Chem. Pharm. Bull. 35(5)2090-2094(1987)

Studies on Antitumor Agents. VI.¹⁾ Syntheses and Antitumor Activities of Acyl Derivatives of 2'-Deoxy-5trifluoromethyluridine

JUN-ICHI YAMASHITA,^{*.} SETSUO TAKEDA,^b HIROSHI MATSUMOTO,^b TADAFUMI TERADA,^a NORIO UNEMI,^b and MITSUGI YASUMOTO^a

Kodama Institute, Taiho Pharmaceutical Co., Ltd.,^a 200–22, Toyohara, Motohara, Kamikawa-mura, Kodama-gun, Saitama 367–02, Japan and Tokushima Institute, Taiho Pharmaceutical Co., Ltd.,^b Hiraishi, Ebisuno, Kawauchi-cho, Tokushima-shi, Tokushima 771–01, Japan

(Received September 1, 1986)

Various O-acyl and N-acyl derivatives of 2'-deoxy-5-trifluoromethyluridine (F_3 Thd) were synthesized; namely 5'-O-acyl, 3',5'-di-O-acyl, N³-acyl, 3',5'-di-O-acyl, 3',5'-di-O-carbamoyl and 3',5'-di-O-ethoxycarbonyl compounds. 5'-O-Acyl derivatives of 2'-deoxy-5-trifluoromethylcytidine were also synthesized.

The antitumor activities of these compounds against sarcoma 180 were examined by oral administration to mice. Among the 5'- and 3',5'-diester compounds with aliphatic acids, the 5'-O-hexanoyl compound showed the highest activity. Full protection of the sugar moiety with aroyl or carbamoyl groups considerably decreased the activities, and those of the 3',5'-di-O-m-fluoro-benzoyl and 3',5'-di-O-butylcarbamoyl compounds were the smallest. N^3 -Benzoyl compounds were slightly more effective than F_3 Thd but none of them showed higher activity than the effective O-acyl compounds. In the case of 5'-O-acylates of 2'-deoxy-5-trifluoromethylcytidine, the 5'-O-benzoyl compound showed the highest activity.

Keywords—2'-deoxy-5-trifluoromethyluridine; 2'-deoxy-5-trifluoromethylcytidine; acyl derivative; antitumor activity; pyrimidine nucleoside acylation; saponification

2'-Deoxy-5-trifluoromethyluridine (F_3 Thd) was first synthesized by Heidelberger and his coworkers in 1962.²⁾ It has considerable biological activities in a number of systems.³⁻⁷⁾ For example, F_3 Thd has been reported to be a potent compound in cancer chemotherapy. F_3 Thd effectively inhibits the growth of various mammalian cells in culture.⁶⁾ The antitumor activities of F_3 Thd against transplanted tumors such as adenocarcinoma 755 and L 1210 leukemia are equal to or higher than that of 2'-deoxy-5-fluorouridine (FUdR).⁷⁾

However, F_3 Thd showed unsatisfactory results in clinical cancer chemotherapy.⁸⁾ A disadvantage of F_3 Thd for practical medicinal use is its short half-life in plasma after injection, mainly because of rapid metabolic degradation by thymidine phosphorylase to biologically inactive 5-trifluoromethyluracil (F_3 T).⁹⁾ Thus, depot forms of F_3 Thd which resist degradation by thymidine phosphorylase would be expected to maintain higher concentrations of F_3 Thd in plasma and thus show greater antitumor activity *in vivo*.

If the depot form of F_3 Thd is activated slowly after absorption, it is also expected to show low toxicity to the gastro-intestinal tract, minimizing the decrease of body weight,¹⁰⁾ and thus giving a high therapeutic index. Therefore, various acyl compounds of F_3 Thd were synthesized and their antitumor activities were evaluated. Although similar attempts to enhance the activity of FUdR by *N*-benzoylation¹⁰⁾ or *O*-acylation¹¹⁾ have been reported, it should be noted that 5-fluorouracil, the metabolite of FUdR, should itself be active, as well as FUdR. In the present case, F_3 Thd is active only in the form of the nucleoside, and F_3 T is inactive.⁷⁾

