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Abstract

The carbonic anhydrases (CAs, EC 4.2.1.1) represent a superfamily of widespread enzymes,
which catalyze a crucial biochemical reaction, the reversible hydration of carbon dioxide to
bicarbonate and protons. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous
cytosolic isoforms. In this study, a series of hydroperoxides, alcohols, and acetates were tested
for the inhibition of the cytosolic hCA I and II isoenzymes. These compounds inhibited both
hCA isozymes in the low nanomolar ranges. These compounds were good hCA I inhibitors (Kis
in the range of 24.93–97.99 nM) and hCA II inhibitors (Kis in the range of 26.04–68.56 nM)
compared to acetazolamide as CA inhibitor (Ki: 34.50 nM for hCA I and Ki: 28.93 nM for hCA II).
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Introduction

The carbonic anhydrases (CAs; EC 4.2.1.1) are a superfamily of
metalloenzymes, which catalyze the interconversion between
carbon dioxide (CO2) and water (H2O) to bicarbonate (HCO3

�)
and a proton (H+) by using a metal hydroxide nucleophilic
mechanism1,2.

CO2 þ H2O, H2CO3 , HCO�3 þ Hþ

They are virtually ubiquitous in all living systems and
participate in a variety of physiological and pathological
processes such as pH regulation, fluid balance, bone resorption,
glaucoma, calcification, cancer, neurological disorders, osteopor-
osis, tumorigenicity, and biosynthetic reactions (e.g. carboxyl-
ations, in which the produced HCO3

� is the real substrate3–9). The
CAs are present in either eukaryotes and prokaryotes, being
encoded by six genetically distinct, non-related gene families: the
a, b, g, d, z, and Z-CAs. Of them, the Z-CA, a novel family of
CA, was discovered quite recently10–13.

All human CAs (hCAs) belong to the a-CAs. Until now, 16
isozymes have been recognized in mammals where they play
crucial physiological roles. Among these, only 13 isoforms are
catalytically active (CAs I-IV, CAs VA, VB, CAs VI, VII, CA IX,
and CAs XII-XV). Some of them are cytosolic ones (CA I, II, III,
VII, and XIII), others are membrane associated (CA IV, IX, XII,
XIV, and XV), mitochondrial (CA VA and VB), and there is a
secreted one (CA VI) too. On the other hand CA VIII, X and XI,

the CA-related proteins (CARPs), are devoid of any catalytic
activity14–18.

The different CA isoforms possess a widely variable kinetic
properties, their pattern of expression in various cellular com-
partments and tissues is diverse, as it is their inhibition profile
with various classes of compounds13,19. An inhibitor is a molecule
that binds to an enzyme and diminish its activity. Also, it can
hinder a substrate from entering the active site of the enzyme
preventing catalyzing. The inhibition of CA enzymes is very
important for living organism11,16. CA inhibitors (CAIs) were
clinically used primarily as anti-glaucoma drugs, diuretics6,
anticonvulsant agents19, and as anti-epileptics, while the novel
generation compounds are undergoing clinical investigation as
anti-obesity20–22 or anti-tumor drugs and diagnostic tools7,11,23. In
recent years, CAIs started to be used in the management of
hypoxic tumors22.

Many classes of CAIs bind to the catalytic zinc ion (Zn2+)
within the enzyme active site and prevent its activity.
Acetazolamide (AZA) is the first clinically used sulfonamides
as CAI23.

The catalytic mechanism involves the presence of a hydroxide
ion coordinated to the zinc within the CA active site (i.e. the basic
form of the enzyme). During the catalytic cycle, the acidic form is
generated, with water coordinated to zinc. For regeneration of the
basic form of CA, a proton is transferred from the zinc
coordinated water molecule to the solvent. This H+ transfer may
be assisted by active site residues or by buffers present in the
medium14,24,25.

Molecular oxygen is the most plentiful and accessible oxidant.
Oxidations of many organic compounds (e.g. alkenes) are
important in the synthesis of many widely used chemicals.
Singlet oxygen is an electronically excited state of molecular
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oxygen, which is generated by reaction of triplet oxygen (3O2)
with photoexcited sensitizer. Singlet oxygen is produced
by irradiation of ground state triplet oxygen with light in the
presence of triplet sensitizers such as meso-tetraphenyl porphyrin
(TPP), Rose Bengal or Methylene Blue. The olefins with allylic
hydrogen atoms undergo ene-type reactions with singlet oxygen to
form allylic hydroperoxides, which are useful intermediates
in many synthetic reactions26–29. Allylic hydroperoxides are
involved in the development of rancidity in fat, the disruption of
lipid membranes, but also in the biosynthesis of prostaglandins30.

