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ABSTRACT: Two differently protected aldehydes, A and B, 
were demonstrated to deprotect selectively through the application 
of light and heat, respectively. In the presence of iron(II) and a 
triamine, two distinct FeII

4L4 cages, 1 and 2 were thus observed to 
form from the deprotected A and B, respectively. The alkyl tails of 
B and 2 render them preferentially soluble in cyclopentane, 
whereas A and 1 remain in acetonitrile. The stimulus applied (either 
light or heat) thus determines the outcome of self-assembly and 
dictates whether the cage and its ferrocene cargo remain in 
acetonitrile, or transport into cyclopentane. Cage self-assembly and 
cargo transport between phases can in this fashion be programmed 
using orthogonal stimuli.

The ability to control the spatial and temporal uptake, movement 
and release of substrates is an essential feature of the functioning 
of biological systems. In synthetic molecular networks,1 stimuli-
responsive2 metal-organic structures3 and container molecules4 
provide means for controlling the transport of guest molecules 
through the application of external signals.2d, 3a, 5 For example, the 
phase transfer of coordination cages together with their guests has 
been triggered by chemical signals, such as anions.6 The order of 
signal application has also been employed in molecular networks 
constructed from stimuli-responsive cages to release different 
guests depending on signal timing.5d, 7 

We envisaged a new approach, where cage assembly and the 
attendant functions of phase transfer and guest binding, would be 
controlled by orthogonal signals. Others8 and our group9 have used 
subcomponent self-assembly to prepare cages, metallogels and 
helicates from amine and aldehyde subcomponents that combine 
dynamically around metal templates. We hypothesized that cage 
self-assembly could be rendered stimuli-responsive by masking the 
reactivity of one of the subcomponents using a protecting group. 
Deprotection of the subcomponent using a stimulus (Figure 1) 
would thus trigger cage self-assembly, allowing for different 
functional outcomes to be programmed.10

The development of two different masked subcomponents (A 
and B, Figure 2) with different solubility properties and orthogonal 
deprotection methods permitted the selective formation of either 
cage 111 or 2, depending on the stimulus. Light triggered the self-
assembly of cage 1 through the specific deprotection of masked 
subcomponent A, whereas heat selectively deprotected masked 
subcomponent B, forming cage 2 that contains lipophilic chains 

(Figure 2). Upon addition of a second hydrocarbon phase and a 
fluorous anion, phase transfer of alkylated cage 2 with its cargo 
became favorable, whereas cage 1 remained in the acetonitrile 
layer.

Figure 1. Stimuli-responsive deprotection of a masked aldehyde 
and subsequent FeII

4L4 cage formation.

Orthogonal subcomponent deprotection is a key feature of the 
system under study, requiring careful choice of stimuli. Light is 
attractive as a stimulus because no external reagents are required to 
trigger the response. The difficulty in engineering a change to cage 
structure as a consequence of photoswitching,12 however, has 
rendered light-responsive cage systems3a, 5a, 5b, 13 challenging to 
study. The integration of a photolabile14 protecting group15 thus 
enabled the preparation of a new type of photo-responsive cage 
system. For cage 1 we designed masked subcomponent A (Scheme 
1a), consisting of 2-formylpyridine protected with photolabile 
protecting group C as a cyclic acetal.15b-d Aldehydes masked with 
C are known to undergo efficient photo-deprotection, and are stable 
in the dark to heat and acid. We chose dimethyl acetal as an 
orthogonal protecting group for masked subcomponent B, as 
acyclic acetals are reported to deprotect when treated with LiBF4 
under mild conditions, whereas cyclic acetals such as A are much 
less reactive towards hydrolysis.16
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Figure 2. Orthogonal deprotection of masked subcomponents A and B in the presence of triamine D, iron(II) trifluoromethanesulfonate 
(triflate, OTf), LiBF4 and ferrocene (Fc) yields either [Fc  1]8+ or [Fc  2]8+ depending on the stimulus applied; [Fc  2]8+ (but not 
[Fc  1]8+) then underwent phase transfer into cyclopentane in the presence of C6F13SO3

-.

