 1 H), 5.42 (d, J = 11.0 Hz, 1 H), 4.97–4.90 (m, 1 H), 3.94 (d, J = 4.3 Hz, 1 H), 3.85 (s, 3 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 167.2, 141.7 (d, *J* = 3.4 Hz), 130.0, 129.2 (t, *J* = 25.3 Hz), 129.2, 127.8, 121.8 (t, *J* = 9.2 Hz), 119.4 (t, *J* = 245.5 Hz), 75.3 (t, *J* = 29.8 Hz), 52.2.

¹⁹F NMR (282 MHz, CDCl₃): δ = –107.2 (dt, J = 247.8, 10.5 Hz, 1 F), –110.3 (dt, J = 247.8, 10.5 Hz, 1 F).

4-(2,2-Difluoro-1-hydroxybut-3-en-1-yl)benzonitrile (3c)28

Yield: 153 mg (73%); white crystals; mp 66–67 °C.

 $R_f = 0.28$ (hexanes/EtOAc, 3:1).

¹H NMR (300 MHz, CDCl₃): δ = 7.67 (d, J = 8.3 Hz, 2 H), 7.56 (d, J = 8.3 Hz, 2 H), 5.93–5.76 (m, 1 H), 5.61–5.55 (m, 1 H), 5.51 (d, J = 11.0 Hz, 1 H), 5.00 (dt, J = 8.8, 3.7 Hz, 1 H), 2.69 (d, J = 3.7 Hz, 1 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 141.3 (d, *J* = 4.2 Hz), 132.0, 128.8 (t, *J* = 26.4 Hz), 128.5, 122.5 (t, *J* = 9.2 Hz), 119.3 (t, *J* = 246.5 Hz), 118.6, 112.6, 75.2 (t, *J* = 29.3 Hz).

 $^{19}{\rm F}$ NMR (282 MHz, CDCl₃): δ = –107.1 (dt, J = 249.3, 8.8 Hz, 1 F), –110.6 (dt, J = 249.3, 8.8 Hz, 1 F).

2,2-Difluoro-1-phenylbut-3-en-1-ol (3d)²⁶

Yield: 145 mg (79%); colorless oil.

*R*_f = 0.33 (hexanes/EtOAc, 3:1).

¹H NMR (300 MHz, CDCl₃): δ = 7.54–7.30 (m, 5 H), 5.97–5.80 (m, 1 H), 5.62 (dt, *J* = 17.3, 2.4 Hz, 1 H), 5.48 (d, *J* = 11.5 Hz, 1 H), 4.88 (td, *J* = 10.1, 3.8 Hz, 1 H), 3.00 (d, *J* = 3.8 Hz, 1 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 136.2, 129.5 (t, J = 25.4 Hz), 128.7, 128.2, 127.7, 121.6 (t, J = 9.2 Hz), 119.7 (t, J = 244.4 Hz), 75.9 (t, J = 28.7 Hz).

¹⁹F NMR (282 MHz, CDCl₃): δ = -108.4 (dt, *J* = 246.7, 10.1 Hz, 1 F), -110.1 (dt, *J* = 246.7, 10.1 Hz, 1 F).

1-(1,1'-Biphenyl-4-yl)-2,2-difluorobut-3-en-1-ol (3e)

Yield: 236 mg (91%); white crystals; mp 78-79 °C.

 $R_f = 0.35$ (hexanes/EtOAc, 5:1).

IR (KBr): 3375, 1213, 1194, 1155, 1074, 996, 957, 804, 761, 695 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.66–7.57 (m, 4 H), 7.55–7.32 (m, 5 H), 5.90 (dq, *J* = 17.4, 11.0 Hz, 1 H), 5.65 (d, *J* = 17.4 Hz, 1 H), 5.52 (d, *J* = 11.0 Hz, 1 H), 4.98 (td, *J* = 9.6, 4.0 Hz, 1 H), 2.50 (d, *J* = 4.0 Hz, 1 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 141.8, 140.8, 135.2, 129.6 (t, J = 25.8 Hz), 128.8, 128.2, 127.7, 127.3, 127.1, 121.7 (t, J = 9.2 Hz), 119.8 (t, J = 244.2 Hz), 75.9 (t, J = 30.0 Hz).

