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Abstract. The reaction of the tetranuclear iron complex [μ4-Sulfido-bis{(μ-2-furylmethanethiolato)
bis[tricarbonyliron](Fe—Fe)}] 1 with PPh3 was explored. The reaction leads to the formation of the mono-
substituted complex [Fe2(μ-2-furylmethanethiolate)2(CO)5(PPh3)] 2. X-ray crystal structure has been reported
for complex 2. Complexes 1 and 2 were found to be active catalysts for proton reduction. Complexes 1 and 2
showed comparable catalytic activity for proton reduction to dihydrogen.
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1. Introduction

Hydrogen is being considered as a potential energy
vector for the future as its combustion produces energy
and only water as the by-product. Generation of hydro-
gen is, therefore, a clean alternative to fossil fuels. In
nature, the [FeFe] hydrogenase enzyme is capable of
reversibly and rapidly catalyzing hydrogen evolution
and oxidation.1 The active site (H-cluster) of this met-
alloenzyme, as revealed by the crystal structure inves-
tigations a decade ago, consists of one [4Fe4S] cubane
and one [2Fe2S] subunit (Figure 1).2,3 In the [2Fe2S]
subunit, the two iron atoms are linked by a dithiolate
ligand, in addition to co-ordination with CO and CN−

ligands.2–5 Since the revelation of the detailed struc-
tural information of the enzyme active site, there has
been tremendous interest in the study of organometallic
model complexes of the H-cluster, in order to develop
cheap, efficient and inexpensive catalysts for the produc-
tion of dihydrogen.1,6,7 Dithiolate-bridged complexes of
the type I have been reported with a wide variety of
terminal ligand (CO, CN−, PR3, NHCs, etc.) combina-
tions (Figure 1).8 Though many complexes of type I
are known, there are not many reports of monothiolate-
bridged complexes i.e., type II. A few selected examples
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reported are: [Fe2(μ-napthalene-2-thiolate)2(CO)5L] (L
= CO, PPh3); 9a [Fe2(μ-p-toluenethiolate)2(CO)6], [Fe2

(μ-CH2Ph)2(CO)6];9b [Fe2(μ-SCH2-o-C6H4OX)2

(CO)6] (X = H, Me);10 [Fe2(CO)6(μ-SC6H4-R)2 (R =
p-H, o-CH3O, p-CH3O, p-Cl)]; 11 [Fe2(CO)4(μ-SC6H4

-o-CH3O)2(PMe3)2];10 [μ-S-2-RCONHC6H4)2Fe2

(CO)6] (R = Me, CF3, Ph, 4-F-C6H4); 12 [Fe2(μ-SEt)2

(CO)6];13 [Fe2(μ-SEt)2(CO)4(PMe3)2];12 [Fe2(μ-SR)2

(CO)6] (R = 2-thienyl, 2-thienylmethyl,2-C4H3SCH2);14

[Fe2(μ-SMe)2(CO)6];15 [Fe2{μ-SCH2CH(OH)CH2

(OH)}2(CO)6];16 [Fe2(μ-SPh)2(CO)6];17 [Fe2(μ-CH2

CH2CH2OH)2(CO)6];18 [Fe2(CO)4(μ-SEt)2(CN)2];19

[Fe2(μ-SC6H2-iPr3-2, 4, 6)2(CO)6];20 [Fe2(μ-SC6H2

Me3-2, 4, 6)2(CO)6],19 etc. Most of the above com-
plexes have been reported as structural models of the
H-cluster. A few of the complexes [Fe2(μ-napthalene-2-
thiolate)2(CO)5L] (L = CO, PPh3); 9a [Fe2(μ-p-toluene-
thiolate)2(CO)6];9b [Fe2(μ-CH2Ph)2(CO)6];9b [Fe2(μ

