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Abstract  

A series of ten 1-aryl-3-methylsuccinimides was synthesized and their solvatochromic 

properties were studied in a set of fifteen binary solvent mixtures. The solute-solvent 

interactions were analyzed on the basis of the linear solvation energy relationship (LSER) 

concept proposed by Kamlet and Taft. The electronic effect of the substituents on the 

UV-Vis absorption and NMR spectra was analyzed using the simple Hammett equation. 

Moreover, the B3LYP, CAM-B3LYP, and M06-2X functionals using the 6–311G(d,p) 

basic set have been assessed in light of the position of experimental absorption maxima 

obtained for these compounds. The integration grid effects have also been evaluated. An 

interpretation of the substituent-effect transmission through the molecular skeleton and 

the nature of the HOMO and LUMO orbitals based on quantum-chemical calculations is 

given. The values of partial atomic charges from the atomic polar tenzors (APT), natural 

population analysis (NBO), and charges fit to the electrostatic potential using the B3LYP, 

CAM-B3LYP, and M06-2X methods are produced and correlated with different 

experimental properties. In order to estimate the chemical activity of the molecule, the 

molecular electrostatic potential (MEP) surface map is calculated for the optimized 

geometry of 1-phenyl-3-methylsuccinimide. 

 

Keywords: Succinimide; Absorption spectra; Solvent effect; Substituent effect; Quantum 

chemical calculation. 
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1. Introduction 

Five-membered heterocycles with nitrogen in their structure are widely used in 

different fields of science such as medicine, biology, and chemistry. Succinimides 

(pyrrolidine-2,5-diones) and hydantoins (imidazolidine-2,4-diones) have been promising 

candidates for anticonvulsive agents since they contain necessary structural features 

responsible for this activity. This comprises a cyclic imide, one or more carbonyl groups, 

and a lipophilic part of the molecule consisting of phenyl or alkyl groups related to 

heterocyclic rings in certain relative orientations [1–6]. Additionally, it has been 

experimentally established that succinimides possess anticonvulsive activity since they 

are efficient against the maximal electroshock (MES) and subcutaneous 

pentylenetetrazole (scPTZ) screens set standards for drug testing in early phases [7–9]. 

Correlation studies between chromatographic data and the selected structural 

features described by ADMET parameters (refers to absorption, distribution, metabolism, 

elimination, and toxicity in pharmacokinetics) of 1-aryl-3-phenyl-, 1-aryl-3,3-diphenyl- 

and 1-aryl-3-methylsucccinimides have been reported previously  using computational 

medicinal chemistry methods [2,10]. According to these results, the investigated 

succinimides of the most promising pharmacokinetics have been selected for further 

pharmacodynamic drug development. It has been demonstrated that the affinity of a 

particular molecule, defined as a potential anticonvulsive drug, to a specific receptor 

highly depends on the interactions of the molecule with its surrounding space [11]. A key 

feature of the molecules responsible for the transport through biological systems is its 

lipophilicity. According to the literature, most active central-nervous system drugs have 

optimum lipophilicity, defined as the logarithm of the 1-octanol/water partition 

coefficient (log P), close to 2 [12,13]. An ability to transport through biological 

membranes by passive diffusion is another important property of the molecules, 

necessary for the in biological activity. This process involves a series of partitioning 

steps, in combination with diffusion through several regions, i.e., partitioning between 

aqueous intra- and extracellular media and phospholipid membranes [2]. Therefore, for a 

further study of succinimides as potential anticonvulsant drugs, their solvatochromic 

properties need to be taken into consideration.  
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The purpose of this research is the application of the solvatochromic comparison 

method for quantification and correlation of multiple solvent effects with properties and 

interactions of the investigated succinimides which have potential pharmaceutical 

applications. To the best of our knowledge, the structural spectroscopic and 

solvatochromic properties of 1-aryl-3-methylpyrrolidine-2,5-diones have not been 

thoroughly studied. In this work, ten 1-aryl-3-methylpyrrolidine-2,5-diones (Scheme 1) 

have been synthesized and their solvatochromism has been studied in a set of fifteen 

binary solvent mixtures. The effects of specific and non-specific interactions between 

succinimide and solvent molecules on UV absorption maxima have been interpreted by 

the linear solvation energy relationship (LSER) concept using the Kamlet-Taft equation 

[14]. Moreover, the effects of substituents on the UV absorption frequencies and 13C 

NMR chemical shifts have been analyzed by a linear free energy relationship (LFER) 

model, using the simple Hammett equation [15]. In order to support structural and 

solvatochromic properties of the investigated succinimides, density functional theory 

(DFT/6–311G(d,p)) calculations have been carried out. The UV spectroscopic studies, as 

well as HOMO and LUMO analysis, have been used to elucidate the intramolecular 

charge transfer (ICT). Furthermore, the molecular electrostatic potential (MEP) surface 

map has been calculated for the optimized geometry of the investigated succinimides in 

order to evaluate the chemical activity of these molecules. 

 

Scheme 1. Molecular structure of the 1-aryl-3-methylpyrrolidine-2,5-diones 1–10 with 

the atoms and torsion angle labeled. 

 

2. Results and discussion 

2.1. Spectroscopic analysis 

2.1.1. UV-spectroscopic measurements 

The UV absorption spectra of the 1-aryl-3-methylpyrrolidine-2,5-diones 1–10 

have been recorded in three pure solvents and selected binary solvent mixtures in the 

range of 200–400 nm. Wavenumbers of the absorption maxima measured in different 

solvents and their mixtures are given in Table 1. Table 1 shows that the UV absorption 

wavenumbers strongly depend on the nature of the substituent, and that they are less 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 5

affected by solvent properties. All substituents cause bathochromic band shifts relative to 

the unsubstituted compound 4. 

 

Table 1. Long-wavelength UV absorption maxima of 1-aryl-3-methylpyrrolidine-2,5-

diones 1–10. 

 

The weakly electron-donating –CH3 group induces the smallest positive 

solvatochromism, while the strongly electron-withdrawing –NO2 group exhibits the 

largest solvent-induced bathochromic shift. UV absorption band shifts (Table 1) are 

ascribed to different π→π* transitions involving the π-electron system of the investigated 

compounds (Figure 1). The π-delocalization is mainly a result of the π-electron density 

transmission from the phenyl ring, caused by electronic effects of the substituents in 4-

position, to the carbonyl groups of the succinimide unit. The bathochromic band shifts 

observed for all compounds support the fact that a π→π* transition is responsible for UV 

absorption. Moreover, the planarity of the molecule is the feature which significantly 

affects transmission of the resonance effect through the molecule and therefore influences 

the contribution of the π-delocalization to the UV absorption of each compound.  

The strength of the specific and nonspecific interactions between the succinimide 

and solvent molecules changes upon excitation as a consequence of the different 

stabilization in the ground and excited states. In all solvents and binary mixtures, for 

compounds 1–10, a small bathochromic shifts have been observed as a result of the 

solvent-solute interactions. This is characteristic for molecules with low dipolarity in the 

ground state, as electronic transitions in these molecules are associated with an 

intramolecular electron transfer and where delocalization of electrons is possible between 

nitrogen and oxygen, i.e. overlapping of π-electrons of carbonyl groups and a lone pair of 

amide nitrogen (Fig. 1). 