¹⁹F NMR (282 MHz, CDCl₃): δ = -108.2 (dt, *J* = 247.0, 9.6 Hz, 1 F), -110.0 (dt, *J* = 247.0, 9.6 Hz, 1 F).

HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₆H₁₄F₂ONa: 283.0913; found: 283.0905; m/z [M + K]⁺ calcd for C₁₆H₁₄F₂OK: 299.0652; found: 299.0644.

2,2-Difluoro-1-(4-methoxyphenyl)but-3-en-1-ol (3f)29

Yield: 169 mg (79%); colorless oil.

 $R_f = 0.31$ (hexanes/EtOAc, 4:1).

¹H NMR (300 MHz, CDCl₃): δ = 7.35 (d, J = 8.6 Hz, 2 H), 6.90 (d, J = 8.6 Hz, 2 H), 5.96–5.78 (m, 1 H), 5.61 (d, J = 16.9 Hz, 1 H), 5.47 (d, J = 11.0 Hz, 1 H), 4.86 (td, J = 9.6, 3.2 Hz, 1 H), 3.82 (s, 3 H), 2.48 (d, J = 3.7 Hz, 1 H).

 $^{13}C{^1H}$ NMR (75 MHz, CDCl₃): δ = 159.8, 129.7 (t, J = 25.8 Hz), 128.9, 128.5, 121.3 (t, J = 9.2 Hz), 119.7 (t, J = 244.2 Hz), 113.6, 75.5 (t, J = 28.7 Hz), 55.2.

¹⁹F NMR (188 MHz, CDCl₃): δ = -106.7 (dt, J = 245.8, 9.6 Hz, 1 F), -108.7 (dt, J = 245.8, 9.6 Hz, 1 F).

2,2-Difluoro-1-(3,4,5-trimethoxyphenyl)but-3-en-1-ol (3g)

Yield: 238 mg (87%); white crystals; mp 56–57 °C.

*R*_f = 0.40 (hexanes/EtOAc, 1:1).

IR (KBr): 3463, 2937, 1594, 1422, 1327, 1234, 1129, 1070, 997 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 6.58 (s, 2 H), 5.94–5.77 (m, 1 H), 5.59 (d, *J* = 17.4 Hz, 1 H), 5.43 (d, *J* = 11.0 Hz, 1 H), 4.76 (td, *J* = 9.7, 3.6 Hz, 1 H), 3.79 (s, 6 H), 3.78 (s, 3 H), 3.28 (d, *J* = 3.8 Hz, 1 H).

 $^{13}\text{C}^{1}\text{H}$ NMR (75 MHz, CDCl₃): δ = 152.8, 138.0, 132.1, 129.7 (t, J = 25.7 Hz), 121.3 (t, J = 9.3 Hz), 119.6 (t, J = 244.4 Hz), 104.9, 75.8 (t, J = 30.0 Hz), 60.8, 56.1.

¹⁹F NMR (282 MHz, CDCl₃): δ = -107.9 (dt, J = 247.0, 9.7 Hz, 1 F), -110.2 (dt, J = 247.0, 9.7 Hz, 1 F).

HRMS (ESI): $m/z [M + Na]^+$ calcd for $C_{13}H_{16}F_2O_4Na$: 297.0904; found: 297.0909; $m/z [M + K]^+$ calcd for $C_{13}H_{16}F_2O_4K$: 313.0648; found: 313.0648.

1-(2,6-Dimethoxyphenyl)-2,2-difluorobut-3-en-1-ol (3h)

Yield: 195 mg (80%); colorless oil.

*R*_f = 0.23 (hexanes/EtOAc, 5:1).