-SCH2-o-C6H4OX)2(CO)6] (X = H, Me),10 [Fe2(CO)6

(μ-SC6H4-R)2] (R = p-H, o-CH3O, p-CH3O, p-Cl), 11

[Fe2(CO)4(μ-SC6H4-o-OCH3)2(PMe3)2];10 [μ-S-2−
RCONHC6H4)2Fe2(CO)6] (R = Me, CF3, Ph, 4-F-C6

H4); 12 [Fe2(μ-SEt)2(CO)6];13 [Fe2(μ-SEt)2(CO)4

(PMe3)2];12 [Fe2(μ-SMe)2(CO)6];15 have been reported
as catalysts for proton reduction in the presence of
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Figure 1. [FeFe] hydrogenase enzyme active site (top) and
model complexes reported (bottom).

acids with low currents and high over potentials.
Therefore, with an aim to further understand the influ-
ence of monothiolate ligands in the model complexes,
the reported tetra iron precursor complex μ4 -Sulfido-
bis { (μ-2-furylmethanethiolato ) bis [ tricarbonyliron]
(Fe–Fe)} 1 was used to synthesize the monodentate
phosphine substituted complex [Fe2(μ-2-furylmethane-
thiolate)2(CO)5(PPh3)] 2 (L = PPh3). 21 The catalytic
aspects of both the complexes (1 and 2) were investi-
gated in the presence of acids of varying strengths by
electrochemical investigations.

2. Experimental

2.1 Materials and physical measurements

All the experiments were carried out under an inert
atmosphere using Schlenk line techniques. The reagents Fe3
(CO)12, 2-furylmethanethiolate, triphenylphosphine, deuter-
ated (CDCl3) and anhydrous solvents (dichloromethane,
tetrahydrofuran, acetonitrile) were obtained from Sigma-
Aldrich and used without further purification. The precur-
sor complex μ4-Sulfido-bis{(μ-2-furylmethanethiolato)bis
[tricarbonyliron](Fe—Fe)} 1 was prepared according to the
procedure reported in literature.21 The 1H and 31P {1H}
NMR spectra were recorded at room temperature in CDCl3
solution with Jeol 400 MHz NMR spectrometer. The FTIR
spectra were recorded from dichloromethane and acetonitrile
solutions of the samples over the range 400−4000 cm−1

on a Perkin Elmer FTIR Spectrometer. The UV-Vis spectra
for complexes were recorded on a Perkin-Elmer Lambda-
25 spectrophotometer. Electrochemical measurements were
conducted in acetonitrile with 0.1 M tetrabutylammonium

hexafluorophosphate (Sigma-Aldrich, electrochemical grade)
as supporting electrolyte that was dried in vacuum at 383
K. Cyclic voltammetry was carried out using an Autolab
potentiostat with a GPES electrochemical interface. The
working electrode was a glassy carbon disc (diameter 3
mm, freshly polished) for cyclic voltammetry. Platinum
was used as the counter electrode. The reference electrode
was a non-aqueous Ag/Ag+ electrode (CH Instruments,
0.01 M AgNO3 in acetonitrile). All the potentials are quoted
against the ferrocene–ferrocenium couple (Fc/Fc+); fer-
rocene was added as an internal standard at the end of
the experiments. For the electrochemical measurements,
all solutions were prepared from dry acetonitrile (Sigma-
Aldrich, spectroscopic grade, dried with molecular sieves
3 Å).

2.2 Synthesis of [Fe2(μ-2-furylmethanethiolate)2
(CO)5 (P Ph3)] 2
The tetranuclear all carbonyl precursor complex 1 was
synthesized as reported in literature.21 A tetrahydrofuran
solution of 1 (600 mg, 0.733 mmol) and the phosphine
ligand (PPh3) (192 mg, 0.733 mmol) were refluxed under
argon atmosphere for 3 h. The resulting solution was evap-
orated to dryness under vacuum and the residue was chro-
matographed on a silica gel column. Elution with a mixture
of hexane/dichloromethane (4:1, v/v) afforded an orange-red
solution. Complex 2 was obtained as an air-stable orange-red
powder after removal of the solvent. The complex was then
recrystallized from hexane-dichloromethane solution by slow
evaporation at – 4 ◦C. 1: IR (CH2Cl2, cm−1): 2070 (s), 2027
(s), 1968 (br).