 

Figure 1. Mesomeric structures of 1-aryl-3-methylsuccinimides. 
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2.1.2. Solvent effects on the electronic spectra (LSER analysis) 

In order to explain the solvatochromism of 1–10, their UV absorption data have 

been correlated with the simplified Kamlet–Taft solvatochromic equation [16]: 

ν = ν0 + sπ* + aα                                                         (1) 

where π*  is an index of the solvent dipolarity/polarizability, α is a measure of the solvent 

hydrogen-bonding donor (HBD) acidity, and ν0 is the absorption value in cyclohexane as 

reference solvent [14]. The relative susceptibilities of absorption frequencies to the 

corresponding solvent parameters are expressed through the regression coefficients s and 

a (Eq. 1). The solvent hydrogen-bond basicity parameter β is excluded from the 

correlations due to its insignificant impact. Kamlet-Taft’s solvatochromic comparison 

model is widely used for the quantitative interpretation of specific and nonspecific 

solvent effects on UV-Vis absorption spectra since this model supposes attractive 

interactions between the investigated solute and its surrounding and enables evaluation of 

the capability of the solutes to form hydrogen bonds with the solvent. The correlations of 

the absorption wavenumbers νmax have been achieved by multiple linear regression 

analysis. The results of the correlation analysis are presented in Table 2 and the 

percentage contributions of each interaction in overall solvation are given in Table 3. The 

independent coefficients ν0, s, and a (Table 2) are fitted at the 95% confidence level. 

 

Table 2. Regression fits to the solvatochromic parameters of Eq. 1. 

Table 3. Percentage contribution of the two solvatochromic parameters of Eq. 1. 

 

Тhe absorption wavenumbers (νmax) of the 1-aryl-3-methylsuccinimides 1–10 

measured in pure solvents and in selected binary solvent mixtures show a satisfactory 

correlation with the solvent parametars π*  and α (Table 2). The results presented in Table 

2 show that in all cases (excluding compounds 3, 5, and 8) the absolute value of a is 

greater than s, which means that the solvent HBD acidity plays a more important role on 

their solvatochromism than non-specific (solvent dipolarity/polarizability) interactions. 

For the excluded compounds (3, 5, and 8), the solvent dipolarity/polarizability has a 

slightly higher significance than HBD, while in all cases the solvent hydrogen-bond 

acceptor basicity has no influence on the solvatochromism of 1–10. 
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From the analysis of the absorption wavenumbers according to the Kamlet-Taft 

equation (1), it has been found that the negative signs of s (excluding 4, 5, 6, and 8) and a 

(excluding 4 and 8) for all 1-aryl-3-methylsuccinimides (Table 2) indicate a 

bathochromic  band shift with increasing solvent dipolarity/polarizability and solvent 

hydrogen-bond donor acidity. This suggests better stabilization of the electron in excited 

state by solvent molecules relative to the ground state.  

Based on these results, it can be concluded that interactions of solvent with the 

investigated compounds are very complex and that the nature of the substituents have a 

strong influence on the UV absorption maxima. This phenomenon is mainly caused by 

the differences in the conjugational or migrating abilities of the electron lone pair on 

succinimide nitrogen. 

 

2.1.3. Effects of substituents on the UV and NMR  spectra of 1–10 (LFER analysis) 

In order to gain insight into factors affecting the position of the UV absorption 

maxima and the transmission of the electronic effects, the absorption wavenumbers of the 

1-aryl-3-methylsuccinimides 1–10 have been correlated with Hammett substituent 

constants, σp and σp
+, according to Hammett Equation [15]: 

s = ρ·σ + h                                                             (2) 

where s is the substituent-dependent value: absorption wavenumbers (νmax), ρ is the 

proportionality constant expressing the sensitivity of νmax to the substituent effects, σ is 

the corresponding substituent constant (measuring the electronic effect of the 

substituents), and h is the intercept (i.e., describes νmax of the unsubstituted member of the 

series, σ = 0). 

From Table 1 it can be observed that the UV absorption maxima of the amides 

with both electron-donating and electron-accepting substituents are shifted to higher 

wavelengths in all pure solvents and their binary mixtures, as compared to the 

unsubstituted amide 4.  

The plots νmax vs. the σp [17] and σp
+ [18] substituent constants show deviations 

from the Hammett equation, therefore the effect of the electron-donating and electron-

accepting substituents are taken into consideration separately. Different slopes for 

electron-donating substituents (–OH, –OCH3, –CH3), and electron-accepting substituents 
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(–Cl, –Br, –I, –COOH, –COCH3, –NO2) are acquired in all solvents and binary mixtures. 

A better correlation of νmax is obtained with the electrophilic σp
+ substituent constants 

than with the σp constants, indicating an extensive electron delocalization in the aryl 

amide part of the molecule. Figure 2 shows the dependence of νmax on the σp
+ constants 

for all succinimides (excluding 7) in pure solvents and binary mixtures.  

 

Figure 2. Relationship between νmax and σp
+ for the 1-aryl-3-methylsuccinimides 1–6 and 

8–10. 

For electron-accepting substituents, linear correlations of the absorption 

wavenumbers, νmax, and the substituent constants, σp
+, with high values of the 

proportionality constant, ρ, are obtained indicating, a significant influence of the 

electronic effect of these groups on the π-electron density transmission according to the 

mesomeric structures presented in Fig. 1. Moreover, significantly lower values of the 

proportionality constant and their positive sign for electron-donating substituents indicate 

larger solvent effects which diminish the substituent effect on the electronic transition 

due to their interaction with the amide group of the succinimide ring. 

 

Table 4. The results of the correlation between νmax 10–3/cm–1 and σp
+ for the 1-aryl-3-

methylsuccinimides. 
 

13C NMR chemical shifts of the signals for the two carbonyl C atoms in 

succinimide moiety (Scheme 1) for the ten of 1-aryl-3-methylsuccinimides are given in 

Table 5 as the substituent chemical shifts (SCS) compared to the parent compound 4. 

Table 5 shows that electron-donating substituents exhibit downfield shifts, compounding 

to a decrease in electron density at both atoms, whereas electron-accepting substituents 

induce an opposite effect, related to an increase of electron density at both atoms (upfield 

shift). 

 

Table 5. 13C NMR substituent chemical shifts (δ/ppm). 
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For a quantitative assessment of the substituent effects on the 13C NMR data of 1–

10, analogously to Eq. 2 the LFER Eq. 3 has been applied. A better correlation of 13C 

SCSs for C2 and C5 is achieved with the σp substituent constants than with the σp
+ 

constants. The electronic effects of the substituents have no influence on the SCS of C3 

and C4 of the succinimide ring. From the ρ values given in Table 6 it can be noticed that 

there is no significant difference in the influence of electronic effects of substituents on 

the C2 and C5 chemical shifts indicating a moderate impact of the substituents on the 

phenyl nucleus on the electron density of the investigated atoms.  These results are in 

complete accordance with the molecular structure of 1-aryl-3-methylpyrrolidine-2,5-

dione as well as with the mechanism of transmission of the substituent electronic effects 

throughout the molecule shown in Figure 1. 

 

Table 6. Results of the SCS data correlations according to Eq. (2). 

 

2.2. Computational studies 

2.2.1. Theoretical calculation of optimal geometries and spectral data 

2.2.1.1. Conformational stability of the investigated succinimides 

A conformational analysis was carried out for the succinimides 1–10 in order to 

locate all stable conformers. Their geometries are very rigid, so the only conformational 

changes are possible in the position of the methyl and phenyl groups. As the rotation of 

the methyl group shows a negligible change in the energy of the system, only the 

positions of the phenyl group are investigated. For a better insight in changes of energy as 

a consequence of the phenyl rotation, a potential energy scan (PES) was done. During the 

calculation, all geometrical parameters were simultaneously relaxed while the torsion 

angle θ (rotation around N1-C(Ph) bond, see Scheme 1) was varied in steps of 5° from 0–

360° (Fig S1, Supplementary material). Results show that only two conformers for the 

molecule with symmetric substituents and four conformers for asymmetric substituents 

are possible.  