IR (film): 3449, 2947, 1503, 1421, 1221, 1047, 994, 820, 717 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 6.98 (br, 1 H), 6.86 (d, *J* = 1.5 Hz, 2 H), 5.97 (dq, *J* = 17.4, 11.2 Hz, 1 H), 5.63 (d, *J* = 17.4 Hz, 1 H), 5.46 (d, *J* = 11.2 Hz, 1 H), 5.18 (td, *J* = 11.0, 6.7 Hz, 1 H), 3.81 (s, 3 H), 3.78 (s, 3 H), 3.62 (d, *J* = 6.7 Hz, 1 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 153.6, 151.7, 130.4 (t, J = 25.4 Hz), 125.4, 120.7 (t, J = 10.0 Hz), 119.8 (t, J = 245.5 Hz), 115.1, 114.7, 112.4, 71.8 (t, J = 29.9 Hz), 56.3, 55.8.

¹⁹F NMR (282 MHz, CDCl₃): δ = -110.3 (m, 2 F).

HRMS (ESI): $m/z [M + NH_4]^+$ calcd for $C_{12}H_{18}F_2O_3N$: 262.1251; found: 262.1249; $m/z [M + Na]^+$ calcd for $C_{12}H_{14}F_2O_3Na$: 267.0802; found: 267.0803; $m/z [M + K]^+$ calcd for $C_{12}H_{14}F_2O_3K$: 283.0537; found: 283.0543.

1-(2,4-Dichlorophenyl)-2,2-difluorobut-3-en-1-ol (3i)

Yield: 215 mg (85%); colorless oil.

 $R_f = 0.27$ (hexanes/EtOAc, 5:1).

IR (film): 3402, 1592, 1476, 1420, 1384, 1192, 1144, 1106, 1075, 1044, 995, 859, 805 $\rm cm^{-1}.$

¹H NMR (300 MHz, $CDCI_3$): δ = 7.58 (d, J = 8.5 Hz, 1 H), 7.41 (d, J = 2.1 Hz, 1 H), 7.31 (dd, J = 8.5, 2.1 Hz, 1 H), 5.95 (dq, J = 17.5, 11.4 Hz, 1 H), 5.63 (d, J = 17.5 Hz, 1 H), 5.53 (d, J = 11.1 Hz, 1 H), 5.44 (td, J = 10.0, 4.1 Hz, 1 H), 2.76 (d, J = 4.1 Hz, 1 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 135.2, 134.4, 132.7, 130.5 (d, J = 2.2 Hz), 129.4 (t, J = 25.2 Hz), 129.2, 122.1 (t, J = 9.3 Hz), 119.5 (t, J = 246.9 Hz), 71.2 (t, J = 29.8 Hz).

¹⁹F NMR (282 MHz, CDCl₃): δ = -110.5 (m, 2 F).

HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₀H₈Cl₂F₂ONa: 274.9809; found: 274.9812.

1-(2-Bromophenyl)-2,2-difluorobut-3-en-1-ol (3j)29

Yield: 224 mg (85%); colorless oil.

 $R_{f} = 0.27$ (hexanes/EtOAc, 6:1).

¹H NMR (300 MHz, CDCl₃): δ = 7.62 (d, J = 7.7 Hz, 1 H), 7.57 (dd, J = 7.7, 1.5 Hz, 1 H), 7.36 (td, J = 7.7, 1.5 Hz, 1 H), 7.21 (td, J = 7.7, 1.5 Hz, 1 H), 5.96 (ddd, J = 22.9, 17.4, 11.5 Hz, 1 H), 5.65–5.58 (m, 1 H), 5.55–5.36 (m, 2 H), 2.80 (d, J = 4.5 Hz, 1 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 135.7, 132.8, 130.3, 129.8, 129.7 (t, J = 25.2 Hz), 127.6, 124.2, 121.9 (t, J = 9.2 Hz), 119.7 (t, J = 245.5 Hz), 74.0 (t, J = 29.8 Hz).

¹⁹F NMR (282 MHz, CDCl₃): δ = -110.4 (m, 2 F).

2,2-Difluoro-1-mesitylbut-3-en-1-ol (3k)

Yield: 183 mg (81%); light-yellow oil.