	Compd.	R ¹	R ²	ED ₅₀ (mg/kg/d)
O U	1	COCH	Н	31
$HN \gamma CF_3$	2	CO(CH ₂),CH ₂	Н	27
ΞŢ IJ	3	$CO(CH_2)/CH_2$	н	19
0~ <u>N</u> -	4	$CO(CH_2)_4 CH_3$	н	58
$R^1O \rightarrow O$	-	$CO(CH_2)_8CH_3$	11	10
FY	3	$CO(CH_2)_{14}CH_3$	п	40
R^2O	6	сосно СН ₃	Н	80
	7	CO-CH3	Н	52
	8	COCH	COCH,	37
	9	CO(CH-)-CH	CO(CH_)_CH_	31
	10	CO(CH) CH	$CO(CH_2) CH$	25
	10	$CO(CH_2)_4CH_3$	CO(CH) CH	29
	11	$CO(CH_2)_8 CH_3$	CO(CH) CH	20 70
	12	$CO(CH_2)_{14}CH_3$	$CO(CH_2)_{14}CH_3$	40
	13	$CO(CH_2)_{18}CH_3$	$CO(CH_2)_{18}CH_3$	40
	14	co-	co-	80
	15	CO-CH3	CO-CH3	80
	16	CO(CH ₂) ₄ CH ₃	CO-CH3	80
	17	СО-СН3	CO(CH ₂) ₄ CH ₃	57
	18 19	CONH(CH ₂) ₃ CH ₃	$CONH(CH_2)CH_3$ $CO_2C_2H_4$	80 29
$R-N$ CF_3	20	CO-	Н	45
	21	co	Н	38
	22	CO-C-F	Н	43
K O	23	$CO - C_4 H_9$	Н	34
	24	CO-	COCH ₃	40
	25	co-	COCH ₃	32
	•			
NH ₂ NCF ₃	26 27	$CO(CH_2)_4CH_3$ $CO(CH_2)_{14}CH_3$		33 80
	28	со		24
HO	F ₃ Thd			63

TABLE I. Antitumor Effects of Acyl Derivatives of F₃Thd on Sarcoma 180

Derivatives of F ₃ ind											
Compound	mp (² C)	Recryst.	Yield (%)	Formula	Analysis (%) Calcd (Found)						
		solvent			С	Н	N				
1	167—168	EtOH	32	$C_{12}H_{13}F_3N_2O_6$	42.61	3.87	8.28				
2	159—160	EtOH	35	$C_{14}H_{17}F_{3}N_{2}O_{6}$	45.91	4.68	7.65				
3	158—159	EtOH	38	$C_{16}H_{21}F_3N_2O_6$	48.73	5.37	7.10				
4	158—160	EtOH	46	$C_{20}H_{29}F_3N_2O_6$	(48.60) 53.33	5.71 6.49	7.20) 6.22				
5	136—	EtOH	52	$C_{26}H_{41}F_3N_2O_6$	(53.48 58.41	6.79 7.73	6.18) 5.24				
6	(dec.) Foam		42	$C_{10}H_{10}F_{2}N_{2}O_{6}$	(58.90 51.35	7.92 4.30	4.81) 6.30				
7	201 202	E+OU	62	с н б м о	(51.09	4.44 4.14	6.37) 6.76				
1	201-203	EIOH	02	$C_{18}\Pi_{17}\Pi_{3}\Pi_{2}O_{6}$	(51.96	4.20	6.68)				
8	139—140.5	EtOH	92	$C_{14}H_{15}F_3N_2O_6$	44.22 (44.30	3.98 3.98	7.37 7.33)				
9	Oil		49	$C_{18}H_{23}F_{3}N_{2}O_{7} \\$	49.54	5.31	6.42				
10	Oil		64	$C_{22}H_{31}F_{3}N_{2}O_{7}$	53.65	6.34	5.69				
11	Oil		59	C ₁₀ H ₄₂ F ₂ N ₂ O ₂	(53.70 59.59	6.42 7.83	5.72) 4.63				
	011			03011471311207	(59.39	7.98	4.59)				
12	Oil		53	$C_{42}H_{71}F_3N_2O_7$	65.26 (65.67	9.26 9.90	3.62 3.55)				
13	55—56	EtOH	80	$C_{50}H_{87}F_{3}N_{2}O_{7}$	68.38	9.18	3.19				
14	196—197	EtOH	72	$C_{24}H_{17}F_3N_2O_7$	53.24	9.34 3.16	5.13)				
15	181—182	EtOH	68	C ₂₆ H ₂₃ F ₃ N ₂ O ₇	(53.14 58.65	3.06 4.35	5.18) 5.26				
16	Foam		66	CHENO	(58.51	4.24 5.31	5.33) 5.47				
10	Foam			$C_{24}\Pi_{27}\Pi_{3}\Pi_{2}O_{7}$	(56.41	5.44	5.55)				
17	Oil		57	$C_{24}H_{27}F_3N_2O_7$	56.25 (56.39	5.31 5.34	5.47 5.40)				
18	184—185	EtOH-ether	20	$C_{20}H_{29}F_{3}N_{2}O_{7} \\$	48.58	5.91	11.33				
19	Foam		36	$C_{16}H_{19}F_3N_2O_9$	43.64	4.35	6.36				
20	155—156	Ether-pet. ether	56	$C_{17}H_{15}F_{3}N_{2}O_{6}$	(43.26 51.01	4.44 3.78	6.28) 7.00				
21	Foam		42	C10H17F1N2O7	(51.27 50.24	3.85 3.98	7.03) 6.51				
	Ecom		16	с ц е N О	(50.25	4.03	6.54)				
22	Foalli		40	$C_{17}\Pi_{14}\Pi_{4}\Pi_{2}O_{6}$	(49.00	3.49	7.64)				
23	Oil		62	$C_{21}H_{23}F_3N_2O_6$	55.26 (54.98	5.08 5.27	6.14 6.44)				
24	Foam		59	$C_{22}H_{21}F_3N_2O_9$	51.36 (51.69	4.11 4.26	5.45 5.45)				
25	Foam		45	$C_{21}H_{18}F_4N_2O_8$	50.21	3.61 3.76	5.58 5.62)				
26	199—202	EtOH	51	$C_{16}H_{22}F_3N_3O_5$	48.85	5.64	10.68				
27	198—200	EtOH	32	$C_{26}H_{42}F_3N_3O_5$	(48.79 58.52	5.66 7.93	7.87				
28	202	EtOH	38	$C_{17}H_{16}F_3N_3O_5$	(58.74 51.13 (51.58	8.21 4.04 4.02	7.61) 10.52 10.31)				

