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ABSTRACT: A facile and practical approach for the difluoromethylation of phenols and thiophenols was described. Making use of 
the recently developed bench-stable S-(difluoromethyl)sulfonium salt as the difluorocarbene precursor, a wide variety of diversely 
functionalized phenols and thiophenols were readily converted to their corresponding aryl difluoromethyl ethers in good to 
excellent yields in the presence of  lithium hydroxide. Chemoselectivity of various O, S-nucleophiles toward difluorocarbene was 
systematically studied, suggesting the reactivity order ArS＿ > RS＿, ArO＿ > ROH > RO＿ , ArSH, ArOH, RSH. 

INTRODUCTION
Difluoromethoxy group (OCF2H) is an importantly structural 
motif, and have found widespread utility in pharmaceuticals1, 
agrochemicals2 and materials.3 Particularly, Aryl 
difluoromethyl ethers play important roles in medicinal 
chemistry and drug discovery because the difluoromethyl 
group is capable of serving as a bioisostere to CH3OH and SH 
units,4 as well as a lipophilic hydrogen-bond donor.5 As 
illustrated in Figure 1, aryl difluoromethyl ether moiety is 
present in the selective phosphodiesterase type 4 (PDE 4) 
inhibitor Roflumilast, used for treatment of chronic obstructive 
pulmonary disease (COPD).6 Pantoprazole is popular as an 
irreversible proton pumping inhibitor,7 while Garenoxacin is a 
novel broad-spectrum quinolone antiseptic.8 It is noteworthy 
that GRN-529, developed by Wyeth, is in clinical trials stage 
for the treatment of autism in children.9 Therefore, the 
development of practical, efficient approaches to aryl 
difluoromethyl ethers remains attractive.
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Figure 1. Drugs containing OCF2H building block

Generally, ArOCF2H and ArSCF2H are synthesized via O, 
S-difluoromethylation of phenols and thiophenols, which 
represents a routine strategy for the preparation of aryl 
difluoromethyl (thio)ethers, although a few examples installed 
these compounds by metal-catalyzed or visible light-promoted 
difluoromethylthiolation and difluoromethoxylation using 
difluoromethoxylating reagent and difluoromethylthiolating 
reagents.10 Phenols are sufficiently acidic to form phenoxide 
anions under strongly alkaline conditions, and phenoxide 
anions react readily with difluorocarbenes generated in situ 
from various reagents. In the past decades, many efforts have 
been circumvented to develop reagents and protocols for this 
purpose.11 Initially, the ozone-depleting substrates (ODS), i.e., 
HCF2Cl,11a HCF3

11b and CF2Br2
11c were used for the 

difluoromethylation of phenols. Afterwards, some non-ozone-
depleting substrates (NODS) difluorocarbene precursors have 
been recorded for the synthesis of difluoromethyl ethers from 
phenols, including FSO2CF2COOH,12a PhCOCF2Cl,12b 
PhSO2CF2Cl,12c BrCF2P(O)(OEt)2,13a ClF2COONa,13b n-
Bu3N(CF2H)Cl,13c HCF2OTf,14a and BrCF2CO2Et.14b However, 
these approaches employing ODS and NODS reagents 
somewhat suffer from high reaction temperature, long reaction 
time, and a narrow substrate scope. These reagents usually do 
not tolerate a great deal of functional groups, thus limiting 
their widespread applicability. To remedy these problems, Hu 
revealed an efficient protocol using the commercially available 
TMSCF2Br as a difluorocarbene source.15 Later, Xiao reported 
Ph3P+CF2COO- (PDFA) as an efficient phosphonium ylide 
reagent that also leads to difluoromethylation reaction of 
phenols and thiophenols, though only a few simple examples 
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were demonstrated.16 As another possibility, our group has 
develope 

-d bench-stable sulfonium salts 1, which we have employed as 
a highly effective difluoromethylating reagent for C-selective 
difluoromethylation of β-ketoesters and malonates,17a and also as 
a difluorocarbene precursor for O-difluoromethylation of 
aliphatic alcohols involving a five-membered transition 
state.17b Herein we examined whether sulfonium salt 1 can 
react with phenols and thiophenols under mild conditions to 
furnish diverse aryl difluoromethyl (thio)ethers.

RESULTS AND DISCUSSION
Reaction conditions were optimized using 4-phenylphenol 
(2a) as a model substrate (Table 1). Thus, the reaction 
smoothly occurred with the use of 2.2 equivalents of LiOH at 
room temperature in toluene, affording difluoromethyl ether 
4a in an isolated yield of 70% (entry 1). Subsequently, the 
effect of various solvents was investigated (entries 2-6), 
dichloromethane and arene solvents such as toluene, 
chlorobenzene and fluorobenzene, were suitable solvents, with 
fluorobenzene being proved to be the best (80%, entry 6). 
Next, various bases were investigated and results clearly 
showed that strong bases (entries 6-8) are superior to weaker 
ones (entries 9-11). NaH gave a high yield (73%) as that of 
LiOH (entry 8). Yield fell when the quantity of LiOH was 
reduced to 1.6 or increased to 3.0 equivalents (entries 12-13). 
Reaction temperature also showed influence on yields. 
Reactions that were run at 0 °C and 10 °C led to lower yields 
of 59 % and 60%, respectively (entries 14-15), but higher 
yield of 81% was obtained at 10 °C in the presence of NaH 
(entry 16).

Using the optimized reaction conditions (entries 6 and 16, 
Table 1), we then examined the scope of phenols for the 
synthesis of various aryl difluoromethyl ethers. Both electron-
deficient (2f-q) and electron-rich phenols (2a-e, 2s-t) were 

readily difluoromethylated to give good to high yields. A 
broad range of functional groups, including nitro (4g-i), 
sulfone (4j), ester (4l-n), aldehyde (4o-q), alkene (4s), alcohol 
(4t), amine (4y), amide (4r, 4x), benzoyl (4k), and methoxy 

Scheme 1. Difluoromethylation of phenols and thiophenolsa
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a Reaction conditions: 2 (0.2 mmol, 1.0 equiv), base (0.44 mmol, 2.2
equiv), 1 (0.24 mmol, 1.2 equiv), f luorobenzene (2.0 mL), rt, over night.
Yields are for the isolated products 4. b LiOH was used as a base. c NaH
was used as a base, and the reaction proceed at 10 oC. d5.0 mmol scale
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(4e) were compatible with this reaction. The reaction also 
tolerated chloro, bromo and iodo substitutions at the para-
positions (4f, 4i) or ortho-positions (4m, 4n), which allows 
further transformation through cross-coupling reactions. 
Importantly, this protocol exhibited chemoselectivity in a 
phenol bearing aliphatic alcohol (4t, 52%), alkene (4s, 62%), 
implying that phenoxides are more reactive than aliphatic 
alkoxides and alkenes in capturing difluorocarbene. Naphthols 
2u-w also took part in difluoromethylation reaction, leading to 
moderate to good yields. Remarkably, enol 2z also proved to 