The photo-responsive masked subcomponent A was prepared in 
two steps from C (Scheme S1). Deprotection was carried out using 
300 nm light and the progress of photo-deprotection was monitored 
using UV-vis (Figure S43) and 1H NMR spectroscopies (Figure 
S53). Control experiments probed the photostability of the side 
product C (Figure S46), 2-formylpyridine (Figure S47) and cage 1 
to irradiation at 300 nm (Figure S48). Importantly, masked 
subcomponent A was stable in the presence and absence of the 
other constituents of cage 1 (triamine D and iron(II) triflate) in the 
dark (Figure S50), under lab lighting conditions (Figures S49, S51) 
and also to the heat generated during irradiation at 300 nm when 
protected by an aluminum foil sheath (Figures S49, S51).

Time-course 1H NMR experiments revealed clean photo-
deprotection of masked subcomponent A to generate 
2-formylpyridine (Figure S53). Release of 2-formylpyridine was 
also observed upon photo-deprotection in the presence of either 
iron(II) triflate (Figure S58) or triamine D (Figure S59), although 
small amounts of side products were detected in the presence of 
triamine D. As the proposed deprotection mechanism15b-d involves 
the reaction of a protecting group residue with water, we infer D to 
have reacted with the intermediate derivative of protecting group C 
instead of water, resulting in side-product formation.

Light-triggered self-assembly of cage 1 was then investigated. 
Masked subcomponent A, triamine D and iron(II) triflate in 
CD3CN were irradiated for 40 min, and self-assembly of cage 1 
was observed following equilibration at room temperature over 
24 h (Figure S60). A small amount of 2-formylpyridine was still 
present after equilibration (Figure S61), which we infer to be a 
consequence of side-reactions with triamine D or iron(II) triflate, 
as discussed above. The photo-deprotection conditions were thus 
optimized to maximize the yield and purity of cage 1 in three ways: 
first, by using a slight excess of iron(II) triflate (5 equiv instead of 
4 per cage) in order to rebalance the reaction stoichiometry away 

from excess 2-formylpyridine; second, by carrying out the reaction 
in 98:2 CD3CN:D2O to help ensure that the released C anhydride 
residue reacted with water and not D; and third, by increasing the 
irradiation time to 55 min (Figure S63). 

Following the successful light triggered self-assembly of cage 1, 
guest uptake within the newly created cavity was investigated. 
Cage 1 binds a variety of guests, such as adamantane,11 ferrocene 
(Figures S20-S25) and benzene (Figures S15-S19), in acetonitrile; 
these guests were observed to bind in cage 1 following irradiation  
and equilibration at room temperature (Figures S65-S66, S74). The 
difference in binding affinity of 1 towards these guests was 
exploited to selectively encapsulate adamantane from a solution 
also containing benzene (Figures S67-S69). 

The protected subcomponent B was prepared in two steps 
(Scheme S2). Dimethyl-acetal-protected aldehydes are reported to 
undergo deprotection following the addition of LiBF4 in wet 
acetonitrile.16 We could not follow the deprotection of B in 
acetonitrile, as both B and the resulting aldehyde are insoluble in 
this solvent at room temperature. However, when B was mixed 
with triamine D, iron(II) triflate and LiBF4 in 98:2 CD3CN:D2O 
(under conditions optimized for the formation of cage 1), cage 2 
was the only product observed following equilibration (Figures 
S26-S32). Brief heating (30 min at 90 °C) was found to be 
necessary for the deprotection of B and subsequent formation of 
cage 2, but heating in the absence of LiBF4 gave no cage formation 
(Figures S72).

We anticipated that the binding properties of cages 1 and 2 would 
be similar, as their only differences are in the presence or absence 
of peripheral substituents. As with 1, deprotection and assembly in 
the presence of ferrocene (Fc) led to the formation of [Fc  2] 
(Figures S34-S41).
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We hypothesized that the photolabile protecting group of 
masked subcomponent A would not cleave during the orthogonal 
deprotection of masked subcomponent B with LiBF4, and that A 
would selectively photo-deprotect in the presence of B. Indeed, 
heating a solution of A and LiBF4 for 30 min at 90 °C did not result 
in the removal of the photolabile protecting group (Figure S70). 
Likewise, irradiation of B in the presence of triamine D, iron(II) 
triflate and LiBF4 did not lead to the formation of any cage (Figure 
S71).

These observations set the stage for selective deprotection and 
cage formation within a mixture (Figure 2). When masked 
subcomponents A and B were mixed with triamine D, iron(II) 
triflate and LiBF4, irradiation at 300 nm for 3 hours produced only 
cage 1 (Figure S73). Heating an identical sample to 90 °C for 30 
min, in contrast, resulted in the selective formation of cage 2 
(Figure S73). 