TABLE II. Physical Constants and Analytical Data for Acyl Derivatives of F_3 Thd

This paper describes the antitumor activities against sarcoma 180 of various acyl derivatives of F_3 Thd on oral administration to mice.

Materials and Methods

Chemicals—Melting points were determined with a Yanagimoto MP-3 micro melting point apparatus and are uncorrected. Proton nuclear magnetic resonance (¹H-NMR) spectra were obtained with a JEOL LMN-FX 100 spectrometer (using tetramethylsilane as an internal standard).

5'-O-Acyl compounds (1–7), 3',5'-di-O-acyl compounds (8–17) and the 3',5'-di-O-ethoxycarbonyl compound (19) were synthesized by treatment of F_3 Thd with a small excess of the appropriate acyl chloride in pyridine at suitable temperatures. 5'-O-Acyl derivatives of 2'-deoxy-5-trifluoromethylcytidine (26–28) were similarly prepared. 3',5'-Di-O-Acyl compounds (8–15) can be obtained more easily by the reaction of F_3 Thd and acid anhydride in acetonitrile using dimethylaminopyridine as a catalyst.¹² Reaction of F_3 Thd and butyl isocyanate in dimethylformamide (DMF) gave 3',5'-di-O-butylcarbamoyl- F_3 Thd (18).

Reaction of F_3 Thd and 1 eq of acyl chloride in the presence of triethylamine in dimethylacetamide (DMA) gave N^3 -acyl compounds (20–23) selectively. The acylation in solvents other than DMA gave 5'-O-acyl compound. The procedure for the preparation of N^3 -benzoyl-2'-deoxy-5-trifluoromethyluridine (20) is described as a typical example. Benzoyl chloride (11.2 g, 0.08 mol) was added to a solution of F_3 Thd (24 g, 0.08 mol) and triethylamine (16 ml) in DMA and the mixture was stirred for 12 h at room temperature. The reaction mixture was filtered and the filtrate was concentrated. The residue was dissolved in CHCl₃ (150 ml), then water (15–20 ml) was added with stirring to afford a precipitate of 20. The precipitate was recrystallized from ether–pet. ether, giving 18 g of 20 in 56% yield.

The structures of these compounds were confirmed by the elemental analyses as well as by ¹H-NMR measurements. Physical constants are listed in Table II.

Antitumor Test—Mice of the ICR strain (Japan Clea Inc., Tokyo, Japan) were used. Five-week-old male ICR mice were inoculated sobcutaneously in the axillary region with $5 \times 10^{\circ}$ sarcoma 180 cells and given text compounds orally once a day for 7 consecutive days beginning 24 h after inoculation of the tumor cells. Groups of seven mice were used for each dose and the test compounds were suspended in 0.5% carboxymethylcellulose (CMC) solution containing 0.1% Tween 80. On day 10, the tumors were excised and weighed. The inhibitory effects of test compounds were calculated from the ratio of the tumor weight in the test group to that in the control group.

Inhibitory effects of F_3 Thd derivatives on the growth of solid tumor S 180 are shown in terms of the ED₅₀ values in Table I.

Results and Discussion

Among the 5'- and 3',5'-diester compounds with aliphatic acids, the 5'-O-hexanoyl compound (3) showed the highest activity and the ED_{50} value was one-third of that of F_3 Thd. Although the effect of esterification of F_3 Thd by aliphatic acids was similar to that in the case of FUdR,¹¹ the range of optimal chain length was more restricted.