The full geometry optimizations of these conformers were performed by B3LYP 

[19], CAM-B3LYP[20], and M06-2X [21] methods with the 6-311G(d,p) basis set in the 

vacuum and solvents (ethanol and DMSO). The results provided from these calculations 
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are used for different analyses in this work. The geometries of the most stable conformers 

for compound 4 according to B3LYP method are shown in Figure 3.  

 

Figure 3. The most stable conformers of compound 4 calculated by B3LYP level of 

theory. 

The conformers have similar energies which differ from the energy of the most 

stable isomer by less than 0.20 kcal/mol, depending on substituent and the method of 

calculation. According to a Boltzmann analysis, they are simultaneously present in the 

mixture. The properties of interest are simulated based on the static results (the most 

stable conformer is used) and some of them as the dynamic results (Boltzmann averaging 

procedure is applied), too.  

Analyzing the results of calculations from default integration grid (FineGrid), the 

disagreement between the prediction of the most stable conformers, as well as, the ratio 

in the mixture were observed for different methods (see Table S1, Supplementary 

material). The B3LYP and CAM-B3LYP methods in vacuum predict conformer A (or 

A2) as the most stable conformer and in the same time B3LYP method predict conformer 

B (or B2) as the most stable conformer in ethanol solution for all investigated 

compounds. The CAM-B3LYP method for ethanol as a solvent, as well as the M06-2X 

method, do not show agreement in the prediction of the ratio and the most stable 

conformer of all investigated compounds.  

As the influence of the integration grid can be potentially significant for the 

accurate prediction of geometry and energy of conformers, especially for the M06 suite 

of functionals [22], the additional reoptimization of geometries are done using the pruned 

99,590 integration grid (UltraFineGrid). 

Comparison of the results from FineGrid and UltraFineGrid calculations shows 

negligible effects on the ratio of conformers from B3LYP and CAM-B3LYP methods in 

vacuum. The impact of integration grid is notable for both methods in ethanol as solvent. 

The M06-2X method shows a significant influence of the used integration grid which 

change the ratio and detection of the most stable conformer to a large extent. After 

implementing UltraFineGrid, all three methods show agreements in the detection of 
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conformer A (or A2) as the most stable in vacuum. All three methods predict conformer 

B (or B2) as the most stable in ethanol solution. 

The torsion angle θ determines the deviation from planarity (Scheme 1). It can 

serve as a rough measure for the efficient transfer of substituent's resonance effect from 

phenyl to succinimide ring and its accurate determination is directly connected with the 

accurate prediction of all properties altered by substituent. The analyses of the optimized 

geometries show that the biggest difference between the applied methods occurs exactly 

in predicting of this torsion angle (see Table S2). 

The applied methods predict a torsion angle θ from 37 to 45 degrees in vacuum, 

depending on the substituent. Methods with the CPCM model for simulation of solvent 

(ethanol and DMSO) predict a much larger value for this angle, i.e., from 45 to 72 

degrees. The B3LYP method predicts slightly higher values than the CAM-B3LYP and 

M06-2X methods in vacuum, while the difference becomes much higher when the 

simulation of the solvent is introduced (B3LYP - 47–72°, CAM-B3LYP - 46–64°, and 

M06-2X - 45–53°). Simultaneously, implementation of UltraFineGrid leads to additional 

changes in the torsion angle θ which becomes more reliable, especially for the M06-2X 

method.  

 

2.2.1.2. Theoretical calculation of UV-Vis spectral data 

It is well known that an accurately determined geometry is essential for a good 

prediction of physicochemical properties, especially if the investigated compounds can 

exist in different tautomeric or conformational states. The solvent can change the 

geometry and energy of conformers and on that way affect the ratio of conformers in a 

mixture. The electronic property and UV/Vis absorption spectrum of a mixture depend on 

all present particles as well as of their interactions. For the accurate determination of 

conformers, their ratio in the mixture and their interaction with the solvent, the selection 

of an appropriate computational system is of crucial importance [23–26]. 

In order to obtain the UV properties of the investigated succinimides, TD-DFT 

methods are performed using different types of functionals: B3LYP [19], CAM-B3LYP  

[20], and M06-2X [21] (hybrid GGA, hybrid with improved long-range properties and 

hybrid meta-GGA functional) with the 6-311G(d,p) basis set have been tested. Jacquemin 
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et al. have demonstrated that these functionals provide satisfying UV spectra compared to 

experiments for twenty conjugated molecules [24]. Also, they have evaluated other 

effects such as basis set, integration grid, temperature, and cavities in the Polarizable 

Continuum Model scheme.  

The static method ensures good results for rigid organic compounds for 

application in analytical chemistry. On the other hand, when an organic compound exists 

in more than one conformer, then for the accurate prediction of UV–Vis spectra 

molecular dynamic (MD) methods [27,28] or simulations based on Boltzmann averaging 

should be used since static calculations are unsatisfactory [29]. In molecules in which 

flexibility is of importance, these calculations are often required. Therefore, the 

theoretical explanation of the experimental UV spectra should not include only electronic 

effects. 

The impact of the integration grid can be potentially significant and has also been 

studied [22]. For a benchmark purpose we used the Euler-Maclaurin integration and 

pruned 75,302 grid, constituted of 75 radial and 302 angular points (FineGrid) and a 

tighter pruned 99,590 grid (UltraFineGrid). 

The electronic absorption spectrum of 1-phenyl-3-methylpyrrolidine-2,5-dione 4 

in ethanol as solvent was recorded in the range of 200–400 nm. The experimental 

spectrum is shown on Figure 4 together with the calculated spectrum and the electronic 

transitions obtained with the B3LYP method. 

 

Figure 4. Experimental UV spectrum of 1-phenyl-3-methylpyrrolidine-2,5-dione 4, 

measured in ethanol, and the calculated TD-B3LYP electronic absorption spectrum in 

vacuum. 

As can be seen from Figs. 4 and S2, the electronic absorption spectrum of 

compound 4 shows only one low-intensity band at 216 nm. Also, all TD-DFT 

calculations predict only one low-intense electronic absorption with an oscillator strength 

of f < 0.25. The shape of the calculated spectrum is in good agreement with the 

experimental one. The electronic absorption corresponds to a transition from the ground 

to the higher excited states (fourth or fifth, depending on the model used for calculation). 

It can be described as a π→π* transition which corresponds to a one-electron excitation 
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from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular 

orbital (LUMO) or to the second lowest unoccupied molecular orbital (LUMO+1) orbital 

(see Fig. 4). 

In accordance with the aforesaid, the correlations of experimental and calculated 

absorption UV maxima for compounds 1–10 are done. Values for the experimentally 

recorded and computationally determined position of the UV maxima for all (located) 

conformers of compounds 1–10 by TD methods are listed in Table S3.  

From the results presented in Tables S4 and S5, it can be seen that the best 

correlation is provided between experimental and calculated UV maxima from a TD 

calculation with the B3LYP method in vacuum. A graphical representation of the 

relationship between them is shown in Figure 5. The CAM-B3LYP and M06-2X methods 

in vacuum highly underestimate the values of the UV maxima but still produce good 

correlation results R2 > 0.9.  

 

Figure 5. Correlation between experimental and calculated UV maxima provided by the 

B3LYP method in a vacuum.  