2.2a Complex 2: [Fe2(μ-2-furylmethanethiolate)2

(CO)5(PPh3)]: Yield: 79.2% (0.772 g); IR (CH2Cl2,
cm−1): νC=O 2041 (s), 1979 (br), 1960 (s), 1926 (s); 1H NMR
(400 MHz, 298 K, ppm in CDCl3): 7.70–7.30 (m, 15H, PPh3),
6.22–5.78 (6H, furyl-H) 3.43–2.81 (4H, -CH2-). 31P NMR
(161.8 MHz, 298 K, ppm in CDCl3): 59.8 ppm (s, PPh3).

2.3 X-ray crystal structure analysis

Single crystals for complexes 1 and 2 were grown by slow
evaporation of hexane/dichloromethane solutions. X-ray data
of the complexes were collected on an Oxford Xcalibur
CCD single-crystal X-ray diffractometer at 293 K, equipped
with graphite monochromatic MoKα radiation (λ 0.71073
Å). Significant crystallographic parameters and refinement
details for complex 2 are listed in Table 1. For details of
complex 1, see Supplementary Information. The crystal struc-
tures of the complexes were solved by direct methods using
SIR-92 and refined by full-matrix least squares refinement
techniques on F2 using SHELXL-97.22,23 The structure was
solved and refined by standard procedures. The multi-scan
absorption correction was applied. The coordinates of non-
hydrogen atoms were refined anisotropically using SHELXL-
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97.24 All calculations were done using the Wingx software
package.25 For the molecular graphics, the program ORTEP-
3 was used.26

3. Results and Discussion

3.1 Synthesis and characterization

The tetranuclear all carbonyl iron precursor complex
μ4-Sulfido-bis {(μ-2-furylmethanethiolato)bis[tricarb-
onyliron](Fe–Fe)} 1was synthesized as reported in liter-
ature.21 The reaction of precursor complex 1 with PPh3

in refluxing THF afforded the target complex [Fe2(μ-
2-furylmethanethiolate)2(CO)5(PPh3)] 2 in 79.2% yield
(Scheme 1). Recrystallization from hexane and dichloro-
methane solutions at low temperature afforded orange-
red crystals for complex 2.

3.2 Structure of the complexes

3.2a Crystal structure of 2: The molecular structure
for 2 was confirmed by single crystal X-ray diffraction
analysis (Figure 2, Tables 1 and 2). The Fe–Fe bond

distance in complex 2 is 2.5207(4) Å which is close
to that reported for the [FeFe] hydrogenase enzyme
active site (2.6 Å).2,3,27 The Fe–Fe bond distances in
the reported complex 1 are Fe(1)–Fe(2), 2.5263(10)
and Fe(3)–Fe(4), 2.5377(10) Å, which are only slightly
higher than the Fe–Fe bond distance in complex 2 proba-
bly due to the bridging sulphide between the iron centers
(see Supplementary Information).21 The replacement of
one CO ligand with the phosphine ligand in complex 2
has only a small effect on the Fe–Fe bond distance. The
phosphine ligand occupies the apical position in 2 and
the [2Fe2S] site is in butterfly conformation, with the
equatorial-axial spatial orientation of the furylthiolate
groups tethered to the iron centers.9 The equatorial-
axial spatial orientation is due to the presence of a
monodentate phosphine ligand on one of the iron cen-
ters. This orientation has also been observed for similar
complexes reported earlier.9 The crystal packing along
a axis showed two molecules present together (Figure
S2, Supplementary Information). Intermolecular bond-
ing for the complex was seen between C29–H29· · ·O1
and C20–H20· · ·O7 with bond distances of 2.551 and
2.612 Å, respectively (Figure S3, Supplementary Infor-
mation).