 $R_f = 0.38$ (hexanes/EtOAc, 5:1).

IR (film): 3437, 1167, 1142, 1091, 1010, 980, 931, 781, 590 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 6.87 (s, 2 H), 6.10–5.92 (m, 1 H), 5.72 (d, *J* = 16.8 Hz, 1 H), 5.49 (d, *J* = 11.0 Hz, 1 H), 5.36 (td, *J* = 13.9, 4.4 Hz, 1 H), 2.42 (br, 6 H), 2.31 (s, 3 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 137.8, 131.0 (t, J = 26.1 Hz), 130.3 (br), 129.0 (d, J = 2.4 Hz), 120.8 (dd, J = 244.3, 246.9 Hz), 120.6 (t, J = 10.3 Hz), 73.6 (t, J = 29.8 Hz), 21.4 (br), 20.8.

¹⁹F NMR (282 MHz, CDCl₃): δ = -105.5 (dt, J = 243.9, 13.9 Hz, 1 F), -109.3 (dt, J = 243.9, 13.9 Hz, 1 F).

HRMS (ESI): m/z [M + Na]⁺ calcd for $C_{13}H_{16}F_2$ ONa: 249.1072; found: 249.1061; calcd for $C_{13}H_{16}F_2$ OK: 265.0812; found: 265.0801.

2,2-Difluoro-1-(naphthalen-1-yl)but-3-en-1-ol (3l)

Yield: 194 mg (83%); yellow oil.

 $R_f = 0.25$ (hexanes/EtOAc, 5:1).

IR (film): 3419, 1421, 1209, 1168, 1073, 988, 954, 787 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 8.10 (d, *J* = 8.0 Hz, 1 H), 7.89 (m, 2 H), 7.77 (d, *J* = 7.3 Hz, 1 H), 7.54 (m, 3 H), 6.04–5.87 (m, 1 H), 5.80 (br t, *J* = 9.2 Hz, 1 H), 5.68–5.60 (m, 1 H), 5.47 (d, *J* = 11.0 Hz, 1 H), 2.76 (s, 1 H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 133.7, 132.4 (d, *J* = 4.6 Hz), 131.6, 129.7 (t, *J* = 25.2 Hz), 129.5, 129.0, 126.5, 126.1, 125.8, 125.2, 123.6, 121.6 (t, *J* = 9.2 Hz), 120.3 (t, *J* = 245.5 Hz), 71.7 (t, *J* = 31.0 Hz).

¹⁹F NMR (282 MHz, CDCl₃): δ = -106.1 (dt, J = 245.9, 9.2 Hz, 1 F), -108.8 (dt, J = 245.9, 9.2 Hz, 1 F).

HRMS (ESI): $m/z \ [M + Na]^+$ calcd for $C_{14}H_{12}F_2ONa$: 257.0754; found: 257.0748.

1-(Anthracen-9-yl)-2,2-difluorobut-3-en-1-ol (3m)

Yield: 227 mg (80%); yellow oil.

 $R_{f} = 0.23$ (hexanes/EtOAc, 5:1).

IR (film): 3430, 1420, 1159, 1073, 991, 853, 732 cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): δ = 9.06 (br, 1 H), 8.49 (s, 1 H), 8.18 (br, 1 H), 8.02 (d, *J* = 7.3 Hz, 2 H), 7.73–7.40 (m, 4 H), 6.49 (dt, *J* = 12.6, 3.7 Hz, 1 H), 6.04–5.87 (m, 1 H), 5.75 (d, *J* = 17.4 Hz, 1 H), 5.43 (d, *J* = 10.8 Hz, 1 H), 2.87 (d, *J* = 3.7 Hz, 1 H).

 $^{13}C\{^{1}H\}$ NMR (75 MHz, CDCl₃): δ = 134.0, 130.93, 130.88 (t, J = 25.7 Hz), 130.1, 129.3 (br), 128.2 (br), 126.4 (br), 125.7 (br), 124.9 (br), 121.0 (t, J = 9.5 Hz), 120.8 (t, J = 246.7 Hz), 73.4 (t, J = 30.5 Hz).