We hypothesized that the differences in the peripheral 
functionalization between cages 1 and 2 would result in differential 
affinities for immiscible solvent phases. We thus investigated the 
partitioning of the cages between a biphase of acetonitrile and 
cyclopentane (Figure 3). The phase localization of 1 and 2 at each 
stage could be gauged by eye and was confirmed using slice-
selective 1H NMR spectroscopy (Figures S76-S80).6c This 
technique allowed the collection of distinct 1H NMR spectra from 
each phase within the sample (see details in SI). Initially, cages 1 
and 2 were indistinguishable in that they both partitioned entirely 
into the acetonitrile phase (Figures S77a, S78a). However, 
following the application of a second triggering stimulus – 24 
equivalents of potassium tridecafluorohexanesulfonate – cage 2 
underwent spontaneous phase transfer from acetonitrile to 
cyclopentane (Figure 2, Figure S78b). Cage 1 remained localized 
in the acetonitrile phase under the same conditions (Figure S77b).

Slice-selective 1H NMR spectroscopy also allowed us to follow 
the phase transfer of an encapsulated cargo within cage 2. We chose 
Fc as the cargo for three reasons. First, it bound within 1 and 2 in 
slow exchange on the NMR timescale, allowing for its clear 
identification. Second, Fc bound strongly enough not to be 
displaced by excess cyclopentane, which is also a competent guest 
for this cage (Figure S33). Third, both free and encapsulated Fc 
resonances appear in regions of the 1H NMR spectrum that are not 
obscured by other species in the system. 

We thus prepared two identical acetonitrile solutions containing 
masked subcomponents A and B, triamine D, iron(II) triflate, 
LiBF4 and Fc. Each sample was subjected to either irradiation or 
heating, forming either [Fc  1] or [Fc  2] after equilibration 
(Figure 2, Figure S74). When cyclopentane was added to both 
samples, both host-guest complexes initially remained in the 
acetonitrile phase (Figures S79a, S80a). Upon the addition of 
KO3SC6F13 (24 equiv), however, the phase transport of cage 2 and 
its cargo into the upper cyclopentane phase was observed (Figure 
S80b), while cage 1 and its cargo remained in the acetonitrile layer 
(Figures S79b). This behavior was confirmed using slice-selective 
1H NMR spectroscopy, which showed signals corresponding to the 
of the cage and, crucially, the encapsulated Fc in the corresponding 
phase (Figure 3). Hence, the information programmed into the 
system on application of the initial signal (light or heat) resulted in 
different functional outcomes after application of the second, 
triggering stimulus.

Figure 3. Photographs, cartoon representation and slice selective 
1H NMR data from a) [Fc  1] and b) [Fc  2] partitioned between 
cyclopentane and acetonitrile in the presence of KO3SC6F13. Slice-
selective 1H NMR showed the location of the encapsulated Fc 
cargo in each case.

This study thus demonstrates how subcomponent self-assembly 
can follow different pathways in response to distinct stimuli, either 
light or heat. Stimulus application brings about cage assembly and 
guest uptake, and can direct the cage and cargo into either an 
acetonitrile or cyclopentane phase upon the addition of a trigger 
anion. Our strategy thus offers a new means by which information 
(in the form of stimuli) can be processed by a chemical system and 
read out (through KO3SC6F13 addition) at a later time, and a new 
complex mode of control for stimuli-responsive cage systems.
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Figure 1. Stimuli-responsive deprotection of a masked aldehyde and subsequent FeII
4L4 cage formation. 
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Figure 2. Orthogonal deprotection of masked subcomponents A and B in the presence of triamine D, iron(II) 
trifluoromethanesulfonate (triflate, OTf), LiBF4 and ferrocene (Fc) yields either [Fc  1]8+ or [Fc  2]8+ 
depending on the stimulus applied; [Fc  2]8+ (but not [Fc  1]8+) then underwent phase transfer into 

cyclopentane in the presence of C6F13SO3
-. 
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Figure 3. Photographs, cartoon representation and slice selective 1H NMR data from a) [Fc  1] and b) [Fc 
 2] partitioned between cyclopentane and acetonitrile in the presence of KO3SC6F13. Slice-selective 1H 

NMR showed the location of the encapsulated Fc cargo in each case. 
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