Table 1. Crystallographic parameters and refinement details for complex 2.

Empirical formula C33H25Fe2O7PS2
Formula weight 740.36
Crystal size (mm) 0.270 × 0.260 × 0.250
Temperature (K) 293(2)
Wavelength (Å) 0.71073
Crystal system Triclinic
Space group P1̄
a (Å) 9.0095(4)
b (Å) 11.8668(8)
c (Å) 16.8481(10)
α (o) 70.847(6)
β (◦) 84.436(4)
γ (o) 76.716(5)
V (Å3) 1655.60(18)
Z 2
ρcalcd (g cm−3) 1.485
Absorption coefficient (mm−1) 1.096
Two theta range for data collection (o) 6.42 to 58.82
Refinement method Full-matrix least-squares on F2

No. of unique reflns (Rint) 8022 (0.0257)
Index ranges −12 ≤ h ≤ 11, −16 ≤ k ≤ 15, −22 ≤ l ≤ 23
F000 1010
R1[I > 2σ(I )] (on F for obsd reflns)a 0.0373
wR2[I > 2σ(I )] (on F2 for all reflns)b 0.0866
Goodness-of-fit on F2 1.019
Largest diff. peak and hole 0.334 and −0.273 e.Å−3

a R1 = �I IFoI − IFc I I/�IFoI.
b wR2 = {�[w(F2

o − F2
c)

2]/�w(F2
o)

2}1/2.
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Scheme 1. Synthetic scheme for complexes 1 and 2.

3.3 FTIR spectral studies

The complexes were characterized by different
spectroscopic techniques. The FTIR spectra for the
complexes were recorded in both dichloromethane and
acetonitrile (Table 3 and Figures S4–S5, Supplementary
Information). For the tetranuclear iron complex, the CO
stretching frequencies were observed between 2070 and
1970 cm−1. The peaks correspond to the terminal car-
bonyl ligands. On the other hand, the phosphine substi-
tuted complex 2 displayed peaks at lower wavenumbers
(shifted by 30 cm−1) in comparison to complex 1. The
attachment of electron-donating triphenylphosphine lig-
and at the apical position on one of the iron centers leads
to lower terminal CO stretching frequencies.

3.4 NMR spectroscopy

The 1H NMR spectrum of complex2 in CDCl3 displayed
peaks in the range 7.70–7.30 ppm corresponding to the
phenyl ring protons of the PPh3 ligand (Figure S6, Sup-
plementary Information). The peaks between 6.22 and
5.78 ppm were due to the protons present in the two furyl

Figure 2. Molecular structure of
[Fe2(μ-2-furylmethanethiolate)2(CO)5(PPh3)] 2. Hydrogen
atoms have been omitted for clarity.

rings (3 protons in each ring). The peaks between
3.43 and 2.81 ppm correspond to four protons from
the -CH2- a bridge between sulphur and the furyl ring.
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Table 2. Selected bond lengths (Å) and angles (o) for
complex 2.