¹⁹F NMR (282 MHz, CDCl₃): δ = -104.9 (dt, J = 243.5, 12.6 Hz, 1 F), -106.1 (dt, J = 243.5, 12.6 Hz, 1 F).

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{18}H_{15}F_2O$: 285.1094; found: 285.1085; $m/z [M + NH_4]^+$ calcd for $C_{18}H_{18}F_2NO$: 302.1355; found: 302.1351; $m/z [M + Na]^+$ calcd for $C_{18}H_{14}F_2ONa$: 307.0912; found: 307.0905; $m/z [M + K]^+$ calcd for $C_{18}H_{14}F_2OK$: 323.0651; found: 323.0644.

2,2-Difluoro-1-(furan-2-yl)but-3-en-1-ol (3n)30

Yield: 155 mg (89%); yellow oil.

 $R_{f} = 0.25$ (hexanes/EtOAc, 6:1).

¹H NMR (300 MHz, CDCl₃): δ = 7.44 (s, 1 H), 6.42 (d, J = 9.6 Hz, 2 H), 6.07–5.90 (m, 1 H), 5.75–5.69 (m, 1 H), 5.54 (d, J = 11.3 Hz, 1 H), 5.06–4.80 (m, 1 H), 2.97 (d, J = 5.8 Hz, 1 H).

 $^{13}{C}^{1}{H}$ NMR (75 MHz, CDCl₃): δ = 149.6, 143.0, 129.6 (t, J = 25.0 Hz), 121.8 (t, J = 9.4 Hz), 118.6 (t, J = 244.3 Hz), 110.7, 109.6, 70.3 (t, J = 31.0 Hz).

¹⁹F NMR (282 MHz, CDCl₃): δ = -109.6 (m, 2 F).

2,2-Difluoro-1-(thien-2-yl)but-3-en-1-ol (3o)27

Yield: 150 mg (79%); yellow oil.

 $R_{f} = 0.33$ (hexanes/EtOAc, 5:1).

¹H NMR (300 MHz, $CDCI_3$): δ = 7.53 (d, *J* = 8.5 Hz, 1 H), 7.39 (d, *J* = 2.1 Hz, 1 H), 7.27 (dd, *J* = 8.5, 2.1 Hz, 1 H), 5.92 (dq, *J* = 17.3, 11.3 Hz, 1 H), 5.60 (dt, *J* = 17.3, 2.5 Hz, 1 H), 5.49 (d, *J* = 11.3 Hz, 1 H), 5.40 (td, *J* = 10.0, 4.4 Hz, 1 H), 3.20 (d, *J* = 4.4 Hz, 1 H).

 $^{13}C\{^{1}H\}$ NMR (75 MHz, CDCl₃): δ = 138.8, 129.3 (t, J = 25.3 Hz), 127.0, 126.9, 126.4, 122.2 (t, J = 9.2 Hz), 119.1 (t, J = 244.5 Hz), 72.6 (t, J = 32.1 Hz).

¹⁹F NMR (282 MHz, CDCl₃): δ = -108.8 (dt, J = 247.6, 10.0 Hz, 1 F), -110.4 (dt, J = 247.6, 10.0 Hz, 1 F).

2,2-Difluoro-1-(1-tosyl-1H-indol-3-yl)but-3-en-1-ol (3p)

Yield: 241 mg (64%); colorless oil.

 $R_f = 0.17$ (hexanes/EtOAc, 4:1).