As hydroperoxides were not yet investigated for their inter-
action with the CAs, in this study, we studied the potential
inhibition effect of some allylic hydroperoxides (1–5), alcohols
(5–10), and acetates (10–15) against hCA I and II.

Experimental

The hCA I and II isoenzymes were purified by Sepharose-4B-L
tyrosine-sulphanilamide affinity chromatography31–36 as pub-
lished in previous studies37. Sodium dodecyl sulphate-polyacryl-
amide gel electrophoresis (SDS-PAGE) was used for checking
enzymes purity37–42, and a single band was observed for
each isoenzyme43,44. For this purpose acrylamide in the running
(10%) and the stacking gel (3%), with SDS (0.1%) were
employees45–48.

CA isoenzyme activities were determined according to
Verpoorte et al.49–51 One unit of CA activity was expressed as
1 mmol/L of released p-nitrophenol (NP) per minute at 25 �C52.
The quantity of protein during enzyme purification procedure
was spectrophotometrically determined at 595 nm according
to the Bradford method53. Bovine serum albumin was used as
the standard protein54–56.

The inhibition effects of allylic hydroperoxides, alcohols, and
acetates (1–15) on both CA isoenzymes was measured by using
p-nitrophenyl acetate (NPA) hydrolysis to NP57,58. The CA-
catalysed reaction of CO2 hydration was first observed in the
absence of allylic hydroperoxides, alcohols, and acetates (1–15)
and used as a control for both CA isoenzymes.

Activity (%)-[allylic hydroperoxide, alcohol, or acetate]
graphs were drawn and the half maximal inhibitory concentration
(IC50) values of each allylic hydroperoxides, alcohols, and
acetates (1–15) exhibiting more than 50% inhibition of CA
were calculated. In addition, the Ki values were also determined.
Five different concentrations of substrate were used and
Lineweaver–Burk curves were drawn59 in order to determine
the Kis

60–63.

Results and discussion

Clinical use of the CAIs proved to be a reliable therapeutic
method for a number of human diseases and for several decades
such compounds were a major component of the therapy for high
blood pressure, glaucoma, etc.64,65 It was well known that CAs
are involved in crucial physiological processes connected with
CO2/HCO3

– transport and homeostasis, electrolyte secretion in a
variety of tissues and organs, biosynthetic reactions including
ureagenesis, gluconeogenesis, and lipogenesis, respiration,
tumorigenicity, bone resorption, and calcification32,66,67.

In this study, we report the inhibition profiles of allylic
hydroperoxides, alcohols, and acetates (1–15) against the ubiqui-
tous cytosolic isoform (hCA I) and the more rapid cytosolic
isoenzyme (hCA II). Hydroperoxides are strong oxidants like
ozone and have some toxic effects on living organisms by
inactivation of enzymes and impairing metabolic processes. They
occur as end products of polyunsaturated fatty acids biosynthetic
pathways/degradation, including linoleic acid68–78. They can give
rise to secondary oxidative damage, which can happen in two
ways. The first is via one electron (free radical) reaction to get
secondary radicals, whereas the second via two electron (molecu-
lar) reactions with suitable nucleophiles79.

The allylic hydroperoxides (1–5) were prepared by the Schenk
method. The chemical structures of allylic hydroperoxides,
alcohols and acetates (1–15) are shown in Figure 1. The reduction
of the hydroperoxides with dimetilsulfide in the presence of
catalytic amount of Ti(O-iPr)4 produced the corresponding allylic
alcohols (6–10) in high yield. Allylic alcohols represent an
interesting building block in organic synthesis. All allylic alcohols
(6–10) were converted into the corresponding monoacetates with
NaOAc/Ac2O at room temperature in excellent yields30. The
synthesis of these allylic hydroperoxides, alcohols, and acetates
(1–15) was performed as described previously30. The synthesis
route of some allylic hydroperoxides, alcohols, and acetates
(1–15) is shown in Figure 2.