Introduction of the solvent effect in the calculation produces a different impact on 

the calculated UV maxima. The B3LYP calculations produce values that mostly 

overestimate the experimental one with the lower correlation quality. The UV values 

provided from CAM-B3LYP method shows a very low impact on the correlation quality. 

However, the improvement of the slope and interception is evident. The M06-2X method 

shows the largest positive effect from introduction of the solvent to the correlation 

quality. 

The influence of the integration grid on the quality of the obtained UV results is 

tested and shows small but positive impacts on the correlation results. Only the M06-2X 

method with the simulation of solvent shows the biggest benefit from an implementation 

of a tighter integration grid. These results are in agreement with results of other authors 

[22,23]. 

The used DFT methods show that conformers are simultaneously present in the 

mixture but also TD DFT methods predict difference of less then 2 nm between 

conformers A and B. In accordance with that, simulated UV values based on the static or 
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dynamic results produce a relatively small impact but it is directly connected with the 

introduction of the solvent effects. The dynamic UV values (produced with Boltzmann 

averaging procedure) simulated in vacuum show a notable improvement in comparison to 

static results. Contrary, the UV values simulated in ethanol as solvent, show better 

correlations when the static values (simulated from most stable conformer) are used.  

 

2.2.2. Electronic analysis 

The frontier molecular orbitals (FMO), the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO), define the UV–Vis 

spectra and the electric and optical properties. The FMO is useful in the estimation of the 

chemical reactivity of a molecule as well as that part of the molecule which interacts with 

other molecules, and in characterization of the kinetic stability of the molecule. A low-

frontier orbital gap indicates a more polarizable molecule and a higher reactivity, but also 

a low kinetic stability [30]. Energies of HOMO and LUMO and the energy gap between 

them for 2, 4, 5, and 10 molecule calculated at the B3LYP method with 6-311G(d,p) 

basis set are shown in Figure S3. 

The energies of the frontier MOs (HOMO and LUMO) and the energy gap 

between them indicate a significant influence of the nature of the substituent introduced 

in 4-position of the phenyl ring. The introduction of electron-donating or electron-

withdrawing substituent leads to a decrease in the energy gap (a smaller decrease for 

electron-donating and a larger decrease for electron-withdrawing substituents).  

 

2.2.2.1. The torsion angle (θ) 

For the quantitative assessment of the substituent effects on the torsion angle θ of 

the most stable conformers (Table S6) a conventional LFER model (Eq. 2) have been 

used. A better correlation of cos2θ is obtained with the σp
+ substituent constants (Eq. 3) 

compared to the σp constants. The results obtained indicate an intramolecular charge 

transfer (ICT) from substituent to amid moiety of the succinimide ring. Moreover, the 

positive sign of the proportional constant is in complete accordance with the mechanism 

of transmission of the substituent electronic effects throughout the molecule given in Fig. 

1, where electron-acceptor substituents induce a higher bathochromic band shift 
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compared to the electron-donating substituents. It can be observed that the degree of 

deviation from the planarity of molecule, between succinimid and phenyl ring, is in 

relationship with the electronic character of the substituent. 

 

cos2θ = 0.321 + 0.183σp
+     (3) 

(R = 0.982 s = 0.020; F = 215; n = 10) 

 

2.2.2.2. NBO and APT charge data (Correlations with partial atomic charges) 

Calculated partial atomic charges are often utilized for an interpretation of the 

changes of dipole moment, molecular polarizability, and molecular electronic structure. 

Also, the chemical activity of the molecule can be interpreted on the basis of atomic 

charges transfer [30]. 

The values of partial atomic charges from the atomic polar tenzors (APT) [31], 

natural population analysis (NBO) procedures [32], and charges fit to the electrostatic 

potential according to Merz-Singh-Kollman [33], CHelp [34], and CHelpG [35] schemes 

using the B3LYP, CAM-B3LYP, and M06-2X methods are produced and correlated with 

different experimental properties. An LFER analysis is applied to NBO, APT, and 

Electrostatic Potentional (EP) data of investigated atoms (C2, C5, O1, O2, N1), using Eq. 

(2) and the results obtained for APT data are given in Table 7. Results derived from Eq. 2 

for NBO and EP data are statistically excellent and in the agreement with correlations of 

APT charges (Table S7). 

 

Table 7. Results of the APT data in DMSO as solvent, derived from B3LYP/6-311G(d,p) 

correlated with Eq. (2). 

 

The better correlation with σp than with σp
+ for all investigated atoms (in DMSO) 

is an excellent indicator that electron transmission through the molecule is in good 

accordance with the mesomeric structures proposed in Figure 1. From Table 7, it can be 

observed that electron-donating groups induce an increase in electron density on the 

O1=C2–N1–C5=O2 part of the succinimide ring, while electron-accepting ones cause an 
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opposite effect. Moreover, substituents in 4-position of the phenyl ring have no influence 

on the changes of electron density on the rest part of the succinimide ring (C3, C4, C6). 

 

2.2.2.3. Molecular electrostatic potential 

The molecular electrostatic potential (MEP) is often used for prediction of the 

reactivity of the chemical species in nucleophilic and electrophilic reactions, since MEP 

is associated with the electron density. For this purpose, the MEP at the B3LYP/6-

311G(d,p) optimized geometry for succinimides 1–10 was calculated. Red and yellow 

colored regions (negative) of the MEP represent sites of electrophilic reactivity, whereas 

red regions (positive) refers to nucleophilic sites, as shown in Fig. 6 (MEP). 

 

Figure 6. Electrostatic potentials map of 1-phenyl-3-methylpyrrolidine-2,5-dione 4 in 

vacuum from B3LYP/6-311G(d,p) calculation plotted on isosurfaces of 0.002 a.u. 

electron density); color coding: red (very negative), orange (negative), yellow (slightly 

negative), green (neutral), turquoise (slightly positive), light blue (positive), dark blue 

(very positive). 

 

As it can be seen from Figure 6, the molecule of the 4 (in vacuum) has two 

possible sites for electrophilic and one site for nucleophilic attack. Negative regions of 4 

are located around the carbonyl oxygen atoms and a moderate positive region is localized 

on the H atoms of the methylene group from the succinimide ring. 

 

2.3. Computational vs spectroscopic data 

The UV-Vis absorption spectra are highly dependent on the energy of frontier 

molecular orbitals among which electronic transition occurs. The spreading and energy of 

FMO's are dependent on the torsion angle θ, which reflect deviation from planarity of the 

planes in which succinimide and phenyl rings lay. The relations of cos2θ derived from 

B3LYP method for the most stable conformers of the investigated compounds vs. UV 

absorption maxima data have been calculated (Figure 7). An excellent linear correlation 

is obtained with ethanol as solvent. The result is in accordance with previously described 
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results obtained from applied Hammett equation on the UV absorption wavenumbers 

(Figure 2). 

 As NMR shifts depend on shielding effects, which are directly influenced by 

substituent electronic effects and electron distribution, NBO, APT, and EP data obtained 

with B3LYP method for investigated compounds in DMSO are correlated with 

experimental SCS data (Table 8). 

 Excellent relations between experimental and theoretical data directly indicate 

high validity and precision of proposed models. 

 

Figure 7. νmax vs. cos2θ data for investigated 1-aryl-3-methylpyrrolidine-2,5-diones. 

Table 8. APT, NBO, EP vs. SCS data for the 1-aryl-3-methylpyrrolidine-2,5-diones 1–

10. 