IR (film): 3525, 1448, 1370, 1175, 1123, 1086, 972, 749, 679, 577, 538 $\rm cm^{-1}.$

¹H NMR (300 MHz, $CDCI_3$): δ = 8.02 (d, *J* = 8.0 Hz, 1 H), 7.78 (d, *J* = 8.2 Hz, 2 H), 7.72–7.64 (m, 2 H), 7.35 (td, *J* = 9.9, 1.1 Hz, 1 H), 7.30–7.22 (m, 3 H), 6.02–5.85 (m, 1 H), 5.63 (d, *J* = 17.4 Hz, 1 H), 5.49 (d, *J* = 11 Hz, 1 H), 5.18 (td, *J* = 9.2, 4.6 Hz, 1 H), 2.52 (d, *J* = 4.6 Hz, 1 H), 2.37 (s, 3 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 145.3, 135.2 (d, *J* = 4.4 Hz), 130.1, 129.5 (t, *J* = 25.2 Hz), 129.2, 127.0, 125.7, 125.1, 123.6, 122.0 (t, *J* = 9.2 Hz), 121.0, 118.2 (d, *J* = 122.8 Hz), 113.7, 70.4 (t, *J* = 31.9 Hz), 21.7.

¹⁹F NMR (282 MHz, CDCl₃): δ = -108.1 (dt, J = 247.9, 9.2 Hz, 1 F), -109.8 (dt, J = 247.9, 9.2 Hz, 1 F).

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₉H₁₈F₂NO₃S: 378.0965; found: 378.0970; m/z [M + NH₄]⁺ calcd for C₁₉H₂₁F₂N₂O₃S: 395.1232; found: 395.1235; m/z [M + Na]⁺ calcd for C₁₉H₁₇F₂NO₃SNa: 400.0786; found: 400.0789; m/z [M + K]⁺ calcd for C₁₉H₁₇F₂NO₃SK: 416.0529; found: 416.0529.

4,4-Difluoro-1-phenylhex-5-en-3-ol (3q)²⁶

Yield: 127 mg (60%); colorless oil.

 $R_f = 0.32$ (hexanes/EtOAc, 4:1).

 ^1H NMR (300 MHz, CDCl₃): δ = 7.46–7.34 (m, 2 H), 7.35–7.23 (m, 3 H), 6.17–5.94 (m, 1 H), 5.85–5.73 (m, 1 H), 5.61 (d, J = 11.3 Hz, 1 H), 3.96–3.76 (m, 1 H), 3.09–2.94 (m, 1 H), 2.86–2.72 (m, 1 H), 2.43 (br, 1 H), 2.10–1.95 (m, 1 H), 1.95–1.78 (m, 1 H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 141.3, 129.8 (t, J = 26.0 Hz), 128.6, 126.2, 121.4 (t, J = 9.4 Hz), 120.4 (t, J = 242.8 Hz), 72.7 (dd, J = 30.2, 28.4 Hz), 31.8 (t, J = 2.5 Hz), 31.6.

¹⁹F NMR (282 MHz, CDCl₃): δ = -109.2 (dt, J = 249.0, 10.6 Hz, 1 F), -112.8 (dt, J = 249.0, 10.6 Hz, 1 F).

Funding Information

This work was supported by the Russian Science Foundation (project 17-13-01041).

Acknowledgment

We are grateful to Mr. R. Larkovich for experimental assistance.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590855.

References

- (a) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem. Int. Ed. 2013, 52, 8214. (b) Modern Synthesis Processes and Reactivity of Fluorinated Compounds; Groult, H.; Leroux, F. R.; Tressaud, A., Eds.; Elsevier: Amsterdam, 2017. (c) For a special issue of Chemical Reviews devoted to fluorine chemistry, see: Chem. Rev. 2015, 115, 563.
- (2) (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
 (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (c) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305. (d) Wang, J.; Sanchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432. (e) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422. (f) Fluorine in Medicinal Chemistry and Chemical Biology; Ojima, I., Ed.; John Wiley & Sons: Chichester, 2009. (g) Bégué, J.-P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine; Wiley-VCH: Weinheim, 2008.

