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The enantioselective hydrogenation of endocyclic enones has been a historical problem for homogeneous catalysis. We herein report 
an efficient method to reduce endocyclic enones with molecular hydrogen. Catalyzed by a rhodium/Zhaophos complex, a variety of 
enones with five-, six- or seven-member ring were hydrogenated with high enantioselectivity (92% ~ 99% ee). Excellent chemo- and 
enantioselectivity demonstrated This method was successfully applied in the enantioselective hydrogenation of citral to produce en-
antio-enriched citronellal. 
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Background and Originality Content 

Transition metal-catalyzed homogenous hydrogenation of C=C 
bonds, with no doubts, has played an important role in the con-
struction of chiral compounds.1 Over the last half century, several 
successful catalytic systems with numerous chiral ligands have 
been developed for the conversion of prochiral C=C bonds to chi-
ral carbons.2 A key strategy for high enantioselectivity is the coor-
dination of the functional group of the substrates.3 The secondary 
interaction assists to form two diastereomeric substrate-catalyst 
complexes which lead to the formation of two product enantio-
mers. Mechanistic studies have confirmed this secondary interac-
tion in many successful catalytic systems such as Wil-
kinson/Osborn’s cationic Rh complex for dehydroamino acids3, 4, 
Ru/bisphosphine complexes for conjugate carboxylic acids and 
Noyori’s RuH-NH systems for ketone reduction.5  

In the history of asymmetric hydrogenation, endocyclic 
enones has always been a challenging task.6 In our perspective, 
the difficulties lie in such areas: (1) as functionalized olefins, the 
carbonyl in endocyclic enones could not form efficient coordina-
tion to the metal due to the ring strain and therefore the enanti-
omeric control fails in the aforementioned catalytic systems. (2) 
the electron density of the C=C bonds are diluted by the conjugate 
carbonyl; together with steric hindrance caused by the ring, the 
coordination of the C=C bonds to the metal are weak.  

Figure 1. Challenges for asymmetric hydrogenation of cyclic enones. 

Reports of the maneuvers on AH of this class of substrates are 
limited. Although unfunctionalized olefins are hydrogenated with 
chiral analogues of Crabtree’s complex, only sporadic reports on 
AH of cyclic has been documented.7 Hydrogenation catalyzed by a 
cationic ruthenium complex could give (+)-cis-methyl dihydro-
jasmonate with a dr value of 88:12.8 A rhodium/Segphos complex 
was applied in the asymmetric hydrogenation of 6-member-ring 
endocyclic enones, but the moderate regioselectivity or ee was 
still an issue.9 In 2008, asymmetric hydrogenation of cyclic enones 
was achieved by Jaekel and coworkers using a hydroformylation 
catalyst and this catalytic system could be applied in the synthesis 
of enantioenriched citronellal.10 Efforts by Börner and co-workers 
were reported to develop a series of P‑chirogenic Xantphos and 
their application of asymmetric hydrogenation of isophorone with 
high enantioselectivity11, although broad reaction scope was not 
disclosed. In comparison, functionalized cyclic enones such as 
N-acyl enamides, with higher reactivity and easier enantiomeric 
control, could also be hydrogenated smoothly with a rhodium 
catalyst.12 An alternative strategy, transfer hydrogenation, was 
reported by Macmillan13 and List14 respectively using organocata-
lysts. But the relatively low catalytic efficiency slowed down its 

large-scale application.  

Results and Discussion 

We began the initial investigations with the hydrogenation of 
model substrate 3-phenylcyclopent-2-en-1-one (1a) to evaluate 
several chiral bisphosphine ligands. A variety of bisphosphine lig-
ands with different backbones were surveyed under relatively 
harsh conditions (60 atm H2, 35°C, 48 hours). To our disappoint-
ment, commercially available chiral bisphosphine ligands, no 
matter electron-rich or not, failed in the rhodium catalyzed hy-
drogenation of this endocyclic enone (Table S1 in the supporting 
information). The rhodium complexes with these ligands showed 
insufficient reactivities and poor enantioselectivities. Gratefully, a 
thiourea-containing bisphosphine, Zhaophos that was developed 
by our group, succeeded in this chemical transformation. Cata-
lyzed by a Rh/Zhaophos complex, 3-phenylcyclopent-2-en-1-one 
(1a) was hydrogenated to the cyclopentanone bearing a stereo-
center at the β-position with a full conversion and 95% ee. After 
screening the reaction parameters, the optimized condition was 
obtained (97% ee in toluene, 30 atm H2, 35 oC). To our delight, no 
ketone reduction was observed. Lowering the hydrogen pressure 
or the reaction temperature, however, would lead to a decrease 
in conversion. Explanations for the reason of the superiority of 
Zhaophos to other bisphosphine ligands include: (1) the hydrogen 
bond between thiourea and the carbonyl might activate the sub-
strate by lowering the HOMO, (2) the secondary interaction be-
tween the substrate and the catalyst would enhance the enan-
tiodiscrimination (the interaction model could be found in figure 
1). 
Table 1. Screening of reaction conditions for the asymmetric hy-
drogenation of 3-phenylcyclopent-2-en-1-one. [a] 