 

3. Experimental 

Commercially available materials were obtained from Aldrich and Fluka, and 

were used without further purification. All investigated 1-aryl-3-methylpyrrolidine-2,5-

diones were synthesized from 2-methylsuccinic acid and the corresponding anilines under 

solvent-free conditions (Scheme 2) as described previously [3]. The products were 

purified by crystallization from an ethanol/water mixture. The FT-IR spectra were 

determined using a Bomem Fourier Transform-Infrared (FT-IR) spectrophotometer, MB-

Series 100 in the form of the KBr discs. The 1H and 13C NMR spectral measurements 

were performed on a Varian Gemini 2000 (200 MHz). The spectra were recorded at room 

temperature in deuterated dimethyl sulfoxide (DMSO-d6). The chemical shifts are 

expressed in ppm values referenced to TMS. The ultraviolet (UV) absorption spectra 

were recorded on a Schimadzu 1700 spectrophotometer in the region 200–400 nm. The 

UV absorption spectra were taken in spectroscopic quality solvents (Fluka) at a 

concentration of 5·10–5 mol dm–3 and showed no dependence on the concentration. All 

melting points were uncorrected and are in degree Celsius. 

 

Scheme 2. Synthetic pathway for the 1-aryl-3-methylpyrrolidine-2,5-diones 1–10. 
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The molecular structure of compounds 1–10 was confirmed by UV, FT-IR, 1H 

NMR, and 13C NMR spectra. Characterization data are given below. 

 

1-(4-Hydroxyphenyl)-3-methylpyrrolidine-2,5-dione (1, C11H11NO3). Black solid; yield: 

64 %; m.p.: 228–229 °C (227–228 °C) [36]; FT-IR (KBr): ν/cm–1 = 1771 (C=O), 1695 

(C=O);  1H NMR (200 MHz, DMSO): δ/ppm = 9.81 (s, 1H, –OH), 7.00 (d, J = 8.0 Hz, 

2H, N–Ph), 6.84 (d, J = 8.0 Hz, 2H, N–Ph), 3.10-2.89 (m, 2H, –CH2–), 2.51-2.39 (m, 1H, 

–CH) 1.27 (d, J = 8.0 Hz, 3H, –CH3) ; 
13C NMR (50 MHz, DMSO): δ/ppm = 180.5 (C2), 

176.4 (C5), 159.2, 128.3, 125.6, 114.3 (Ph), 36.5 (C3), 34.7 (C4), 16.0 (C6). 

 

1-(4-Methoxyphenyl)-3-methylpyrrolidine-2,5-dione (2, C12H13NO3). Colorless solid; 

yield: 38 %; m.p.: 92–93 °C (91–93 °C) [37]; FT-IR (KBr): ν/cm–1 = 1773 (C=O), 1704 

(C=O); 1H NMR (200 MHz, DMSO): δ/ppm = 7.19 (d, J = 8.0 Hz, 2H, N–Ph), 7.02 (d, J 

= 8.0 Hz, 2H, N-Ph), 3.78 (s, 3H, –OCH3), 3.02-2.90 (m, 2H, –CH– + –CH2–), 2.53-2.38 

(m, 1H, –CH2–), 1.28 (d, J = 8.0 Hz, 3H, –CH3); 
13C NMR (50 MHz, DMSO): δ/ppm = 

180.4 (C2), 176.3 (C5), 159.1, 128.6, 125.5, 114.2 (Ph), 55.5 (C8, –OCH3), 36.4 (C3), 

34.6 (C4), 16.0 (C6). 

 

1-(4-Methylphenyl)-3-methylpyrrolidine-2,5-dione (3, C12H13NO2). Colorless solid; yield: 

47 %; m.p.: 106–108 °C (107–108 °C) [38] (107 °C) [36]; FT-IR (KBr): ν/cm–1 = 1776 

(C=O), 1708 (C=O);  1H NMR (200 MHz, DMSO): δ/ppm = 7.29 (d, J = 8.0 Hz, 2H, N–

Ph), 7.15 (d, J = 8.0 Hz, 2H, N-Ph), 3.07-2.91 (m, 2H, –CH– + –CH2–), 2.55-2.40 (m, 

1H, –CH2–), 2.34 (s, 3H, Ph–CH3), 1.28 (d, J = 6.0 Hz, 3H, –CH3); 
13C NMR (50 MHz, 

DMSO): δ/ppm = 180.3 (C2), 176.2 (C5), 137.9, 130.4, 129.5, 127.1 (Ph), 36.4 (C3), 

34.7 (C4), 20.9 (C8, –CH3), 16.0 (C6). 

 

1-Phenyl-3-methylpyrrolidine-2,5-dione (4, C11H11NO2). Colorless solid; yield: 37 %; 

m.p.: 105–107 °C (105–107 °C) [38]; FT-IR (KBr): ν/cm–1 = 1769 (C=O), 1702 (C=O);  
1H NMR (200 MHz, DMSO): δ/ppm = 7.54-7.27 (m, 5H, N–Ph), 3.10-2.92 (m, 2H, –

CH– + –CH2–),  2.56-2.42 (m, 1H, –CH2–), 1.29 (d, J = 6.0 Hz, 3H, –CH3); 
13C NMR (50 
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MHz, DMSO): δ/ppm = 180.2 (C2), 176.1 (C5), 133.0, 129.0, 128.4, 127.4 (Ph), 36.4 

(C3), 34.7 (C4), 16.0 (C6). 

 

1-(4-Chlorophenyl)-3-methylpyrrolidine-2,5-dione (5, C11H10ClNO2). Colorless solid; 

yield: 53 %; m.p.: 109–111 °C (110–111 °C) [39]; FT-IR (KBr): ν/cm–1 = 1774 (C=O), 

1704 (C=O);  1H NMR (200 MHz, DMSO): δ/ppm = 7.56 (d, J = 8.0 Hz, 2H, N–Ph), 

7.33 (d, J = 8.0 Hz, 2H, N-Ph),  3.10-2.92 (m, 2H, –CH– + –CH2–), 2.57-2.40 (m, 1H, –

CH2–), 1.29 (d, J = 8.0 Hz, 3H, –CH3); 
13C NMR (50 MHz, DMSO): δ/ppm = 179.9 

(C2), 175.9 (C5), 132.8, 131.8, 129.1 (Ph), 36.4 (C3), 34.7 (C4), 15.8 (C6). 

 

1-(4-Bromophenyl)-3-methylpyrrolidine-2,5-dione (6, C11H10BrNO2). Colorless solid; 

yield: 52 %; m.p.: 139–141 °C (143 °C) [36]; FT-IR (KBr): ν/cm–1 = 1774 (C=O), 1706 

(C=O);  1H NMR (200 MHz, DMSO): δ/ppm = 7.69 (d, J = 8.0 Hz, 2H, N–Ph), 7.27 (d, J 

= 8.0 Hz, 2H, N-Ph),  3.09-2.92 (m, 2H, –CH– + –CH2–), 2.57-2.41 (m, 1H, –CH2–), 

1.29 (d, J = 8.0 Hz, 3H, –CH3); 
13C NMR (50 MHz, DMSO): δ/ppm = 179.9 (C2), 175.9 

(C5), 132.7, 131.9, 129.5 (Ph), 36.4 (C3), 34.7 (C4), 15.8 (C6). 