Bond lengths Bond angles

Fe(1)–Fe(2) 2.5207(4) Fe(1)–S(2)–Fe(2) 67.600 (19)
Fe(1)–S(1) 2.2518(6) Fe(1)–S(1)–Fe(2) 67.772 (18)
Fe(1)–S(2) 2.2646(6) S(2)–Fe(2)–Fe(1) 56.162 (17)
Fe(2)–S(1) 2.2691(6) S(2)–Fe(1)–Fe(2) 56.238 (17)
Fe(2)–S(2) 2.2666(6) S(1)–Fe(2)–Fe(1) 55.788 (16)
Fe(1)–P(1) 2.2344(6) S(1)–Fe(1)–Fe(2) 56.440 (17)
Fe(1)–C(4) 1.772(2) S(2)–Fe(2)–S(1) 79.90 (2)
Fe(1)–C(5) 1.760(2) S(1)–Fe(1)–S(2) 80.32 (2)
Fe(2)–C(1) 1.801(3) C(4)–Fe(1)–S(1) 158.89 (8)
Fe(2)–C(2) 1.787(3) C(4)–Fe(1)–S(2) 87.00 (8)
Fe(2)–C(3) 1.767(3) C(5)–Fe(1)–S(1) 91.94 (7)
C(1)–O(1) 1.139(3) C(5)–Fe(1)–S(2) 157.27(8)
C(2)–O(2) 1.131(3) C(5)–Fe(1)–Fe(2) 101.72 (8)
C(3)–O(3) 1.136(3) C(5)–Fe(1)–C(4) 93.40 (10)
C(4)–O(4) 1.137(3) C(4)–Fe(1)–P(1) 95.92 (8)
C(5)–O(5) 1.146(3) C(5)–Fe(1)–P(1) 96.53 (8)

P(1)–Fe(1)–S(1) 103.74 (2)
P(1)–Fe(1)–S(2) 106.04 (2)
P(1)–Fe(1)–Fe(2) 153.12 (2)
C(1)–Fe(2)–S(1) 105.92 (9)
C(1)–Fe(2)–Fe(1) 149.94 (8)
C(2)–Fe(2)–Fe(1) 96.85 (9)
C(3)–Fe(2)–Fe(1) 105.16 (10)
C(1)–Fe(2)–S(2) 100.07 (9)
C(2)–Fe(2)–S(2) 87.91 (8)
C(3)–Fe(2)–S(2) 160.91 (10)
C(2)–Fe(2)–C(1) 100.59 (12)
C(3)–Fe(2)–C(1) 98.88 (13)
C(3)–Fe(2)–C(2) 90.91 (13)

The 31P {1H} NMR spectrum of complex 2 displayed a
peak at 59.8 ppm due to the presence of the PPh3 ligand
at one of the iron centers. In addition, a small peak at
53.98 ppm is probably due to the presence of an isomer
for complex 2 (Figure S7, Supplementary Information).
This could be due to the axial/equatorial or axial/axial
orientation of the two furyl rings.

3.5 UV-visible absorption spectroscopy

For complexes 1 and 2, the electronic effect of the
monothiolate ligands and the monodentate phosphine
ligand on the iron centers was elucidated from the
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Figure 3. UV-Vis spectra for complexes 1 (—-) and 2 (---)
in acetonitrile.

measured UV-Vis absorption spectra in acetonitrile
(Figure 3). The spectra of both the complexes displayed
two absorption bands at 332 (46,000), 468 (6200) and
372 (17,000), 505 (2400) nm (M−1 cm−1) for 1 and 2,
respectively. The peaks in the UV region were due to
π − π∗ electronic transitions while those in the visible
region can be assigned as d-d transitions. The significant
similarity between the UV–Vis spectra of complexes 1
and 2 suggests that there is very little difference of the
influence of the monothiolate and phosphine ligands on
the resultant Fe(CO)6 and Fe(CO)5 cores.

3.6 Electrochemistry

The cyclic voltammograms (CVs) for complexes 1 and
2 were measured in acetonitrile under an argon atmo-
sphere (Figure 4 and Table 4). The CVs for 1 displayed
two one-electron irreversible reduction waves (Epc =
−1.80 and –2.53 V vs. Fc/Fc+) that can be assigned
as FeIFeI → FeIFe0 and FeIFe0 → Fe0Fe0 redox pro-
cesses (Figure 4). One-electron irreversible oxidation
for 1 was observed at 0.70 V which can be ascribed
as FeIFeI → FeIFeII. The reduction of compound 2
occurred at Epc = −1.92, and its oxidation at 0.36 V.
Substitution of one CO ligand in 1 with PPh3 led to
a more electron-rich Fe center in 2, hence leading to
more negative first reduction potential and less

Table 3. FTIR data for complexes 1 and 2.