 ED_{50} values of other 5'-O-acyl compounds with aryl functions, such as the 2phenoxypropionyl (6) or benzoyl (7) compound, were equal to that of F₃Thd. The full protection of the sugar moiety by aroyl or carbamoyl groups considerably decreased the activities and the 3',5'-di-O-m-fluorobenzoyl (14) and 3',5'-di-O-butylcarbamoyl (18) compounds showed no activity at the same dose as that of F₃Thd.

The rates of saponification of these inactive compounds to F_3 Thd by mouse intestinal homogenate¹³⁾ were significantly slower than those of effective *O*-aliphatic acyl compounds. It is therefore assumed that the F_3 Thd-releasing ability is the most important factor affecting the activity of *O*-acylated derivatives of F_3 Thd. It has been reported that the enzymatic saponification rate of 5'-*O*-acyl FUdR was greater than that of 3'-*O*-acyl FUdR.^{13a)} This would mean that, in 3',5'-di-*O*-acyl compounds of F_3 Thd, the cleavage of the ester bond at the 3'-position may be the rate-limiting step in activation. In fact, compounds 14, 15, 16 and 18, in which the 3'-position is modified by a benzoyl or carbamoyl group, showed the lowest activities.

 N^3 -Benzoyl compounds (20–25) were slightly more effective than F₃Thd but none of them showed higher activity than the effective *O*-acyl compounds. 2'-Deoxy-5-

trifluoromethylcytidine is assumed to be a prodrug of F_3 Thd, since it is deaminated to F_3 Thd *in vivo*.¹⁴⁾ However, the antitumor activity of the 5'-O-benzoyl compound was higher than that of the 5'-O-benzoyl compound, in contrast to the result with F_3 Thd. It should be noted that O-acyl compounds of 2'-deoxy-5-trifluoromethylcytidine may have different metabolic pathways from the O-acyl compounds of F_3 Thd.

Acknowledgement The authors are grateful to Professor T. Ueda, Faculty of Pharmaceutical Sciences, Hokkaido University, for his helpful suggestions.

References and Notes

- Part V: J. Yamashita, I. Yamawaki, S. Ueda, M. Yasumoto, N. Unemi, and S. Hashimoto, *Chem. Pharm. Bull.*, 30, 4258 (1982).
- a) C. Heidelberger, D. Persons, and D. C. Remy, J. Am. Chem. Soc., 84, 3597 (1962); b) Idem, J. Med. Chem., 7, 1 (1964).
- 3) D. V. Santi and T. T. Sakai, Biochemistry, 10, 3598 (1971).
- 4) Y. Fujiwara, T. Oki, and C. Heidelberger, Mol. Pharmacol., 6, 273 (1970).
- 5) H. E. Kaufman and C. Heidelberger, Science, 145, 585 (1964).
- 6) M. Umeda and C. Heidelberger, *Cancer Res.*, 28, 2529 (1968).
- 7) C. Heidelberger and S. W. Anderson, *Cancer Res.*, 24, 1979 (1964).
- 8) F. J. Ansfield and G. Ramirez, Cancer Chemother. Rep. Part 1, 55, 205 (1971).
- 9) D. L. Dexter, W. H. Wolberg, F. J. Ansfield, L. Helson, and C. Heidelberger, Cancer Res., 32, 247 (1972).
- 10) S. Fujii, K. Ikenaka, Y. Maehara, and T. Shirasaka, Gan To Kagakuryoho, 8, 1548 (1981).
- 11) Y. Nishizawa, J. E. Casida, S. W. Anderson, and C. Heidelberger, Biochem. Pharmacol., 14, 1605 (1965).
- 12) A. Matsuda, M. Shinozaki, M. Suzuki, K. Watanabe, and T. Miyasaka, Synthesis, 1986, 385.
- 13) Homogenates of various tissues of mice were centrifuged and the supernatants were dialyzed. Enzymatic lysis of the compounds was carried out with these fractions. These results will be reported elsewhere together with other data regarding the concentrations of F₃Thd in tumor tissue and normal tissues. The following papers have described the preparation of the enzyme fractions for lysis. a) J. E. Casida, J. L. Engel, and Y. Nishizawa, *Biochem. Pharmacol.*, 15, 627 (1966); b) T. Kawaguchi, Y. Suzuki, N. Nambu, and T. Nagai, *Chem. Pharm. Bull.*, 33, 2956 (1985).
- 14) J. A. Mecras, D. A. Boothman, and S. B. Greer, Cancer Res., 45, 5270 (1985).