Table 1. Survey of Reaction Conditionsa

OH +
Base

Solvent, Temp.
Ar, overnight

OCF2HPh Ph

2a 4a

S
HF2C

OMeMeO

OMeBF4

1

entry base (equiv) solvent temp (°C) yield (%)
1 LiOH (2.2) toluene rt. 70
2 LiOH (2.2) chlorobenzene rt. 63
3 LiOH (2.2) THF rt. 20
4 LiOH (2.2) DCM rt. 78
5 LiOH (2.2) CH3CN rt. 38
6 LiOH (2.2) fluorobenzene rt. 80
7 KOH (1.0 M, 2.2) fluorobenzene rt. 60
8 NaH (2.2) fluorobenzene rt. 73
9 K3PO4 (2.2) fluorobenzene rt. 30
10 NaOAc (2.2) fluorobenzene rt. 13
11 Cs2CO3 (2.2) fluorobenzene rt. 28
12 LiOH (1.6) fluorobenzene rt. 60
13 LiOH (3.0) fluorobenzene rt. 57
14 LiOH (2.2) fluorobenzene 0 59
15 LiOH (2.2) fluorobenzene 10 60
16 NaH (2.2) fluorobenzene 10 81
17 NaH (2.2) fluorobenzene 0 62

a Reaction conditions (unless otherwise specified): 2a (0.2 mmol), 1 (1.2 
equiv, 0.24 mmol), fluorobenzene (2.0 mL), rt, overnight, isolated yields.
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be a suitable substrate, offering the desired product 4z in 74% 
yield. Heterocyclic compounds such as quinolinone, indole 
and coumarin were also well tolerated in this reaction, 
providing the desired products 4x, 4y and 4z in 43%, 56% and 
74% yields, respectively.

The potential usage of this protocol was further 
demonstrated in the difluoromethylation of thiophenols 3. As 
shown in Scheme 1, under similar reaction conditions, S-
(difluoromethyl)sulfonium salt 1 exhibited better reactivity 
with thiophenols than phenols, providing aryl difluoromethyl 
thioethers in high to excellent yields in all cases, regardless of 
whether the thiophenols containing electron-donating (4a, 4f) 
or electron-withdrawing groups (4b, 4d, 4e). Importantly, 
many heterocycles of pharmaceutical interest, including 
pyridine, pyrimidine, thiophene, imidazole, oxazole and 
thiazole were readily amenable under the mild reaction 
conditions, installing medicinally useful 
difluoromethythiolated heterocy-

 Scheme 2. Study of chemoselectivity in 
difluoromethylation of (thio)phenols and alcoholsa
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Scheme 3. Synthesis of the drug candidate GRN-529

Reaction conditions: a) 2n (1.39 g, 5 mmol), LiOH (11.0 mmol, 2.2
equiv.) and f luorobenzene (20.0 mL), 1 (6.0 mmol, 1.2 equiv.), rt,
overnight. b) 2-Ethynylpyridine (1.01 equiv.), Pd(PPh3)2Cl2 (1.0
mol% ), CuI (2.0 mol%), NH4OH (8 equiv.), NMP, 40 oC, 6 h. c)
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CDI (1.1 equiv), DIPEA (3.1 equiv.), NMP, 6,7-Dihydro-5H-
pyrrolo[3,4-b]pyridine dihydrochloride (1.05 equiv.).
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clic compounds (5g-l).
Subsequently, the chemoselectivity of this protocol as 

demonstrated in 4t was studied further in order to give an 
insight into chemoselectivity. Thus, the difluoromethylation of 
2t was performed under the current condition, as well as under 
that reported previously by us,17b leading to different results. 
These results indicate that phenoxides (ArO ＿ ) are more 
reactive than aliphatic alkoxides (RO ＿ ) (Scheme 2a) and 
aliphatic alcohols (ROH) (Scheme 2b). Furthermore, aliphatic 
alcohols (ROH) are more reactive toward difluorocarbene than 
phenols (ArOH) (Scheme 2c). In addition, consistent with 
results shown in Scheme 1, thiophenoxide (ArS＿ ) can more 
efficiently capture difluorocarbene than phenoxide (ArO ＿ ) 
(Scheme 2d) when they coexisted in a reaction mixture. We 
systematically investigated the reactivities of various O, S-
nucleophiles toward difluorocarbene (see Supporting 
Information). Experimental results clearly suggest that the 
order of reactivities of O, S-nucleophiles is ArS＿ > RS＿, ArO
＿ > ROH > RO＿ , ArSH, ArOH, RSH.

To demonstrate the usefulness of this difluoromethylation 
protocol, the synthesis of the drug candidate GRN-529 was 
carried out (Scheme 3). As can be seen, difluoromethylation of 
the easily available phenol 2n generated the key intermediate 
4n in an isolated yield of 69%, which underwent stepwise 
cross-coupling, hydrolysis (saponification) and amide 
formation to produce GRN-529 in an overall yield of 53.5%.

According to the mechanism proposed previously, 
difluoromethylation of phenols proceeds via reaction of 
phenoxides with in situ generated difluorocarbene. In order to 
gain more information and illustrate the plausible reaction 
pathway, some control experiments were carried out. Thus, the 
deuterated sulfonium salt [D]-1 gave the deuterated product [D]-
3a in a yield of only 11%, while 3a was generated in 59% 
yield (Scheme 4a), suggesting that the reaction proceeds via a 
difluorocarbene process. Consistent with this phenomenon, 
addition of tetramethylethylene to the reaction expectedly 
generated 3,3- difluoro-1,1,2,2-tetramethylcyclopropane 4 in 
57% yield (Scheme 4b), which provides a solid evidence that 
difluorocarbene was generated during this process. Therefore, 
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on the basis of the experimental data mentioned above and 
literatures reported previously by other groups, we propose the 

Scheme 4. Control experiments and plausible reaction 
mechanism for difluoromethylation of (thio)phenols by 1a
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reaction mechanism in Scheme 4c. Thus, (thio)phenols are 
treated with base to deliver (thio)phenoxide A, which reacts 
with difluorocarbene generated in situ from reagent 1a to give 
difluoromethylated anion B. Subsequent protonation yields the 
desired products.

CONCLUSIONS
In conclusion, we have developed a facile access to 
difluoromethyl aryl (thio)ethers from (thio)phenols with an S-
(difluoromethyl)sulfonium salt 1 under mild reaction 
conditions. In this way, (thio)phenols bearing a variety of 
functional groups furnished desired products in good to 
excellent yields. The mechanistic study suggests that 
difluoromethylation occurs via a difluorocarbene process. A 
systematic study reveals that the reactivity and 
chemoselectivity of various O, S-nucleophiles toward 
difluorocarbene is ArS＿ > RS＿, ArO＿ > ROH > RO＿ , ArSH, 
ArOH, RSH.

EXPERIMENT SECTION
General Experimental Information: 1H NMR spectra 

were recorded on either a Bruker AscendTM 400MHz (400 
MHz) spectrometer, or a Bruker AscendTM 500MHz (500 
MHz) spectrometer at ambient temperature unless otherwise 
indicated. Data were reported as follows: chemical shifts in 
ppm from tetramethylsilane as an internal standard in CDCl3, 
integration, multiplicity (s = singlet, d = doublet, t = triplet, q 
= quartet, dd = doublet-doublet, m = multiplet, br = broad), 
coupling constants (Hz), and assignment. 13C NMR spectra 
were recorded on either a Bruker AscendTM 500MHz (126 
MHz) spectrometer or a Bruker AscendTM 400MHz (101 
MHz) spectrometer at ambient temperature and were proton 
decoupled. Chemical shifts are reported in ppm from 
tetramethylsilane on the scale with the solvent resonance 
employed as the internal standard. 