 

1-(4-Iodophenyl)-3-methylpyrrolidine-2,5-dione (7, C11H10INO2). Colorless solid; yield: 

34 %; m.p.: 149–151 °C; FT-IR (KBr): ν/cm–1 = 1764 (C=O), 1704 (C=O);  1H NMR 

(200 MHz, DMSO): δ/ppm = 7.62 (d, J = 8.0 Hz, 2H, N–Ph), 7.41 (d, J = 8.0 Hz, 2H, N-

Ph),  3.11-2.95 (m, 2H, –CH– + –CH2–), 2.59-2.41 (m, 1H, –CH2–), 1.30 (d, J = 8.0 Hz, 

3H, –CH3); 
13C NMR (50 MHz, DMSO): δ/ppm = 179.9 (C2), 175.9 (C5), 134.4, 132.6, 

130.8, 126.8 (Ph), 36.5 (C3), 34.8 (C4), 15.8 (C6).  

 

1-(4-Carboxyphenyl)-3-methylpyrrolidine-2,5-dione (8, C12H11NO4). Colorless solid; 

yield: 40 %; m.p.: 200–203 °C; FT-IR (KBr): ν/cm–1 = 1777 (C=O), 1704 (C=O);  1H 

NMR (200 MHz, DMSO): δ/ppm =  13.07  (s, 1H, –COOH), 8.06 (d, J = 8.0 Hz, 2H, N–

Ph), 7.44 (d, J = 8.0 Hz, 2H, N–Ph), 3.12-2.94 (m, 2H, –CH– + –CH2–), 2.58-2.43 (m, 

1H, –CH2–), 1,29 (d, J = 6.0 Hz, 3H, –CH3); 
13C NMR (50 MHz, DMSO): δ/ppm = 179.8 

(C2), 175.8 (C5), 167.0 (C8, –COOH), 136.8, 130.5, 130.1, 127.3 (C7), 36.5 (C3), 34.8 

(C4), 15.9 (C6). 
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1-(4-Acethylphenyl)-3-methylpyrrolidine-2,5-dione (9, C13H13NO3). Colorless solid; 

yield: 47 %; m.p.: 165–167 °C; FT-IR (KBr): ν/cm–1 = 1779 (C=O), 1708 (C=O);  1H 

NMR (200 MHz, DMSO): δ/ppm =8.07 (d, J = 8.0 Hz, 2H, N–Ph), 7.48 (d, J = 8.0 Hz, 

2H, N–Ph), 3.13-2.92 (m, 2H, –CH– + –CH2–), 2.57-2.41 (m, 1H, –CH2–), 2.59 (s, 3H, –

COCH3), 1.33 (d, J = 8.0 Hz, 3H, –CH3); 
13C NMR (50 MHz, DMSO): δ/ppm = 199.5 

(C8, –COCH3) 179.8 (C2), 175.7 (C5), 141.3, 136.9, 131.1, 127.2 (Ph), 36.5 (C3), 34.8 

(C4), 15.9 (C6). 

 

1-(4-Nitrophenyl)-3-methylpyrrolidine-2,5-dione (10, C11H10N2O4). Yellow solid; yield: 

25 %; m.p.: 158–160 °C (159–161.5 °C) [40]; FT-IR (KBr): ν/cm–1 = 1777 (C=O), 1709 

(C=O);  1H NMR (200 MHz, DMSO): δ/ppm = 8.36 (d, J = 8.0 Hz, 2H, N–Ph), 7.63 (d, J 

= 8.0 Hz, 2H, N–Ph), 3.18-2.96 (m, 2H, –CH– + –CH2–), 2.61-2.46 (m, 1H, –CH2–),1.31 

(d, J = 8.0 Hz, 3H, –CH3); 
13C NMR (50 MHz, DMSO): δ/ppm = 179.6 (C2), 175.6 (C5), 

146.7, 138.6, 128.1, 124.3 (Ph), 36.5 (C3), 34.8 (C4), 15.7 (C6). 

 

3.1. Method of calculation 

 All density functional theory (DFT) calculations were performed using the 

Gaussian 09 program package [41] with B3LYP [19], CAM-B3LYP [20], and M06-2X 

[21] methods with 6-311G(d,p) basis set. The default convergence criteria were used 

without any constraint on the geometry. The stability of the optimized geometry was 

confirmed by frequency calculations, which gave real values for all the experimentally 

frequencies. In adition, the FineGrid (75,302)p and UltraFineGrid (99,590)p grids for 

Euler-Maclaurin integration are used for benchmark of methods accuracy to determine 

the conformer's ratio. The solvent effect was introduced by the Conductor Polarizable 

Continuum Model (CPCM) [42]. 

 In order to have a good description of the UV properties of the compounds, we 

tested the performance of TD-DFT using different types of functionals: B3LYP [19], 

CAM-B3LYP [20], and M06-2X [21] (i.e. hybrid GGA, hybrid with improved long-

range properties and hybrid meta-GGA functionals). The functionals were used with the 
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6-311G(d,p) basis set. UV absorption energies of all compounds were calculated for the 

fully optimized geometry in vacuum and ethanol as solvent. 

 The values of partial atomic charges from the atomic polar tenzors (APT) [31], 

natural population analysis (NBO) procedures [32] and charges fit to the electrostatic 

potential according to Merz-Singh-Kollman [33], CHelp [34], and CHelpG [35] schemes 

are produced.  

 The frontier molecular orbital energies and energy gap of the investigated 

compounds are also calculated at the same level of DFT theory. For obtaining the 

chemical reactivity of the molecule, the Molecular Electrostatic Potential (MEP) surface 

is plotted over the optimized geometry. 

The GaussView 5.0 graphical interface was used for a visual presentation of the 

UV spectra, molecular orbitals, and MEP [43]. 

 

4. Conclusion 

In this work, ten 1-aryl-3-methylsuccinimides were synthesized in order to 

characterize and study the influence of solvents and substituents on their electronic 

absorptions and 13C NMR spectra. A Kamlet–Taft analysis shows that most of the 

observed solvatochromism is due to solvent HBD acidity as compared to solvent 

dipolarity/polarizability (non-specific interactions). In all cases the solvent hydrogen-

bond acceptor basicity has no influence on the solvatochromism. According to the 

Hammett correlations, better results are obtained with the σp
+ than with the σp substituent 

constants, indicating extensive π-electron delocalization in the aryl amide group. Much 

better insight into the transmission of substituent effects was obtained when the electron-

donating substituents on the phenyl ring were considered separately from the electron-

accepting substituents. The results obtained from UV spectroscopy measurements show 

that the wavenumbers of the ultraviolet absorption maxima depend significantly on the 

nature of the substituent on the phenyl ring, and less on the properties of the solvent. 

From the 13C NMR chemical shifts, it can be observed that there is no significant 

difference in the influence of electronic effects of substituents in 4-position on the phenyl 

group on the C2 and C5 atoms.   
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 A conformational analysis was carried out for the of 1-aryl-3-methylsuccinimides 

1–10. The performance of DFT methods using different types of functionals: B3LYP, 

CAM-B3LYP, and M06-2X with the 6-311G(d,p) basis set, are tested for prediction of 

the accurate energy and ratio of conformers, as well as the properties derived from them.  

Special attention is directed towards an accurate prediction of the UV absorption. 

The best correlation is provided between experimental and calculated maxima from TD 

calculations with B3LYP method in vacuum. The CAM-B3LYP and M06-2X methods 

highly underestimate the values of UV maxima but still produce good correlation results. 

This result is in agreement with the fact that for small and rigid molecules the B3LYP 

method produces more accurate results than other functionals. The solvent influence on 

the correlation results is detectable but it is relatively small, compared to the theory-

experiment discrepancies. The influence of the integration grid on the quality of produced 

results is tested and shows small but positive impacts. Only the results from M06-2X 

method in solvent shows big benefit from applying a tighter integration grid. The impact 

of values simulated based on the static or dynamic results is relatively small but it is 

directly connected with the introduction of solvent effects. 