- (3) (a) Kirsch, P. Modern Fluoroorganic Chemistry; Wiley-VCH: Weinheim, 2004. (b) Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Chem. Commun. 2007, 1003. (c) Hird, M. Chem. Soc. Rev. 2007, 36, 2070.
- (4) (a) Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757.
 (b) Ma, J.-A.; Cahard, D. J. Fluorine Chem. 2007, 128, 975.
 (c) Shimizu, M.; Hiyama, T. Angew. Chem. Int. Ed. 2005, 44, 214.
 (d) Dilman, A. D.; Levin, V. V. Mendeleev Commun. 2015, 25, 239.
 (e) Uneyama, K. Organofluorine Chemistry; Blackwell: Oxford, 2006. (f) Chemistry of Organic Fluorine Compounds II: A Critical Review, ACS Monograph Series 187; Hudlicky, M.; Pavlath, A. E., Eds.; American Chemical Society: Washington D.C., 1995.
- (5) (a) Liu, T.; Shen, Q. Eur. J. Org. Chem. 2012, 6679. (b) Wang, H.;
 Vicic, D. A. Synlett 2013, 24, 1887. (c) Chu, L.; Qing, F.-L. Acc.
 Chem. Res. 2014, 47, 1513. (d) Tomashenko, O. A.; Grushin, V. V.
 Chem. Rev. 2011, 111, 4475.
- (6) Studer, A. Angew. Chem. Int. Ed. 2012, 51, 8950.
- (7) (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.
 2013, *113*, 5322. (b) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C.
 J. Org. Chem. **2016**, *81*, 6898.
- (8) (a) Koike, T.; Akita, M. Acc. Chem. Res. 2016, 49, 1937.
 (b) Chatterjee, T.; Iqbal, N.; You, Y.; Cho, E. J. Acc. Chem. Res. 2016, 49, 2284. (c) Koike, T.; Akita, M. Top. Catal. 2014, 57, 967.
 (d) Barata-Vallejo, S.; Bonesi, S. M.; Postigo, A. Org. Biomol. Chem. 2015, 13, 11153.
- (9) Andrieux, C. P.; Gelis, L.; Medebielle, M.; Pinson, J.; Saveant, J. M. J. Am. Chem. Soc. **1990**, *112*, 3509.
- (10) Zhang, C. Org. Biomol. Chem. 2014, 12, 6580.
- (11) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
- (12) For the generation of various fluorinated radicals from sulfur reagents, see: (a) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224. (b) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 14411. (c) Daniel, M.; Dagousset, G.; Diter, P.; Klein, P.-A.; Tuccio, B.; Goncalves, A.-M.; Masson, G.; Magnier, E. Angew. Chem. Int. Ed. 2017, 56, 3997.
- (13) (a) Zhou, Q.; Ruffoni, A.; Gianatassio, R.; Fujiwara, Y.; Sella, E.; Shabat, D.; Baran, P. S. Angew. Chem. Int. Ed. 2013, 52, 3949.
 (b) Rong, J.; Deng, L.; Tan, P.; Ni, C.; Gu, Y.; Hu, J. Angew. Chem. Int. Ed. 2016, 55, 2743.
- (14) (a) Kosobokov, M. D.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2014, 16, 3784. (b) Tsymbal, A. V.; Kosobokov, M. D.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. J. Org. Chem. 2014, 79, 7831. (c) Levin, V. V.; Smirnov, V. O.; Struchkova, M. I.; Dilman, A. D. J. Org. Chem. 2015, 80, 9349.
- (15) (a) Levin, V. V.; Trifonov, A. L.; Zemtsov, A. A.; Struchkova, M. I.; Arkhipov, D. E.; Dilman, A. D. Org. Lett. 2014, 16, 6256.
 (b) Trifonov, A. L.; Zemtsov, A. A.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2016, 18, 3458.
- (16) (a) Panferova, L. I.; Tsymbal, A. V.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2016, 18, 996. (b) Panferova, L. I.; Smirnov, V. O.; Levin, V. V.; Kokorekin, V. A.; Struchkova, M. I.; Dilman, A. D. J. Org. Chem. 2017, 82, 745. For recent work on light-mediated reactions from our group, see: (c) Chernov, G. N.; Levin, V. V.; Kokorekin, V. A.; Struchkova, M. I.; Dilman, A. D. Adv. Synth. Catal. 2017, in press; DOI: 10.1002/adsc.201700423. (d) Supranovich, V. I.; Levin, V. V.; Struchkova, M. I.; Korlyukov, A. A.; Dilman, A. D. Org. Lett. 2017, 19, 3215.
- (17) (a) Bols, M.; Skrydstrup, T. Chem. Rev. 1995, 95, 1253.
 (b) Fensterbank, L.; Malacria, M.; Sieburth, S. M. Synthesis 1997, 813.