19F NMR spectra were recorded on a Bruker AscendTM 
400MHz (376 MHz) spectrometer at ambient temperature. 
Chemical shifts are reported in ppm from CFCl3 as the internal 
standard. ESI-MS analyses were performed in positive 

ionization mode on an Agilent 1260-Infinity LC/MSD or a Q-
Exactive high resolution mass spectrometer. All solvents and 
reagents were dried and purified by the usual techniques prior 
to use. Commercially available reagents were used as 
received. Reactions were monitored by TLC (detection with 
UV light). Flash chromatography: silica gel (300-400 mesh).
Difluoromethylation of Phenols 2 and Thiophenols 3 with 
Electrophilic Difluoromethylating Reagent 1
General Procedure A: phenols 2 or thiophenols 3 (0.2 mmol, 
1.0 equiv), LiOH (0.44 mmol, 2.2 equiv) and fluorobenzene 
(2.0 mL) were added into a flame-dried Schlenk tube under 
argon atmosphere and stirred at room temperature for 30 min. 
Then 1 (0.24 mmol, 1.2 equiv) was added into the mixtures in 
one portion directly, and the reaction was stirred under argon 
atmosphere of argon at room temperature overnight. After 
filtering through celite and removing the solvent in vacuum, 
the residue was purified by flash column chromatography on 
silica gel to obtain the pure products.
General Procedure B: phenols 2 (0.2 mmol, 1.0 equiv), NaH 
(0.44 mmol, 2.2 equiv) and fluorobenzene (2.0 mL) were 
added into a flame-dried Schlenk tube under argon atmosphere 
and stirred at 10 oC for 30 min. Then 1 (0.24 mmol, 1.2 equiv) 
was added into the mixtures in one portion directly, and the 
reaction was stirred under an atmosphere of argon at 10 oC 
overnight. After filtering through celite and removing the 
solvent in vacuum, the residue was purified by flash column 
chromatography on silica gel to obtain the pure products.

4-(difluoromethoxy)-1,1'-biphenyl (4a)18a. Following 
general procedure B, 4a was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a white solid (35.8 mg, 
81%). 1H NMR (500 MHz, Chloroform-d) δ 7.60 (dd, J = 
11.5, 8.0 Hz, 4H), 7.48 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.4 Hz, 
1H), 7.23 (d, J = 8.3 Hz, 2H), 6.58 (t, J = 73.9 Hz, 1H). 
13C{1H} NMR (126 MHz, CDCl3) δ 150.6 (t, J = 2.8 Hz), 
140.1, 138.6, 128.9, 128.5, 127.5, 127.0, 119.8, 116.0 (t, J = 
259.8 Hz). 19F NMR (376 MHz, Chloroform-d) δ -81.2 (d, J = 
74.2 Hz).

1-(tert-butyl)-4-(difluoromethoxy)benzene (4b)18a. 
Following general procedure B, 4b was purified by silica gel 
chromatography (PE) as a colorless oil (30.2 mg, 75%). 1H 
NMR (400 MHz, Chloroform-d) δ 7.43 – 7.38 (m, 2H), 7.11 – 
7.05 (m, 2H), 6.51 (t, J = 74.3 Hz, 1H), 1.35 (s, 9H). 13C{1H} 
NMR (101 MHz, CDCl3) δ 148.9 (t, J = 2.8 Hz), 148.4, 126.7, 
119.1, 116.1 (t, J = 258.9 Hz), 34.4, 31.4. 19F NMR (376 MHz, 
Chloroform-d) δ -79.0 (d, J = 75.7 Hz). 

1-butyl-4-(difluoromethoxy)benzene (4c). Following general 
procedure B, 4c was purified by silica gel chromatography 
(PE) as a colorless oil (34.3 mg, 85%).  1H NMR (400 MHz, 
Chloroform-d) δ 7.20 (d, J = 8.3 Hz, 2H), 7.06 (d, J = 8.3 Hz, 
2H), 6.50 (t, J = 74.4 Hz, 1H), 2.63 (t, J = 7.7Hz, 2H), 1.61 
(dd, J = 14.9, 7.3 Hz, 2H), 1.39 (dq, J = 14.3, 7.3 Hz, 2H), 
0.97 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 
149.2, 140.2, 129.6, 119.4, 116.2 (t, J = 258.9 Hz), 34.9, 33.7, 
22.3, 13.9. 19F NMR (376 MHz, Chloroform-d) δ -80.4 (d, J = 
74.4 Hz). HRMS (ESI-TOF) m/z: (M-H)- Calcd  for 
C11H13F2O: 199.0940. Found: 199.0931.

1-(difluoromethoxy)-4-phenoxybenzene (4d)18a. Following 
general procedure B, 4d was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a colorless oil (27.0 mg, 
57%).  1H NMR (500 MHz, Chloroform-d) δ 7.38 (t, J = 7.9 
Hz, 2H), 7.17 – 7.11 (m, 3H), 7.08 – 7.00 (m, 4H), 6.50 (t, J = 
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74.0 Hz, 1H). 13C{1H} NMR (126 MHz, CDCl3) δ 157.2, 
154.7, 146.5 (t, J = 2.9 Hz), 129.9, 123.5, 121.4, 117.0, 118.8, 
116.03 (t, J = 260.2 Hz). 19F NMR (471 MHz, Chloroform-d) 
δ -80.7 (d, J = 74.0 Hz). 

2-(difluoromethoxy)-1,3-dimethoxybenzene (4e). Following 
general procedure B, 4e was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a white solid (17.5 mg, 
43%), m.p. 65.0-66.8 oC.  1H NMR (500 MHz, Chloroform-d) 
δ 7.15 (t, J = 8.5 Hz, 1H), 6.64 (d, J = 8.5 Hz, 2H), 6.57 (t, J = 
76.4 Hz, 1H), 3.89 (s, 6H). 13C{1H} NMR (126 MHz, CDCl3) 
δ 153.2, 129.4 (t, J = 3.5 Hz), 126.4, 116.9 (t, J = 259.5 Hz), 
105.2, 56.3. 19F NMR (471 MHz, Chloroform-d) δ -81.6 (d, J 
= 76.5 Hz). HRMS (ESI-TOF) m/z: (M+H)+ Calcd for 
C9H11F2O3: 205.0671. Found: 205.0673.

1-bromo-4-(difluoromethoxy)benzene  (4f)18a. Following 
general procedure B, 4f was purified by silica gel 
chromatography (PE) as a colorless oil (23.2 mg, 52%). 1H 
NMR (500 MHz, Chloroform-d) δ 7.52 – 7.49 (m, 2H), 7.04 
(d, J = 8.9 Hz, 2H), 6.51 (t, J = 73.4 Hz, 1H). 13C{1H} NMR 
(126 MHz, CDCl3) δ 150. 0 (t, J = 2.9 Hz), 132.8, 121.5, 118.5, 
115.6 (t, J = 261.2 Hz). 19F NMR (471 MHz, Chloroform-d) δ 
-81.2 (d, J = 73.6 Hz).

1-(difluoromethoxy)-4-nitrobenzene (4g) 18a. Following 
general procedure A, 4g was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a colorless oil (25.0 mg, 
66%). 1H NMR (400 MHz, Chloroform-d) δ 8.29 (d, J = 9.2 
Hz, 2H), 7.28 (d, J = 9.2 Hz, 2H), 6.66 (t, J = 72.2 Hz, 1H). 
13C{1H} NMR (101 MHz, CDCl3) δ 155.5 (t, J = 2.8 Hz), 
144.8, 125.8, 119.3, 115.0 (t, J = 263.7 Hz). 19F NMR (376 
MHz, Chloroform-d) δ -82.6 (d, J = 72.2 Hz).