Complex Wavenumber/cm−1

Dichloromethane Acetonitrile

1 2070 (s), 2027 (s), 1968 (br) 2069 (s), 2036 (s), 1988 (br)
2 2041 (s), 1979 (m), 1960 (s), 1926 (s) 2033 (s), 1980 (m), 1953 (s), 1918 (s)
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Figure 4. Cyclic voltammograms for 1 mM of complexes
1 (—) and 2 (----) in acetonitrile at a scan rate of 0.1 Vs−1.

positive oxidation for complex 2. Both the complexes
were examined as electrocatalysts for the reduction of
protons to molecular hydrogen in the presence of acetic
and trifluoroacetic (TFA) acids. The complexes were
found to be more efficient catalysts in presence of TFA
which is a moderately strong acid in comparison to
acetic acid. The complexes were also found to be active
catalysts in the presence of perchloric acid, however, the
catalytic currents were lower and diminished with the
addition of about 15 mM of acid.

CVs of 1 and 2 in the presence of acetic acid showed
new peaks at −2.33 and −2.18 V, respectively, vs.
Fc/Fc+ which shifted to more negative potentials with
an increase in the amount of acid (Figure 5 and Fig-
ure S8, Supplementary Information). The increase of
current at this reduction potential with the increase in
the amount of acid can be attributed to the reduction
of protons to molecular hydrogen.28 For complex 1, an
additional reduction peak was observed at –1.48 V the
peak current for which did not increase with the addition
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-300
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I /
 μ
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E / V vs Fc / Fc+

Figure 5. Cyclic voltammograms for complex 2 (1 mM)
in CH3CN in the absence (---) and presence of increasing
amounts (6.95, 34.45, 61.53, 88.19, 133.84, 196.81, 257.78,
316.36, 372.86, 453.91 mM) of acetic acid (—) at a scan rate
of 0.1 Vs−1.

of increasing amounts of acid. This additional peak was
absent for complex 2.

The background current due to direct reduction of
protons at the glassy carbon electrode without cata-
lyst in the presence of the two different acids were
found to be negligible for potentials in the range
–1.0 to –2.5 V.29 Hence, the acid-induced current in
the presence of catalysts can be attributed to cat-
alytic turnover 1 and 2 showed comparable electrocat-
alytic activity. The catalytic currents were, however,
much higher than the recently reported complexes
[Fe2(μ-p-toluenethiolate)2(CO)6], [Fe2(μ-CH2Ph)2

(CO)6] and [μ4-S(μ2-(α-toluenethiolate)Fe2(CO)6)2].9b

Also the electrocatalytic proton reduction for these
reported complexes was studied in dichloromethane.
The CVs for 1 in the presence of TFA initially dis-
played a peak at –1.47 V (Figure S9, Supplementary
Information). On addition of 48 mM of acid two

Table 4. Electrochemical data for complexes 1 and 2 in acetonitrile.

Complex Epc/V Ecat/V AcOH Ecat/V TFA Overpotential/V

AcOH TFA

1 −1.80 −2.33 −1.47 −0.87 −0.58
−2.53

[μ4-S(μ2-(α-toluenethiolate)Fe2(CO)6)2]a,b −1.48 −1.96 – – –
−1.86

2 −1.92 −2.18 −1.70 −0.72 −0.81
[Fe2(μ-SPh)2(CO)6]c −1.44 −2.26 – −0.80 –
[Fe2(μ-napthalene-2-thiolate)2(CO)6]d −1.33 −2.00 – −0.54 –
[Fe2(μ-napthalene-2-thiolate)2(CO)5PPh3]d −1.49 −1.97 – −0.51 –

aIn CH2Cl2 vs. Ag/AgCl; bRef.9b; cRef.11; dRef.9a
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Figure 6. Cyclic voltammograms for complex 2 (1 mM)
in CH3CN in the absence (---) and presence of increasing
amounts of TFA (4.76, 10.61, 15.20, 23.08, 33.96, 44.44,
54.54, 64.28, 78.26 mM) (—) at a scan rate of 0.1 Vs−1.

