Journal of Medicinal Chemistry

Article

Subscriber access provided by Iowa State University | Library

Triazole-Based Inhibitors of the Wnt/#-Catenin Signaling Pathway Improve Glucose and Lipid Metabolism in Diet-Induced Obese Mice

Obinna N. Obianom, Yong Ai, yingjun li, Wei Yang, Dong Guo, Hong Yang, Srilatha Sakamuru, Menghang Xia, Fengtian Xue, and Yan Shu

J. Med. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.8b01408 • Publication Date (Web): 03 Jan 2019 Downloaded from http://pubs.acs.org on January 7, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties. Page 1 of 54

1

-	
2	
С	
2	
4	
-	
5	
6	
-	
/	
8	
0	
9	
10	
10	
11	
10	
12	
13	
13	
14	
15	
15	
16	
17	
17	
18	
10	
19	
20	
21	
21	
22	
~~	
23	
7∕	
24	
25	
76	
20	
27	
20	
28	
29	
~~~	
30	
31	
51	
32	
22	
55	
34	
25	
35	
36	
50	
37	
20	
20	
39	
40	
40	
41	
42	
Δ٦	
-1-5	
44	
AF	
45	
46	
4/	
48	
49	
50	
20	
51	
50	
52	
53	
54	
55	
55	
56	
57	
58	
50	
59	
60	
~~~	

Triazole-Based Inhibitors of the Wnt/β-Catenin Signaling Pathway Improve Glucose and Lipid Metabolism in Diet-Induced Obese Mice

Obinna N. Obianom,^{#,1} Yong Ai,^{#,1} Yingjun Li,¹ Wei Yang,^{≠,1} Dong Guo,¹ Hong Yang,¹ Srilatha Sakamuru,² Menghang Xia,² Fengtian Xue^{*,1} and Yan Shu^{*,1,3}

¹Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy,

Baltimore, Maryland 21201, USA

²National Center for Advancing Translational Sciences, National Institutes of Health,

Bethesda, MD 20892-3375, USA

³School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou

510140, China

[#]These authors contributed equally to this work.

[#]Current address: School of Pharmaceutical Engineering, Jiangsu Food & Pharmaceutical Science College, Huaian, Jiangsu, 223005, China

*Correspondence to:

Dr. Fengtian Xue at the Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, USA; Phone: 410-706-

8521; Email: fxue@rx.umaryland.edu

Dr. Yan Shu at the Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, USA; Phone: 410-706-7358; Email: yshu@rx.umaryland.edu

ABSTRACT

Wnt/ β -catenin signaling pathway is implicated in the etiology and progression of metabolic disorders. While lines of genetic evidence suggest that blockage of this pathway yields favorable outcomes in treating such ailments, few inhibitors have been used to validate the promising genetic findings. Here, we synthesized and characterized a novel class of triazole-based Wnt/ β -catenin signaling inhibitors, and assessed their effects on energy metabolism. One of the top inhibitors, compound **3a**, promoted Axin stabilization, which led to the proteasome degradation of β -catenin and subsequent inhibition of the Wnt/ β -catenin signaling in cells. Treatment of hepatocytes and high fat diet-fed mice with compound **3a** improved glucose tolerance of high fat diet-fed mice without noticeable toxicity, while downregulating the genes involved in the glucose and fatty acid anabolism. The new inhibitors are expected to be further developed for the treatment of metabolic disorders.

INTRODUCTION

The Wnt/ β -catenin pathway plays a pivotal role in cell proliferation, differentiation and growth.¹ It regulates the expression of target genes through the transcriptional factor β -catenin that forms a cytoplasmic "destruction complex" with other proteins including Axin and adenomatous polyposis coli (APC). This complex facilitates the phosphorylation of β -catenin by casein kinase 1 α (CK1 α) and glycogen synthase kinase 3 β (GSK3 β), leading to proteasome degradation of β -catenin during the "off state" of the pathway. The "onstate", on the other hand, involves enhanced stability and accumulation of β -catenin in the cytoplasm, resulting in its increased translocation to the nucleus where it binds to LEF/TCF transcriptional factors and activates the expression of target genes. Wnt/ β -catenin, Axin, and GSK3 β .^{1.2} Given the crucial function of Wnt/ β -catenin pathway, it is not surprising that a strong link between this pathway and metabolic disorders has been recognized in recent years.³⁻⁵