4-(difluoromethoxy)-1-methyl-2-nitrobenzene (4h). 
Following general procedure A, 4h was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a colorless oil (28.1 mg, 
69%). 1H NMR (400 MHz, Chloroform-d) δ 7.79 (d, J = 2.5 
Hz, 1H), 7.38 (d, J = 8.4 Hz, 1H), 7.32 (dd, J = 8.5, 2.5 Hz, 
1H), 6.57 (t, J = 72.6 Hz, 1H), 2.60 (s, 3H). 13C{1H} NMR 
(101 MHz, CDCl3) δ 149.3, 148.9 (t, J = 3.1 Hz), 133.9, 130.8, 
124.7, 116.2, 115.3 (t, J = 263.3 Hz), 19.9. 19F NMR (376 
MHz, Chloroform-d) δ -81.9 (d, J = 72.4 Hz). HRMS (ESI-
TOF) m/z: (M+H)+ Calcd  for C8H8F2NO3: 204.0467. Found: 
204.0468.

1-chloro-4-(difluoromethoxy)-2-nitrobenzene (4i)18b. 
Following general procedure A, 4I was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a colorless oil (32.3 mg, 
72%). 1H NMR (400 MHz, Chloroform-d) δ 7.71 (d, J = 2.8 
Hz, 1H), 7.58 (d, J = 8.8 Hz, 1H), 7.35 (dd, J = 8.8, 2.8 Hz, 
1H), 6.60 (t, J = 71.9 Hz, 1H). 13C{1H} NMR (101 MHz, 
CDCl3) δ 149.1 (t, J = 3.0 Hz), 148.1, 133.0, 124.9, 123.8, 
117.4, 115.0 (t, J = 265.3 Hz). 19F NMR (376 MHz, 
Chloroform-d) δ -82.4 (d, J = 72.2 Hz).

1-(difluoromethoxy)-4-(methylsulfonyl)benzene (4j). 
Following general procedure A, 4j was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a white solid (20.0 mg, 
45%), m.p. 81.8-83.2 oC. 1H NMR (400 MHz, Chloroform-d) 
δ 7.98 (d, J = 8.8 Hz, 2H), 7.31 (d, J = 8.7 Hz, 2H), 6.65 (t, J = 
72.5 Hz, 1H), 3.07 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) 
δ 154.9 (t, J = 2.8 Hz), 137.2, 129.7, 119.7, 115.1 (t, J = 263.0 
Hz), 44.6. 19F NMR (376 MHz, Chloroform-d) δ -82.3 (d, J = 
72.3 Hz). HRMS (ESI-TOF) m/z: (M+H)+ Calcd for 
C8H9F2O3S: 223.0235. Found: 223.0237.

(4-(difluoromethoxy)phenyl)(phenyl)methanone (4k)18c. 
Following general procedure B, 4k was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a colorless oil (34.8 mg, 

70%). 1H NMR (400 MHz, Chloroform-d) δ 7.87 (d, J = 8.6 
Hz, 2H), 7.80 (d, J = 8.3 Hz, 2H), 7.66 – 7.57 (m, 1H), 7.51 (t, 
J = 7.7 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 6.65 (t, J = 73.1 Hz, 
1H). 13C{1H} NMR (101 MHz, CDCl3) δ 195.3, 154.3 (t, J = 
2.7 Hz), 137.4, 134.4, 132.6, 132.2, 129.9, 128.4, 118.6, 115.4 
(t, J = 261.2 Hz). 19F NMR (376 MHz, Chloroform-d) δ -81.7 
(d, J = 73.3 Hz).

Ethyl 4-(difluoromethoxy)benzoate (4l). Following general 
procedure A, 4l was purified by silica gel chromatography 
(EtOAc/PE=30/1) as a colorless oil (36.4 mg, 90%). 1H NMR 
(400 MHz, Chloroform-d) δ 8.12 – 8.03 (m, 2H), 7.20 – 7.12 
(m, 2H), 6.60 (t, J = 73.2 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 
1.41 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 
165.6, 154.6 (t, J = 2.8 Hz), 131.6, 127.4, 118.0 (t, J = 260.5 
Hz), 112.8, 61.1, 14.3. 19F NMR (376 MHz, Chloroform-d) δ -
81.7 (d, J = 72.9 Hz). HRMS (ESI-TOF) m/z: (M+H)+ Calcd 
for C10H11F2O3: 217.0671. Found: 217.0673.

Methyl 3-bromo-4-(difluoromethoxy)benzoate (4m). 
Following general procedure A, 4m was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a white solid (34.3 mg, 
61%), m.p. 44.3-45.1 oC. 1H NMR (400 MHz, Chloroform-d) 
δ 8.31 (d, J = 2.1 Hz, 1H), 8.00 (dd, J = 8.6, 2.1 Hz, 1H), 7.27 
(d, J = 8.6 Hz, 1H), 6.63 (t, J = 72.6 Hz, 1H), 3.94 (s, 3H). 
13C{1H} NMR (101 MHz, CDCl3) δ 165.0, 151.5 (t, J = 2.8 
Hz), 135.4, 130.2, 128.5, 119.9, 115.4 (t, J = 263.9 Hz), 114.8, 
52.6. 19F NMR (376 MHz, Chloroform-d) δ -81.9 (d, J = 72.5 
Hz). HRMS (ESI-TOF) m/z: (M+H)+ Calcd for C9H7F2O3Br: 
280.9619, 282.9599. Found: 280.9619, 282.9599.

Methyl 4-(difluoromethoxy)-3-iodobenzoate (4n). Following 
general procedure A, 4n was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a white solid (43.3 mg, 
66%), m.p. 56.4-57.1 oC. 1H NMR (400 MHz, Chloroform-d) 
δ 8.53 (d, J = 1.4 Hz, 1H), 8.03 (dd, J = 8.5, 1.4 Hz, 1H), 7.19 
(d, J = 8.5 Hz, 1H), 6.63 (t, J = 72.5 Hz, 1H), 3.94 (s, 3H). 
13C{1H} NMR (101 MHz, CDCl3) δ 164.8, 154.2 (t, J = 2.6 
Hz), 141.5, 131.2, 128.6, 118.4, 115.5 (t, J = 263.8 Hz), 88.1, 
52.5. 19F NMR (376 MHz, Chloroform-d) δ -81.8 (d, J = 72.4 
Hz). HRMS (ESI-TOF) m/z: (M+H)+ Calcd for C9H8F2O3I: 
328.9481. Found: 328.9482.

4-(difluoromethoxy)benzaldehyde  (4o)15. Following general 
procedure A, 4o was purified by silica gel chromatography 
(PE) as a colorless crystal (20.3 mg, 59%). 1H NMR (400 
MHz, Chloroform-d) δ 10.00 (s, 1H), 7.98 – 7.89 (m, 2H), 
7.28 (d, J = 8.5 Hz, 2H), 6.65 (t, J = 72.8 Hz, 1H). 13C{1H} 
NMR (101 MHz, CDCl3) δ 190.6, 155.7 (t, J = 2.7 Hz), 133.4, 
131.7, 119.2, 115.2 (t, J = 262.0 Hz). 19F NMR (376 MHz, 
Chloroform-d) δ -82.0 (d, J = 72.5 Hz).