For evaluation of the biological activity of hydroperoxides,
alcohols, and acetates 1–15, the physiologically relevant human
isoforms hCA I and II have been included in the study. Allylic
hydroperoxides, alcohols, and acetates 1–15 demonstrated effect-
ive inhibitory effects against both CA I and II isoforms (Table 1).
The following structure–activity relationship could be drawn from
data of Table 1:

(i) The CA I isoenzyme is found in many tissues and is
involved in retinal and cerebral edema. Its inhibition may be a
valuable tool for fighting these conditions21. For hCA I, the

Figure 1. The chemical structures of allylic
hydroperoxides, alcohols, and acetates (1–15)
used for carbonic anhydrase isoenzymes
(hCA I and II) inhibition effects.
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compounds 1–15 showed Ki values ranging between 24.93 ± 5.39
and 97.99 ± 20.63 nM (Table 1). The best inhibition was observed
with hydroperoxide 4 (3-hydroperoxycyclohept-1-ene) with a Ki

value of 24.93 ± 5.39 nM. On the other hand, AZA, used a CAI for
the medical treatment of idiopathic intracranial hypertension,
glaucoma, epileptic seizure, altitude sickness, cystinuria, periodic
paralysis, central sleep apnea, and dural ectasia, showed a Ki value
of 34.50 ± 4.09 nM. hCA I is highly abundant in red blood cells
and is found in many tissues but its precise physiological function
is unknown22,67.

(ii) CA II is involved in several diseases, such as glaucoma,
edema, epilepsy, and altitude sickness22,80. For hCA II, com-
pounds 1–15 showed Ki values ranging between 26.04 ± 6.51 and
68.56 ± 11.10 nM. As for hCA I, the best hCA II inhibitor was
hydroperoxide 4 (3-hydroperoxycyclohept-1-ene) with a Ki value
of 26.04 ± 6.51 nM. On the other hand, AZA demonstrated a Ki

value of 28.93 ± 14.77 nM. These results clearly shown that all
allylic hydroperoxides, alcohols, and acetates (1–15) have effect-
ive enzyme inhibitory properties. AZA is a well-known example
of a clinically established CA inhibitor81–83 and in recent years we
have reported its strong inhibition of both human cytosolic CA
isoenzymes6,14,24. There are important differences in inhibition
between the both isoenzymes. The main difference in the active
site architectures of the two isoenzymes is due to the presence of
more histidine residues in the hCA I isoform5,16.

The recent extensive studies showed the importance of CA I
and II isoenzyme inhibitors. In our laboratory, CA inhibitory
effects were studied for a large number of compounds, including
N-alkyl (aril)-tetra pyrimidine thiones15, sulfamide analogs of
dopamine3, sulfonamides derived from dopamine4, sulfamides
and sulfonamides incorporating a tetralin scaffold5, phenolic

benzylamine derivatives7, melatonin8, sulfonamide derivatives of
aminoindanes and aminotetralins9, dimethoxy-bromophenol
derivatives incorporating cyclopropane moieties10 (3,4-dihydrox-
yphenyl) (2,3,4-trihydroxyphenyl), methanone and its deriva-
tives12, new ureido-substituted sulfonamides incorporating a
GABA moiety13, new benzotropone derivatives14, guaiacol and
catechol derivatives1, pyrimidines15, capsaicin16, hydroquinone17,
novel sulfamides derived from 1-aminoindanes and anilines30,
benzylsulfamides32, rosmarinic acid32, dantrolene34, morphine34,
tocopherol35, phenolic sulfonamides36, N-acylsulfonamides43,
novel phenolic sulfamides43, antioxidant phenols49, brominated
diphenylmethanone and its derivatives56, natural phenolic com-
pounds61,62,84, phenolic acids85, antioxidant polyphenol prod-
ucts81,86, natural product polyphenols and phenolic acids86,
caffeic acid phenethyl ester82, carbamates and sulfamoylcarba-
mates87, natural and synthetic bromophenols88, norbornene-fused
pyridazines89, (Z)-4-Oxo-4-(arylamino)but-2-enoic acids deriva-
tives90, avermectins91, spirobisnaphthalenes92, 4-(2-substitutedhy-
drazinyl)benzenesulfonamides93, and taxifolin94. All of these
studies demonstrate the importance of CA isoenzymes in
biochemical and pharmaceutical application95–100.

Conclusions

The allylic hydroperoxides, the corresponding alcohols and
acetates 1–15 demonstrated effective inhibition profiles against
hCA I and II. The similar inhibition profiles of these compounds
for the two CA isoforms can be due to the high homology between
hCA I and II. Allylic hydroperoxides, alcohols, and acetates
(1–15) were identified as potent low nanomolar CAIs.
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human erythrocyte glutathione reductase. Biol Pharm Bull 2008;31:
2036–9.
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Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and its
derivatives as carbonic anhydrase isoenzymes inhibitors. J Enzyme
Inhib Med Chem 2013;28:402–6.
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69. Şerbetçi TH, Gülçin _I. Antioxidant and radical scavenging activity of
aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.).
Int J Food Propert 2010;13:657–71.
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