- (18) For alternative methods for the synthesis of the starting iododifluoromethyl-substituted alcohols 1, see: (a) Miao, W.; Ni, C.; Zhao, Y.; Hu, J. Org. Lett. 2016, 18, 2766. (b) Zhao, Y.; Gao, B.; Hu, J. J. Am. Chem. Soc. 2012, 134, 5790.
- (19) For alternative methods for the synthesis of alcohols 3, see:
 (a) Kirihara, M.; Takuwa, T.; Takizawa, S.; Momose, T.; Nemoto, H. *Tetrahedron* 2000, 56, 8275. (b) Fujita, M.; Obayashi, M.; Hiyama, T. *Tetrahedron* 1988, 44, 4135. (c) Ramachandran, P. V.; Tafelska-Kaczmarek, A.; Chatterjee, A. J. Org. Chem. 2012, 77, 9329.
- (20) (a) Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C.
 R. J. *J. Am. Chem. Soc.* 2012, 134, 8875. (b) Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao, J.-C.; Gu, Y.-C. *Chem. Soc. Rev.* 2012, 41, 4536.
- (21) For recent reports on photoredox-mediated atom-transfer reactions, see: (a) Tang, X.-J.; Dolbier, W. R. Angew. Chem. Int. Ed. 2015, 54, 4246. (b) Beniazza, R.; Atkinson, R.; Absalon, C.; Castet, F.; Denisov, S. A.; McClenaghan, N. D.; Lastécouères, D.; Vincent, J.-M. Adv. Synth. Catal. 2016, 358, 2949. (c) Li, G.; Cao, Y.-X.; Luo, C.-G.; Su, Y.-M.; Li, Y.; Lan, Q.; Wang, X.-S. Org. Lett. 2016, 18, 4806.

- Feature
- (22) (a) Beale, T. M.; Chudzinski, M. G.; Sarwar, M. G.; Taylor, M. S. *Chem. Soc. Rev.* 2013, 42, 1667. (b) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. *Chem. Rev.* 2016, *116*, 2478.
- (23) For the activation of halogen-bonded complexes with light, see:
 (a) Sun, X.; Wang, W.; Li, Y.; Ma, J.; Yu, S. Org. Lett. 2016, 18, 4638. (b) Wang, Y.; Wang, J.; Li, G.-X.; He, G.; Chen, G. Org. Lett. 2017, 19, 1442.
- (24) Lambert, J. B.; Zhao, Y.; Emblidge, R. W.; Salvador, L. A.; Liu, X. Y.; So, J. H.; Chelius, E. C. *Acc. Chem. Res.* **1999**, *32*, 183.
- (25) Kosobokov, M. D.; Dilman, A. D.; Levin, V. V.; Struchkova, M. I. J. Org. Chem. 2012, 77, 5850.
- (26) Zhang, H.; Lin, J.-H.; Xiao, J.-C.; Gu, Y.-C. Org. Biomol. Chem. 2014, 12, 581.
- (27) Lin, X.; Qing, F.-L. Org. Lett. 2013, 15, 4478.
- (28) Kirihara, M.; Kawasaki, M.; Katsumata, H.; Kakuda, H.; Shiro, M.; Kawabata, S. *Tetrahedron: Asymmetry* **2002**, *13*, 2283.
- (29) Qing, F.-L.; Wan, D.-P. Tetrahedron 1998, 54, 14189.
- (30) Audouard, C.; Fawcett, J.; Griffiths, G. A.; Percy, J. M.; Pintat, S.; Smith, C. A. Org. *Biomol. Chem.* **2004**, *2*, 528.