3-(difluoromethoxy)benzaldehyde (4p). Following general 
procedure A, 4p was purified by silica gel chromatography 
(PE) as a colorless oil (15.9 mg, 46%). 1H NMR (400 MHz, 
Chloroform-d) δ 10.03 (s, 1H), 7.76 (dt, J = 7.6, 1.3 Hz, 1H), 
7.65 (s, 1H), 7.58 (t, J = 7.9 Hz, 1H), 7.42 (dd, J = 8.1, 2.3 Hz, 
1H), 6.61 (t, J = 73.0 Hz, 1H). 13C{1H} NMR (101 MHz, 
CDCl3) δ 191.0, 151.6 (t, J = 2.8 Hz), 138.0, 130.6, 127.1, 
125.8, 119.4, 115.5 (t, J = 261.8 Hz). 19F NMR (376 MHz, 
Chloroform-d) δ -81.6 (d, J = 73.0 Hz). HRMS (ESI-TOF) 
m/z: (M+H)+ Calcd for C8H7F2O2: 173.0409. Found: 173.0410.

5-bromo-2-(difluoromethoxy)benzaldehyde (4q). Following 
general procedure A, 4q was purified by silica gel 
chromatography (PE) as a colorless oil (31.1 mg, 62%). 1H 
NMR (400 MHz, Chloroform-d) δ 10.33 (s, 1H), 8.06 (d, J = 
2.6 Hz, 1H), 7.74 (dd, J = 8.7, 2.6 Hz, 1H), 7.18 (d, J = 8.8 
Hz, 1H), 6.68 (t, J = 72.2 Hz, 1H). 13C{1H} NMR (101 MHz, 
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CDCl3) δ 187.0, 151.4 (t, J = 2.9 Hz), 138.2, 131.7, 129.1, 
122.0, 119.4, 115.2 (t, J = 264.8 Hz). 19F NMR (376 MHz, 
Chloroform-d) δ -81.9 (d, J = 72.2 Hz). HRMS (ESI-TOF) 
m/z: (M+H)+ Calcd for C8H6F2O2Br: 250.9514, 252.9493. 
Found: 250.9516, 252.9495.

N-(4-(difluoromethoxy)phenyl)acetamide (4r)15. Following 
general procedure A, 4r was purified by silica gel 
chromatography (EtOAc/PE=4/1) as a white solid (16.5 mg, 
41%). 1H NMR (400 MHz, Chloroform-d) δ 7.64 (s, 1H), 7.51 
(d, J = 9.0 Hz, 2H), 7.08 (d, J = 8.9 Hz, 2H), 6.47 (t, J = 74.0 
Hz, 1H), 2.18 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 
168.6, 147.3 (t, J = 2.9 Hz), 135.4, 121.4, 120.4, 116.0 (t, J = 
260.1 Hz), 24.4. 19F NMR (376 MHz, Chloroform-d) δ -80.7 
(d, J = 73.7 Hz).

(E)-1-(difluoromethoxy)-2-methoxy-4-(prop-1-en-1-
yl)benzene (4s). Following general procedure B, 4s was 
purified by silica gel chromatography (EtOAc/PE=30/1) as a 
colorless oil (26.6 mg, 62%). 1H NMR (400 MHz, 
Chloroform-d) δ 7.10 (d, J = 8.3 Hz, 1H), 6.95 (d, J = 2.0 Hz, 
1H), 6.90 (dd, J = 8.2, 2.0 Hz, 1H), 6.54 (t, J = 75.4 Hz, 1H), 
6.38 (dd, J = 15.7, 1.7 Hz, 1H), 6.22 (dq, J = 15.8, 6.6 Hz, 
1H), 3.91 (s, 3H), 1.91 (dd, J = 6.6, 1.7 Hz, 3H). 13C{1H} 
NMR (101 MHz, CDCl3) δ 151.0, 138.8 (t, J = 3.1 Hz), 136.8, 
130.1, 126.5, 122.3, 118.9, 116.3 (t, J = 259.4 Hz), 109.8, 
55.9, 18.4. 19F NMR (376 MHz, Chloroform-d) δ -81.4 (d, J = 
75.1 Hz). HRMS (ESI-TOF) m/z: (M+H)+ Calcd for 
C11H13F2O2: 215.0878. Found: 215.0880.

2-(4-(difluoromethoxy)phenyl)ethan-1-ol (4t). Following 
general procedure B, 4t was purified by silica gel 
chromatography (EtOAc/PE=4/1) as a colorless oil (19.6 mg, 
52%). 1H NMR (400 MHz, Chloroform-d) δ 7.27 – 7.22 (m, 
2H), 7.09 (d, J = 8.6 Hz, 2H), 6.51 (t, J = 74.1 Hz, 1H), 3.87 
(t, J = 6.5 Hz, 2H), 2.87 (t, J = 6.5 Hz, 2H), 1.66 (br, 1H). 
13C{1H} NMR (126 MHz, CDCl3) δ 149.8 (t, J = 2.8 Hz), 
135.9, 130.3, 119.8, 116.0 (t, J = 259.5 Hz), 63.5, 38.4. 19F 
NMR (376 MHz, Chloroform-d) δ -80.6 (d, J = 73.9 Hz). 
HRMS (ESI-TOF) m/z: (M+Na)+ Calcd for C9H10F2O2Na: 
211.0541. Found: 211.0542.

1-(difluoromethoxy)naphthalene (4u)18a. Following general 
procedure A, 4u was purified by silica gel chromatography 
(EtOAc/PE=30/1) as a colorless oil (25.3 mg, 65%). 1H NMR 
(400 MHz, Chloroform-d) δ 8.27 – 8.18 (m, 1H), 7.95 – 7.86 
(m, 1H), 7.74 (d, J = 8.3 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.45 (t, 
J = 7.9 Hz, 1H), 7.23 (dd, J = 7.6, 0.5 Hz, 1H), 6.70 (t, J = 
74.1 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 147.4 (t, J 
= 2.5 Hz), 134.7, 127.8, 127.0, 126.6, 126.5, 125.4, 125.3, 
121.6, 116.6 (t, J = 258.9 Hz), 113.7. 19F NMR (376 MHz, 
Chloroform-d) δ -79.9 (d, J = 74.1 Hz).

2-(difluoromethoxy)naphthalene (4v)18a. Following general 
procedure A, 4v was purified by silica gel chromatography 
(EtOAc/PE=30/1) as a colorless oil (27.6 mg, 71%). 1H NMR 
(400 MHz, Chloroform-d) δ 7.90 – 7.85 (m, 2H), 7.83 (d, J = 
8.0 Hz, 1H), 7.58 – 7.48 (m, 3H), 7.32 (dd, J = 8.9, 2.4 Hz, 
1H), 6.66 (t, J = 74.0 Hz, 1H). 13C{1H} NMR (101 MHz, 
CDCl3) δ 149.0 (t, J = 2.3 Hz), 133.8, 131.1, 130.1, 130.1, 
127.8, 127.8, 127.5, 127.5, 127.0, 126.9, 125.7, 125.7, 119.7, 
116.1 (t, J = 259.3 Hz), 115.4. 19F NMR (376 MHz, 
Chloroform-d) δ -80.6(d, J = 73.9 Hz).