 

We applied the optimized conditions to explore the reaction 
scope. Various aryl cyclic enones underwent hydrogenation 
smoothly to yield chiral β-aryl chiral cyclic ketones (figure 2). The 
substitution groups on the benzene ring, no matter elec-
tron-donating or electron-withdrawing, showed limited impact on 
both yields and enantioselectivities. Heteroaromatic substituents, 
such as thiophene, did not make this reaction sluggish (2p). Alkyl 
cyclic enones (2q and 2r) could also be reduced with high enanti-
oselectivities. If the ring size expand from five-member ring to six- 
or seven-member ring, no significant influence on the reactivity or 

Entry Solvent H2 / atm Time Conversion ee 
1 CH2Cl2 60 48 h >99% 95% 
2 DCE 60 48 h 12% 86% 
3 THF 60 48 h 65% 95% 
4 MeOH 60 48 h 10% 86% 
5 iPrOH 60 48 h 19% 94% 
6 EtOAc 60 48 h 92% 96% 
7 toluene 60 48 h >99% 96% 
8 toluene 30 48 h >99% 97% 
9 toluene 30 24 h >99% 97% 
10 toluene 10 24 h 97% 97% 
11[b] toluene 30 24 h 45% 96% 

[a] reaction conditions: Rh(NBD)2BF4/ligand/1a (0.1 mmol) ratio of 
1/1.1/100, 1.0 mL solvent. The conversion was determined by 1H NMR 
and the ee value was determined by HPLC analysis using a chiral sta-
tionary phase. [b] The reaction was carried out at 25 °C. 
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enantioselectivity was observed (2s and 2t).  
Cyclic enones were normally selected as model substrates to 

study chemo- and enantioselective hydrogenation of important 
α,β-unsaturated ketones or aldehydes in industry.15 We envi-
sioned that this catalytic system could be applied in the produc-
tion of value-added chiral aldehydes such as enantio-enriched 
citronellal. Asymmetric hydrogenation of citral to produce enan-
tiopure citronellal was regarded as commercially practical. In ad-
dition, this transformation from citral to citronellal, which has 
been a historical problem in fragrance industry, was also a key 
step for menthol production. We envisioned that our catalytic 
system could be applied in the preparation of enantio-enriched 
citronellal.   

Figure 2. Substrate scope for asymmetric hydrogenation of cyclic enones. 

In our perspective, AH of citral to produce enantio-pure cit-
ronellal has many challenges. First,  compared to their acyclic 
counterparts, cyclic enones are configurationally stabilized due to 
the ring strain. The enantiomeric induction of acyclic 
α,β-unsaturated carbonyl compounds was therefore less effective. 
Second, chemoselectivity for C=C bonds over aldehyde C=O bond 
and regioselectivity for the conjugate C=C bond over the other 
one has to be achieved in a single chemical transformation.  

Since AH of C=C bonds without secondary interaction was 
normally an enantiodivergent process16, we therefore selected 
geranial as the targeting substrate. Over-reduction (either the 

aldehyde or the other C=C bond) was indeed a tough challenge 
during the condition optimization. Low hydrogen pressure and 
shorter reaction time was applied in order to achieve desired 
chemo- and regioselectivity. With a minor-modified Zhaophos17, 
geranial could be hydrogenated to give citronellal with high enan-
tioselectivity (90%) and high yield (70%). The over-reduction to 
alcohol was the main reason for the loss in yield. 

Scheme 1. Challenge in the AH of citral. 

Conclusions 

In summary, we report a synthetic method of AH of endocyclic 
enones, which has been a challenge for a long time. Catalyzed by a 
rhodium/Zhaophos complex, a series of cyclic enones, no matter 
has a 5-, 6- or 7-member ring, could be hydrogenated with high 
enantioselectivities. This catalytic system could be successfully 
applied in the enantioselective conversion of citral to enan-
tio-enriched citronellal. 

 

Experimental 

In an argon-filled glovebox, a solution of Zhaophos (9.6 mg, 
0.011 mmol) and Rh(NBD)2BF4 (3.7 mg, 0.01 mmol) in 1.0 mL an-
hydrous toluene was stirred at room temperature for 40 min. 100 
uL of the resulting solution was transferred via syringe into a vial 
that was charged with a solution of 1 (0.1 mmol) in 0.9 mL anhy-
drous toluene. This vial was placed into an autoclave, which was 
then purged with H2 (3 times) and pressurized with 30 atm of H2. 
The mixture was stirred at 35 oC (oil bath) for the indicated period 
of time. After the indicated period of time, the hydrogen gas was 
carefully released in a fume hood. The products were purified by 
flash chromatography and the enantiomeric excess was deter-
mined by HPLC analysis. 
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