Excellent relations between experimental and theoretical data directly indicate a 

high validity and precision of the proposed models. 
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Scheme captions 

Scheme 1. Molecular structure of the 1-aryl-3-methylpyrrolidine-2,5-diones 1–10 with 

the atoms and torsion angle labeled. 

Scheme 2. Synthetic pathway for the 1-aryl-3-methylpyrrolidine-2,5-diones 1–10. 

 

Figure captions 

Figure 1. Mesomeric structures of 1-aryl-3-methylsuccinimides. 

Figure 2. Relationship between νmax and σp
+ for the 1-aryl-3-methylsuccinimides 1–6 and 

8–10. 

Figure 3. The most stable conformers of compound 4 calculated by B3LYP level of 

theory. 

Figure 4. Experimental UV spectrum of 1-phenyl-3-methylpyrrolidine-2,5-dione 4, 

measured in ethanol, and the calculated TD-B3LYP electronic absorption spectrum in 

vacuum. 

Figure 5. Correlation between experimental and calculated UV maxima provided by the 

B3LYP method in a vacuum.  

Figure 6. Electrostatic potentials map of 1-phenyl-3-methylpyrrolidine-2,5-dione 4 in 

vacuum from B3LYP/6-311G(d,p) calculation plotted on isosurfaces of 0.002 a.u. 

electron density); color coding: red (very negative), orange (negative), yellow (slightly 

negative), green (neutral), turquoise (slightly positive), light blue (positive), dark blue 

(very positive). 

Figure 7. νmax vs. cos2θ data for investigated 1-aryl-3-methylpyrrolidine-2,5-diones. 

 

Table captions 

Table 1. Long-wavelength UV absorption maxima of 1-aryl-3-methylpyrrolidine-2,5-

diones 1–10.  

Table 2. Regression fits to the solvatochromic parameters of Eq. 1. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 27

Table 3. Percentage contribution of the two solvatochromic parameters of Eq. 1. 

Table 4. The results of the correlation between νmax 10–3/cm–1 and σp
+ for the 1-aryl-3-

methylsuccinimides. 

Table 5. 13C NMR substituent chemical shifts (δ/ppm). 

Table 6. Results of the SCS data correlations according to Eq. (2). 

Table 7. Results of the APT data in DMSO as solvent, derived from B3LYP/6-311G(d,p) 

correlated with Eq. (2). 

Table 8. APT, NBO, EP vs. SCS data for the 1-aryl-3-methylpyrrolidine-2,5-diones 1–

10. 
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Table 1. Long-wavelength UV absorption maxima of 1-aryl-3-methylpyrrolidine-2,5-diones 1–10.  

Solvent / Comp. No. 
νmax × 10–3/cm–1 

1 2 3 4 5 6 7 8 9 10 

Methanol 43.71 43.63 45.41 46.99 44.48 43.71 42.05 41.81 39.49 36.36 

Methanol/H2O (80:20) 42.59 42.64 44.52 46.79 44.40 43.40 40.72 40.36 38.67 35.60 

Methanol/H2O (60:40) 42.23 42.27 44.27 46.71 44.27 43.90 40.75 41.25 38.55 36.21 

Methanol/H2O (40:60) 42.83 42.63 44.19 46.75 44.17 43.46 40.77 40.82 39.06 36.15 

Ethanol 43.92 43.46 45.52 46.25 44.66 43.22 41.79 42.27 39.90 36.18 

Ethanol/H2O (80:20) 43.74 43.38 45.48 46.21 44.48 43.80 42.09 42.48 39.59 36.55 

Ethanol/H2O (60:40) 44.09 43.98 45.54 45.91 45.23 44.27 41.81 43.07 40.97 36.23 

Ethanol/H2O (40:60) 43.80 43.82 45.54 46.08 45.60 43.96 42.25 43.37 41.41 36.09 

2-Propanol 42.92 43.48 43.94 45.87 44.54 43.50 41.89 40.95 42.03 36.47 

2-Propanol/H2O (80:20) 44.01 44.29 45.37 46.06 44.70 43.69 42.00 41.82 39.68 36.67 

2-Propanol/H2O (60:40) 43.78 43.74 45.50 45.91 44.76 44.35 42.23 41.65 40.13 36.59 

2-Propanol/H2O (40:60) 44.01 43.92 45.31 46.23 44.80 44.21 42.18 42.11 39.98 36.51 

2-Propanol/Ethanol(80:20) 43.18 42.84 45.25 46.23 44.68 43.46 41.82 41.27 40.40 36.42 

2-Propanol/Ethanol(60:40) 44.01 43.67 45.37 46.02 44.84 43.86 41.96 41.41 39.65 37.04 

2-Propanol/Ethanol(40:60) 43.73 43.57 45.29 45.87 44.44 43.73 41.91 41.24 39.25 35.69 

2-Propanol/Methanol (80:20) 43.44 43.54 45.17 45.66 44.35 43.73 42.02 41.51 39.06 36.35 

2-Propanol/Methanol (60:40) 43.59 43.63 45.33 45.96 44.58 43.84 42.05 41.46 39.26 36.64 
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2-Propanol/Methanol (40:60) 43.67 43.73 45.43 45.83 44.74 43.92 42.02 41.55 39.51 36.31 
a) Percentage of binary solvent mixtures in Vol - %. 
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Table 2. Regression fits to the solvatochromic parameters of Eq. 1. 

 

No. Substituent ν0 × 10–3/cm–1 s × 10–3/cm–1 a × 10–3/cm–1 Ra sb Fc nd 

1 4-OH 
47.87 

(±0.827) 
– 2.37 

(±0.810) 
– 3.12 

(±1.004) 
0.9122 0.299 17 10 

2 4-OCH3 
46.81 

(±0.621) 
– 1.67 

(±0.628) 
– 2.71 

(±0.827) 
0.9256 0.226 21 10 

3 4-CH3 
49.18 

(±0.599) 
– 2.75 

(±0.515) 
– 2.41 

(±0.635) 
0.9451 0.199 30 10 

4 H 
42.77 

(±0.451) 
0.919 

(±0.397) 
3.08 

(±0.456) 
0.9338 0.173 31 12 

5 4-Cl 
44.78 

(±0.447) 
4.43 

(±0.651) 
– 3.15 

(±0.691) 
0.9320 0.166 23 10 

6 4-Br  
44.62 

(±0.347) 
2.81 

(±0.396) 
– 2.87 

(±0.399) 
0.9550 0.122 36 10 

7 4-I 
48.17 

(±0.887) 
-1.81 

(±0.612) 
– 5.55 

(±0.885) 
0.9330 0.252 27 11 

8 4-COOH 
35.50 

(±0.987) 
4.53 

(±0.846) 
4.38 

(±1.180) 
0.9224 0.309 29 13 

9 4-COCH3 
46.63 

(±1.361) 
– 3.22 

 (±1.203) 
– 5.04 

(±1.333) 
0.8907 0.505 13 10 

10 4-NO2 
40.29 

(±0.500) 
– 1.68 

 (±0.448) 
– 3.15 

(±0.461) 
0.9407 0.143 31 11 

a Correlation coefficient. 
b Standard error of the estimate. 
c Fisher's test. 
d Number of solvents included in correlation. 
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Table 3. Percentage contribution of the two solvatochromic parameters of Eq. 1. 