1-bromo-2-(difluoromethoxy)naphthalene (4w)15. Following 
general procedure B, 4w was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a white solid (24.6 mg, 
45%). 1H NMR (400 MHz, Chloroform-d) δ 8.32 (d, J = 8.4 
Hz, 1H), 7.87 (t, J = 7.7 Hz, 2H), 7.69 – 7.64 (m, 1H), 7.59 – 

7.54 (m, 1H), 7.42 (d, J = 8.9 Hz, 1H), 6.66 (t, J = 73.7 Hz, 
1H). 13C{1H} NMR (101 MHz, CDCl3) δ 146.0 (t, J = 2.9 Hz), 
132.8, 132.2, 129.2, 128.2, 128.2, 127.2, 126.6, 120.6, 116.2 
(t, J = 262.6 Hz), 114.7. 19F NMR (376 MHz, Chloroform-d) δ 
-80.7 (d, J = 73.7 Hz).

7-(difluoromethoxy)-3,4-dihydroquinolin-2(1H)-one (4x). 
Following general procedure A, 4x was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a white solid (18.4 mg, 
43%), m.p. 137.4-138.8 oC. 1H NMR (400 MHz, Chloroform-
d) δ 9.25 (br, 1H), 7.15 (d, J = 8.2 Hz, 1H), 6.76 (dd, J = 8.2, 
2.3 Hz, 1H), 6. 66 (d, J = 2.3 Hz, 1H), 6.50 (t, J = 73.9 Hz, 
1H), 2.97 (t, J = 7.5 Hz, 2H), 2.67 (t, J = 7.5 Hz, 2H). 13C{1H} 
NMR (101 MHz, CDCl3) δ 172.1, 150.5 (t, J = 2.9 Hz), 138.6, 
129.0, 120.8, 115.9 (t, J = 260.1 Hz), 113.7, 107.3, 30.6, 24.7. 
19F NMR (376 MHz, Chloroform-d) δ -80.8 (d, J = 73.7 Hz). 
HRMS (ESI-TOF) m/z: (M+H)+ Calcd for C10H10F2NO2: 
214.0674 Found: 214.0675.

4-(difluoromethoxy)-1H-indole (4y). Following general 
procedure A, 4y was purified by silica gel chromatography 
(EtOAc/PE=10/1) as a colorless oil (20.5 mg, 56%). 1H NMR 
(400 MHz, Chloroform-d) δ 8.31 (s, 1H), 7.29 (d, J = 7.7 Hz, 
1H), 7.24 (t, J = 2.8 Hz, 1H), 7.17 (t, J = 7.9 Hz, 1H), 6.88 
(dd, J = 6.9, 0.5 Hz, 1H), 6.70 (t, J = 2.3 Hz, 1H), 6.69 (t, J = 
74.6 Hz, 1H). 13C{1H} NMR (126 MHz, CDCl3) δ 144.7 (t, J 
= 2.7 Hz), 137.7, 124.4, 122.4, 120.7, 116.7 (t, J = 258.2 Hz), 
109.0, 108.8, 99.6. 19F NMR (376 MHz, Chloroform-d) δ -
79.6 (d, J = 74.8 Hz). HRMS (ESI-TOF) m/z: (M+H)+ Calcd 
for C9H8F2NO: 184.0568. Found: 184.0570.

4-(difluoromethoxy)-2H-chromen-2-one (4z)14b. Following 
general procedure B, 4z was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a white solid (31.4 mg, 
74%). 1H NMR (400 MHz, Chloroform-d) δ 7.82 (dd, J = 7.9, 
1.6 Hz, 1H), 7.67 – 7.59 (m, 1H), 7.35 (t, J = 8.4 Hz, 2H), 6.86 
(t, J = 71.2 Hz, 1H), 5.99 (s, 1H). 13C{1H} NMR (101 MHz, 
CDCl3) δ 161.0, 159.0, 153.5, 133.4, 124.53, 123.0, 117.0, 
114.5 (t, J = 264.6 Hz), 114.0, 96.4. 19F NMR (376 MHz, 
Chloroform-d) δ -85.0 (d, J = 71.1 Hz).

(difluoromethyl)(3-methoxyphenyl)sulfane (5a)14b. 
Following general procedure A, 5a was purified by silica gel 
chromatography (PE) as a colorless oil (32.7 mg, 86%). 1H 
NMR (400 MHz, Chloroform-d) δ 7.33 (t, J = 8.0 Hz, 1H), 
7.19 (dt, J = 7.7, 1.3 Hz, 1H), 7.14 (t, J = 2.1 Hz, 1H), 6.99 
(ddd, J = 8.3, 2.6, 1.0 Hz, 1H), 6.87 (t, J = 57.0 Hz, 1H), 3.85 
(s, 3H). 13C NMR (101 MHz, CDCl3) δ 159.9, 130.2, 127.3, 
127.2 (t, J = 3.1 Hz), 121.2 (t, J = 275.1 Hz), 120.2, 115.8, 
55.4. 19F NMR (376 MHz, Chloroform-d) δ -91.2 (d, J = 57.2 
Hz).

(4-bromophenyl)(difluoromethyl)sulfane (5b)18a. Following 
general procedure A, 5b was purified by silica gel 
chromatography (PE) as a colorless oil (47.5 mg, 99%). 1H 
NMR (400 MHz, Chloroform-d) δ 7.58 – 7.53 (m, 2H), 7.49 – 
7.45 (m, 2H), 6.83 (t, J = 56.6 Hz, 1H). 13C{1H} NMR (101 
MHz, CDCl3) δ 136.9, 132.6, 124.9 (t, J = 3.1 Hz), 124.8, 
120.2 (t, J = 275.9 Hz). 19F NMR (376 MHz, Chloroform-d) δ 
-91.6 (d, J = 56.6 Hz).

(difluoromethyl)(naphthalen-2-yl)sulfane (5c)19a. Following 
general procedure A, 5c was purified by silica gel 
chromatography (PE) as a colorless oil (37.8 mg, 90%). 1H 
NMR (400 MHz, Chloroform-d) δ 8.16 (s, 1H), 7.89 (dt, J = 
7.4, 3.7 Hz, 3H), 7.65 (dd, J = 8.6, 1.8 Hz, 1H), 7.63 – 7.55 
(m, 2H), 6.94 (t, J = 56.9 Hz, 1H). 13C{1H} NMR (101 MHz, 
CDCl3) δ 135.5, 133.5, 133.4, 131.4, 129.1, 128.0, 127.8, 
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127.5, 126.9, 123.3 (t, J = 3.0 Hz), 121.1 (t, J = 275.3 Hz). 19F 
NMR (376 MHz, Chloroform-d) δ -91.1 (d, J = 56.2 Hz).

(difluoromethyl)(4-nitrophenyl)sulfane (5d)15. Following 
general procedure A, 5d was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a colorless oil (25.1 mg, 
61%). 1H NMR (400 MHz, Chloroform-d) δ 8.29 – 8.22 (m, 
2H), 7.78 – 7.72 (m, 2H), 6.97 (t, J = 55.8 Hz, 1H). 13C{1H} 
NMR (101 MHz, CDCl3) δ 148.3, 135.0 (t, J = 2.9 Hz), 134.4, 
124.2, 119.6 (t, J = 276.8 Hz). 19F NMR (376 MHz, 
Chloroform-d) δ -91.2 (d, J = 55.9 Hz).