peaks were observed at –1.56 and –1.71 V. These two
peaks shifted cathodically and the current height for
all the peaks increased with increase in the amount
of acid. A tetra-nuclear iron complex [μ4-S(μ2-(α-
toluenethiolate)2Fe2(CO)6] similar to complex 1 has
been reported recently as a catalyst for proton reduction
in dichloromethane (Table 4).9b A few other tetranuclear
complexes reported earlier with di- and tetra-thiolate
linkers displayed lower catalytic currents.30–38 How-
ever, the catalytic currents for the reported complex
[μ4-S(μ2-(α-toluenethiolate)2Fe2(CO)6] were lower
than complex 1. 9b On the other hand, complex 2 dis-
played a peak at –1.70 V on the addition of TFA. A
second peak was observed at –1.43 V, after addition
of about 10 mM of acid (Figure 6). These two peaks
shifted cathodically and the current height for all the
peaks increased with increase in the amount of acid.
The plots of icat/ ip vs. acid concentration for complexes
1 and 2 in presence of two different acids are shown in
Figure 7 (Figure S10, Supplementary Information). The
overpotential for 2 in acetic acid was found to be lower
than those of complexes 1 and [Fe2(μ-SPh)2(CO)6]
while it was higher than complex 1 in presence of TFA
(Table 4).11,28 The catalytic rate of proton reduction was
investigated by using the following equation:

icat

ip
= n

0.446

√
RTkobs

Fv

where icat is the catalytic current, i p is the peak
current measured in the absence of acid, n is the num-
ber of electrons involved in the catalytic reaction, kobs
is the observed first-order rate constant, R is the ideal
gas constant, T is the temperature in Kelvin, F is Fara-
day’s constant, ν is the scan rate. For complexes 1 and
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Figure 7. Plot of icat/ ip vs. acid concentration for com-
plexes 1 (�) and 2 (�) (1 mM) in presence of acetic acid
(black); and for the second reduction peak of complexes 1 ( )
and 2 ( ) (1 mM) in presence of TFA (blue) at a scan rate of
0.1 Vs−1.

2, it was observed that kobs increased linearly with acid
concentration, which suggests a first-order dependence
of the catalytic rate on acid concentration (Figures S11–
S12, Supplementary Information).39–42

The catalytic efficiency (C.E.) for complexes 1
and 2 in AcOH and TFA was calculated using the
method defined by Felton and co-workers,28 C.E. =
(icat/ id)/(CHA/Ccat)(icat = catalytic current, id = cur-
rent for reduction of catalyst in absence of acid, CHA =
concentration of acid, Ccat = concentration of catalyst).
The values of C.E. of 1 and 2 vary in the range 0.34
to 0.11 (for 1) and 0.25 to 0.19 (for 2) in acetic acid,
and 0.77 to 0.54 (for 1) and 0.71 to 0.51 (for 2) in TFA,
decreasing with increasing acid concentration.

4. Conclusions

In summary, a new diiron carbonyl complex 2 was
prepared from the tetranuclear precursor complex 1
using the monodentate phosphine ligand (PPh3). The
electrochemical investigations of complexes 1 and 2
were performed in acetonitrile in the presence of acetic
acid and TFA. Complexes 1 and 2 were found to show
comparable catalytic activity for proton reduction to
dihydrogen. The reduction potential for complex 1 in
the presence of TFA appeared at more negative poten-
tial than that observed for 2. However, in the presence
of acetic acid, the reduction potentials were compara-
ble. Also, the complexes were more efficient catalysts
in presence of stronger acids.
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