No. Substituent Pπ* (%) Pα (%) 

1 4-OH 43 57 

2 4-OCH3 37 63 

3 4-CH3 53 47 

4 H 23 77 

5 4-Cl 58 42 

6 4-Br  49 51 

7 4-I 25 75 

8 4-COOH 51 49 

9 4-COCH3 39 61 

10 4-NO2 35 65 
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Table 4. The results of the correlation between νmax × 10–3/cm–1 and σp
+ for the 1-aryl-3-methylsuccinimides. 

Solvent νmax vs. σp+ Ra sb Fc Compoundd 

Methanol (D): νmax = 46.795 + 3.700σp+  

(A): νmax = 46.288 – 12.631σp+  

0.982 

0.986 

0.368 

0.716 

55 

136 

 

7 

Methanol/H2O (80:20) (D): νmax = 46.433 + 4.567σp+  

(A): νmax = 46.052 – 13.751σp+  

0.976 

0.992 

0.526 

0.580 

41 

246 

 

7 

Methanol/H2O (60:40) (D): νmax = 46.313 + 4.867σp+  

(A): νmax = 46.095 – 13.039σp+  

0.975 

0.985 

0.575 

0.743 

39 

135 

 

7 

Methanol/H2O (40:60) (D): νmax = 46.226 + 4.234σp+  

(A): νmax = 45.935 – 12.790σp+  

0.946 

0.990 

0.753 

0.612 

17 

192 

 

7 

Ethanol (D): νmax = 46.281 + 2.974σp+  

(A): νmax = 45.988 – 11.904σp+  

0.959 

0.978 

0.456 

0.845 

23 

87 

 

7 

Ethanol/H2O (80:20) (D): νmax = 46.257 + 3.092σp+  

(A): νmax = 46.031 – 11.710σp+  

0.967 

0.979 

0.422 

0.805 

29 

93 

 

7 

Ethanol/H2O (60:40) (D): νmax = 46.019 + 2.267σp+  

(A): νmax = 46.461 – 11.720σp+  

0.972 

0.969 

0.284 

0.988 

35 

62 

 

7 

Ethanol/H2O (40:60) (D): νmax = 46.181 + 2.727σp+  

(A): νmax = 46.631 – 11.821σp+  

0.985 

0.954 

0.246 

1.224 

66 

41 

 

7 

2-Propanol (D): νmax = 45.468 + 2.819σp+  

(A): νmax = 45.776 – 10.808σp+ 

0.933 

0.964 

0.566 

0.985 

13 

53 

 

7 
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2-Propanol/H2O (80:20) (D): νmax = 46.062 + 2.246σp+  

(A): νmax = 45.925 – 11.634σp+  

0.999 

0.991 

0.021 

0.516 

5971 

223 

 

7 

2-Propanol/H2O (60:40) (D): νmax = 46.045 + 2.609σp+  

(A): νmax = 46.095 – 11.768σp+  

0.977 

0.997 

0.295 

0.288 

42 

732 

 

7 

2-Propanol/H2O (40:60) (D): νmax = 46.161 + 2.572σp+  

(A): νmax = 46.252 – 12.016σp+  

0.985 

0.992 

0.237 

0.504 

64 

250 

 

7 

2-Propanol/Ethanol(80:20) (D): νmax = 46.258 + 3.745σp+  

(A): νmax = 45.939 – 11.760σp+  

0.975 

0.993 

0.447 

0.460 

38 

287 

 

7 

2-Propanol/Ethanol(60:40) (D): νmax = 46.037 + 2.523σp+  

(A): νmax = 45.898 – 11.456σp+  

0.964 

0.995 

0.363 

0.377 

26 

405 

 

7 

2-Propanol/Ethanol(40:60) (D): νmax = 45.936 + 2.629σp+  

(A): νmax = 45.874 – 12.706σp+  

0.978 

0.995 

0.295 

0.402 

43 

438 

 

7 

2-Propanol/Methanol (80:20) (D): νmax = 45.773 + 2.630σp+  

(A): νmax = 45.656 – 11.818σp+  

0.987 

0.991 

0.222 

0.540 

76 

210 

 

7 

2-Propanol/Methanol (60:40) (D): νmax = 46.032 + 2.796σp+  

(A): νmax = 45.841 – 11.827σp+  

0.988 

0.993 

0.223 

0.467 

85 

281 

 

7 

2-Propanol/Methanol (40:60) (D): νmax = 45.974 + 2.607σp+  

(A): νmax = 45.942 – 12.078σp+  

0.981 

0.995 

0.271 

0.417 

50 

368 

 

7 
a Correlation coefficient. 
b Standard error of the estimate. 
c Fisher's test. 
d Succinimide derivative excluded from correlation (number as given in Scheme 1). 
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Table 5. 13C NMR substituent chemical shifts (δ/ppm). 

No. Substituents 

SCS in δ/ppm 

C2 C5 

1 4-OH 0.3 0.3 

2 4-OCH3 0.2 0.2 

3 4-CH3 0.1 0.1 

4 H (180.2) (176.1) 

5 4-Cl -0.3 -0.2 

6 4-Br  -0.3 -0.2 

7 4-I -0.3 -0.2 

8 4-COOH -0.4 -0.3 

9 4-COCH3 -0.4 -0.4 

10 4-NO2 -0.6 -0.5 
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Table 6. Results of the SCS data correlations according to Eq. (2). 

Parameter ρ h Ra sb Fc nd 

δC(C2) – 0.803 (±0.048) / e 0.9858 0.053 276 10 

δC(C5) – 0.708 (±0.032) / e 0.9920 0.035 493 10 
a Correlation coefficient. 
b Standard error of the estimate. 
c Fisher's test. 
d Number of compounds included in correlation. 
e Negligible value with high standard error. 
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Table 7. Results of the APT data in DMSO as solvent, derived from B3LYP/6-311G(d,p) 

correlated with Eq. (2). 

 
a Correlation coefficient. 
b Standard error of the estimate. 
c Fisher's test. 
d Number of compounds included in correlation. 

 

Parameter 
Constant Solvent ρ h Ra sb Fc nd 

Q(APT) 
C2 σp DMSO 0.036 (±0.002) 1.428 (±0.000) 0.9858 0.002 275 10 

C5 σp DMSO 0.033 (±0.003) 1.467 (±0.001) 0.9701 0.003 127 10 

O1 σp DMSO 0.020 (±0.001) – 1.002 (±0.000) 0.9879 0.001 324 10 

O2 σp DMSO 0.020 (±0.001) – 1.015 (±0.000) 0.9860 0.001 281 10 

N1 σp DMSO – 0.221 (±0.010) – 1.268 (±0.004) 0.991 0.011 451 10 
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Table 8. APT, NBO, EP vs. SCS data for the 1-aryl-3-methylpyrrolidine-2,5-diones 1–

10. 

 Relation Ra nb 

C2Q(APT) APT = – 0.043·SCS + 1.426 0.9621 10 

C5Q(APT) APT = – 0.046·SCS + 1.467 0.9484 10 

C2Q(NBO) NBO = – 0.003·SCS + 0.765 0.9017 10 

C5Q(NBO) NBO = – 0.003·SCS + 0.764 0.9398 10 

C2Q(EP) EP = – 0.030·SCS – 14.655 0.9635 10 

C5Q(EP) EP = – 0.034·SCS – 14.651 0.9489 10 
a Correlation coefficient. 
b Number of compounds included in correlation. 
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Highlights 

 

• 1-Aryl-3-methylsuccinimides have been synthesized 

• UV-Vis spectra and NMR chemical shifts have been studied 

• LFER and LSER analysis have been used 

• The results have been interpreted with B3LYP, CAM-B3LYP and M06-2X/6–

311G(d,p) 

• Experimental vs. theoretical results lead to excellent linear dependence 

 