(difluoromethyl)(perchlorophenyl)sulfane (5e). Following 
general procedure A, 5e was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a white solid (45.9 mg, 
69%), m.p. 64.3-66.8 oC. 1H NMR (400 MHz, Chloroform-d) 
δ 6.93 (t, J = 57.0 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) 
δ 140.1, 136.9, 132.8, 126.3 (t, J = 3.8 Hz), 119.5 (t, J = 280.2 
Hz). 19F NMR (376 MHz, Chloroform-d) δ -91.7 (d, J = 57.0 
Hz). HRMS (ESI-TOF) m/z: (M+H)+ Calcd for C7H2Cl5F2S: 
330.8283, 332.8253, 334.8224. Found: 330.8282, 332.8253, 
334.8223.

N-(4-((difluoromethyl)thio)phenyl)acetamide (5f)19a. 
Following general procedure A, 5f was purified by silica gel 
chromatography (EtOAc/PE=4/1) as a white solid (41.3 mg, 
95%). 1H NMR (400 MHz, DMSO-d6) δ 10.18 (br, 1H), 7.68 
(d, J = 8.7 Hz, 2H), 7.51 (d, J = 8.7 Hz, 2H), 7.38 (t, J = 56.1 
Hz, 1H), 2.07 (s, 3H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 
169.2, 141.5, 136.6, 121.5 (t, J = 273.1 Hz), 120.1, 118.3 (t, J 
= 2.7 Hz), 24.5. 19F NMR (376 MHz, DMSO-d6) δ -92.4 (d, J 
= 56.2 Hz).

2-((difluoromethyl)thio)pyridine (5g)18a. Following general 
procedure A, 5g was purified by silica gel chromatography 
(EtOAc/PE=30/1) as a colorless oil (24.5 mg, 76%). 1H NMR 
(400 MHz, Chloroform-d) δ 8.52 (d, J = 4.6 Hz, 1H), 7. 72 (t, 
J = 56.3 Hz, 1H), 7.64 (t, J = 7.7 Hz, 2H), 7.30 (d, J = 7.7 Hz, 
1H), 7.21 – 7.14 (m, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 
153.2 (t, J = 3.6 Hz), 150.1, 137.2, 124. 4 (t, J = 2.4 Hz), 
121.8, 121.3 (t, J = 270.9 Hz). 19F NMR (376 MHz, 
Chloroform-d) δ -96.2 (d, J = 56.4 Hz). 

2-((difluoromethyl)thio)pyrimidine (5h). Following general 
procedure A, 5h was purified by silica gel chromatography 
(EtOAc/PE=30/1) as a colorless oil (19.2 mg, 59%). 1H NMR 
(500 MHz, Chloroform-d) δ 8.61 (d, J = 4.9 Hz, 2H), 7.81 (t, J 
= 55.9 Hz, 1H), 7.14 (t, J = 4.9 Hz, 1H). 13C{1H} NMR (126 
MHz, CDCl3) δ 167.9 (t, J = 6.1 Hz), 157.8, 120.6 (t, J = 
270.2 Hz), 118.3. 19F NMR (376 MHz, Chloroform-d) δ -99.6 
(d, J = 55.8 Hz). HRMS (ESI-TOF) m/z: (M+H)+ Calcd for 
C5H5F2N2S: 163.0136. Found: 163.0136.

2-((difluoromethyl)thio)thiophene (5i). Following general 
procedure A, 5i was purified by silica gel chromatography 
(PE) as a colorless oil (30.3 mg, 91%). 1H NMR (400 MHz, 
Chloroform-d) δ 7.56 (dd, J = 5.4, 1.1 Hz, 1H), 7.39 (dd, J = 
3.6, 1.0 Hz, 1H), 7.13 (dd, J = 5.4, 3.6 Hz, 1H), 6.75 (t, J = 
57.1 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 138.3, 
133.0, 128.3, 122.5 (t, J = 3.8 Hz), 120.4 (t, J = 277.7 Hz). 19F 
NMR (376 MHz, Chloroform-d) δ -93.5 (d, J = 57.1 Hz). 
HRMS (ESI-TOF) m/z: (M+H)+ Calcd for C5H5F2S2: 
166.9795. Found: 166.9796.

2-((difluoromethyl)thio)-1H-benzo[d]imidazole (5j)19b 
Following general procedure A, 5j was purified by silica gel 
chromatography (EtOAc/PE=10/1) as a white solid (25.3 mg, 
63%). 1H NMR (400 MHz, DMSO-d6) δ 13.13 (brs, 1H), 7.85 
(t, J = 55.3 Hz, 1H), 7.59 (brs, 2H), 7.28 – 7.21 (m, 2H). 
13C{1H} NMR (126 MHz, DMSO-d6) δ 143.9 (br), 140.5 (t, J 

= 4.6 Hz), 123.3 (br), 121.2 (t, J = 274.5 Hz), 111.9 (br).  19F 
NMR (376 MHz, DMSO-d6) δ -92.1 (d, J = 55.2 Hz).

2-((difluoromethyl)thio)benzo[d]oxazole (5k)19b. Following 
general procedure A, 5k was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a colorless oil (40.0 mg, 
99%). 1H NMR (400 MHz, Chloroform-d) δ 7.74 (t, J = 55.7 
Hz, 1H), 7.73 – 7.66 (m, 1H), 7.57 – 7.49 (m, 1H), 7.40 – 7.33 
(m, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ 157.2 (t, J = 6.2 
Hz), 151.7, 141.2, 125.2, 125.0, 119.8 (t, J = 276.6 Hz), 119.4, 
110.4. 19F NMR (376 MHz, Chloroform-d) δ -93.2 (d, J = 55.8 
Hz).

2-((difluoromethyl)thio)benzo[d]thiazole (5l)19b. Following 
general procedure A, 5l was purified by silica gel 
chromatography (EtOAc/PE=30/1) as a colorless oil (42.1 mg, 
97%). 1H NMR (400 MHz, Chloroform-d) δ 8.03 (d, J = 8.2 
Hz, 1H), 7.85 (dd, J = 7.6, 0.8 Hz, 1H), 7.67 (t, J = 56.0 Hz, 
1H), 7.56 – 7.47 (m, 1H), 7.47 – 7.38 (m, 1H). 13C{1H} NMR 
(101 MHz, CDCl3) δ 157.1 (t, J = 4.3 Hz), 152.90, 136.0, 
126.7, 125.6, 122.9, 121.2, 120.3 (t, J = 277.0 Hz). 19F NMR 
(376 MHz, Chloroform-d) δ -93.2 (d, J = 55.9 Hz).

General procedure for the synthesis of GRN-5299c. 4-
Difluoromethoxy-3-iodo-benzoic Acid Methyl Ester (4n): 
Methyl 4-hydroxy-3-iodobenzoate 2n (1.39 g, 5.0 mmol), 
LiOH (0.263 g, 2.2 equiv., 11.0 mmol) and fluorobenzene (20 
mL) were added into a flame-dried Schlenk tube under argon 
atmosphere and stirred at room temperature for 30 min. Then 
1 (2.484g, 1.2 equiv., 6.0 mmol) was added into the mixtures 
directly, and the reaction was stirred under an atmosphere of 
argon at room temperature overnight. After filtering through 
celite and removing the solvent in vacuum, the residue was 
purified by flash column chromatography on silica gel (eluting 
with ethyl acetate/hexane = 1:30) to obtain the pure product 4n 
(1.135 g, 69%).

Methyl 4-(Difluoromethoxy)-3-(pyridin-2-ylethynyl)- 
benzoate (7). 2-Ethynylpyridine (6) (0.288 g, 1.01 equiv, 
2.791 mmol) was charged to a solution of 4n (0.906 g, 1.00 
equiv, 2.763 mmol), CuI (0.011 g, 0.020 equiv, 0.055 mmol) 
and Pd(PPh3)2Cl2 (0.020 g, 0.010 equiv, 0.028 mmol) in N-
methylpyrrolidinone (NMP) (20 mL). The mixture was 
degassed by evacuating and refilling via nitrogen bleed three 
times, and the mixture was heated to 40 °C. Next, ammonium 
hydroxide (28% solution) (1.312 g, 8 equiv) was added in one 
portion, The reaction was held in this range for 6 h. After the 
reaction was completed, the mixture was cooled to room 
temperature, and Water (150 g, 150 mL) was added over a 
period of 45 min, and the suspension was cooled to 5 °C. After 
1 h at this temperature, the solids were filtered and washed 
consecutively with water (60 mL), Finally, the crystals (0.807 
g, 96.4% yield) were dried under vacuum. 1H NMR (400 MHz, 
Chloroform-d) δ 8.62 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H), 8.31 (d, J 
= 2.2 Hz, 1H), 8.02 (dd, J = 8.7, 2.2 Hz, 1H), 7.69 (td, J = 7.7, 
1.8 Hz, 1H), 7.54 (dt, J = 7.8, 1.0 Hz, 1H), 7.29 – 7.23 (m, 2H), 
6.73 (t, J = 72.8 Hz, 1H), 3.91 (s, 3H). 13C{1H} NMR (101 
MHz, CDCl3) δ 165.4, 154.7 (t, J = 2.7 Hz), 150.2, 142.7, 
136.2, 135.7, 131.7, 127.5, 127.3, 123.3, 119.0, 115.6 (t, J = 
263.0 Hz), 115.4, 94.2, 82.6, 52.4. 19F NMR (376 MHz, 
Chloroform-d) δ -81.9 (d, J = 72.8 Hz).

4-(Difluoromethoxy)-3-(pyridin-2-ylethynyl)benzoic Acid 
(8). To a mixture of 7 (0.766 g, 1.00 equiv, 2.53 mmol) in 
Water (10 mL) and methanol (10 mL) at 40−45 °C was added 
a solution of 50% NaOH (0.122 g, 3.04 mmol, 1.2 equiv), 
keeping the temperature in the range of 40−45 °C 
approximately 3 h. The reaction were diluted with 30 mL of 
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water and warmed to 45 °C. A solution of HOAc (1.0 mL) in 
water (10 mL) was slowly added over a period of 1 h. After 
addition of the acetic acid solution, the mixture was cooled to 
20 °C and held for one hour, and the solid was collected and 
washed with water (50 mL) and dried under vacuum provide 8 
as a white powder (0.700 g, 95.8% yield). 1H NMR (400 MHz, 
DMSO-d6) δ 13.36 (br, 1H), 8.65 (d, J = 4.6 Hz, 1H), 8.18 (d, 
J = 2.3 Hz, 1H), 8.07 (dd, J = 8.7, 1.8 Hz, 1H), 7.89 (t, J = 7.7 
Hz, 1H), 7.69 (d, J = 7.4 Hz, 1H), 7.50 (t, J = 73.0 Hz, 1H), 
7.46 (t, J = 6.8 Hz, 2H). 13C{1H} NMR (101 MHz, DMSO-d6) 
δ 166.2, 154.9 (t, J = 3.2 Hz), 150.7, 142.3, 137.4, 135.2, 
132.6, 128.2, 128.1, 124.4, 118.3, 116.6 (t, J = 260 Hz), 114.0, 
94.4, 82.7. 19F NMR (376 MHz, DMSO-d6) δ -82.4 (d, J = 
72.8 Hz).

(4-Difluoromethoxy-3-pyridin-2-ylethynyl-phenyl)- (5,7-
dihydro-pyrrolo[3,4-b]pyridin-6-yl)-methanone (GRN-529). 
Into a flame-dried Schlenk tube was charged 8 (289 mg, 1.00 
equiv, 1.0 mmol) followed by NMP (5.0 mL) and N,N-
diisopropylethylamine (DIPEA) (200 μL, 1.2 equiv, 1.2 
mmol). This reaction mixture was stored at room temperature. 
Into a 15 mL Schlenk tube at 25 °C was charged NMP (5.0 
mL) followed by 1,1-carbonyldiimidazole (CDI) (178 mg, 
1.10 equiv, 1.1 mol). This mixture was stirred to dissolve. The 
solution of (8) was charged at room temperature to the 
Schlenk tube over a period of 30 min and stirred at room 
temperature for another 2 h to generate the activated 
intermediate. 

Into a 50 mL flame-dried Schlenk tube was charged NMP 
(5.0 mL) followed by 6,7-dihydro-5H-pyrrolo[3,4-b]pyridine 
dihydrobromide (9) (203 mg, 1.05 equiv, 1.05 mol). To this 
was charged DIPEA (302 μL, 1.83 equiv, 1.83 mmol) over a 
period of 25 min and keeping the temperature below 35 °C. 
The contents from the 15 mL Schlenk tube were transferred at 
ambient temperature to the 50 mL Schlenk tube over a period 
of 30 min. The reaction was held at ambient temperature for a 
minimum of 4 h. Once the reaction was deemed complete, 
water (100 mL) was added over a period of 2 h to the mixture 
at 30 °C. If needed, an additional charge of water (50 mL) may 
be added to aid in crystallization if crystals are not observed 
after 1h. The mixture was held at 25 °C overnight and filtered. 
The cake was washed with water (50 mL) and allowed to dry 
on the filter overnight. The solids were weighed to provide 
GRN-529 as a white powder (328 mg, 83.7% yield). 1H NMR 
(400 MHz, DMSO-d6, Rotomeric mixture) δ 8.64 (d, J = 4.8 
Hz, 1H), 8.47 (dd, J = 9.5, 4.9 Hz, 1H), 7.98 (s, 1H), 7.89 (t, J 
= 7.6 Hz, 1H), 7.85 – 7.81 (m, 1H), 7.75 (dd, J = 27.7, 7.8 Hz, 
1H), 7.67 (d, J = 7.1 Hz, 1H), 7.47 (t, J = 72.3 Hz, 1H), 7.47 – 
7.40 (m, 2H), 7.35 – 7.30 (m, 1H), 4.90 (d, J = 12.8 Hz, 2H), 
4.84 (d, J = 4.4 Hz, 2H). 13C{1H} NMR (101 MHz, DMSO-d6) 
δ 167.8, 157.8, 152.8, 150.7, 149.3, 142.3, 137.4, 133.8, 133.2, 
131.7, 131.1, 130.5, 128.1, 124.4, 123.0, 119.0, 116.7 (t, J = 
262 Hz), 114.2, 94.4, 83.1, 54.81, 52.8. 19F NMR (376 MHz, 
DMSO-d6) δ -82.7 (d, J = 73.0 Hz).
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