The association of the Wnt/ β -catenin pathway to metabolic disorders was first established by the identification of a human polymorphism (*rs7903146*) in the *TCF7L2* gene, which encodes a major nuclear partner protein of β -catenin, as a strong risk factor for type-2 diabetes.⁶ This polymorphism has been known to enhance *TCF7L2* transcription.⁷⁻⁹ Later, Savic *et al* showed that partial knockdown of *Tcf7l2* results in metabolic phenotypes of smaller body weights, decreased fasting glucose, and improved glucose tolerance in mice.¹⁰ We have published similar observations in mice with the genetic haploinsufficiency of *Tcf7l2*.¹¹ However, the role of TCF7L2 in maintaining metabolic homeostasis in specific tissues remains controversial. TCF7L2 knockdown was reported to increase glucose production and gluconeogenic gene expression in cultured hepatocytes,¹² and the transgenic mice overexpressing a dominant negative *Tcf7l2* mutant in the proglucagon gene-expressing cells exhibited defective glucose homeostasis.¹³ However, Boj *et al* reported that liver-specific *Tcf7l2* knockout led to reduced hepatic glucose production during fasting and improved glucose homeostasis in adult mice on a high-fat diet.¹⁴ Recently, Thompson *et al* reported that liver-specific knockout of β -catenin led to a striking protection from fibrosis and liver injury in mice,¹⁵ while Popov *et al* showed that the hepatic downregulation of β -catenin by anti-sense oligonucleotides could improve insulin sensitivity and glucose tolerance in mice.¹⁶ Therefore, although the exact role of the Wnt/ β -catenin pathway in metabolism is yet to be illustrated, overall evidence indicates that downregulation of Wnt/ β -catenin signaling may provide a new therapeutic strategy for the treatment of metabolic disorders such as fatty liver diseases and diabetes.

Therapeutics targeting the Wnt/ β -catenin signaling pathway is still in a state of infancy. One reason is that this pathway is bewilderingly complex, with crosstalks to numerous others.¹⁷⁻¹⁹ In addition, because of the severe phenotypes observed in genetic knockout animal models,²⁰ safety concern is historically present. Approximately one dozen of Wnt/ β -catenin pathway inhibitors with distinct mechanisms have been discovered.²¹⁻³³ For example, porcupine inhibitors (e.g., LGK-974, Figure 1) decrease the secretion of the Wnt ligands.³⁴ At the plasma membrane, the inhibition of LRP5/6 binding to Wnt proteins by inhibitors such as niclosamide and salinomycin can curb the amount of active β -catenin.^{22,35} In the cytoplasm, stabilization of the destruction complex (e.g., tankyrase inhibitor XAV939²⁵ and CK1 α activator pyrvinium³⁶) can also attenuate β -catenin levels. Of note, the safety concern about Wnt inhibitors has not been borne out either preclinically

or clinically, and recently the β -catenin/CBP inhibitor PRI-724 has entered clinical trials as a potential new treatment of various cancers.¹⁷ Several FDA-approved drugs, such as glucocorticoids, retinoids, and celecoxib, are also found to be Wnt/ β -catenin pathway inhibitors.^{17,19} Interestingly, Wnt/ β -catenin pathway inhibitors have emerged to replicate the metabolic outcomes of the above-mentioned genetic manipulation in mice. The CK2 inhibitor CX-4945 has been shown to cause mice to be resistant to high fat diet-induced obesity and metabolic disorders.^{37,38} Treatment of mice with a selective tankyrase inhibitor G007-LK has resulted in profound improvement of glucose tolerance and insulin sensitivity.³⁹ However, further studies are needed to fully establish the applicability of these small molecule inhibitors in the treatment of metabolic disorders.

Herein we report a series of novel Wnt/ β -catenin pathway inhibitors based upon a triazole scaffold (Figure 1). New compounds were designed by modifying the chemical structure of pyrvinium, an FDA approved anthelmintic effective for pinworm infection. The drug has been reported to inhibit Wnt signaling with a high potency³⁶. However, further development of pyrvinium as a therapeutic agent for metabolic disorders is prohibited by several reasons related to its chemical structure. Pyrvinium possesses a permanently charged *N*-methylquinolone group that causes extremely low bioavailability of the compound.⁴⁰ The double bond connecting the two ring systems leads to poor solubility. Moreover, the 2,5-dimethyl-1-phenyl-1*H*-pyrrole is prone to oxidation⁴¹ and known as one of the pan assay interference compounds (PAINs).⁴² Herein we describe the synthesis of new inhibitors **3a-3u** employing a neutral aromatic amino group, an amide linker, and a substituted triazole core. Several of the new compounds showed excellent inhibitory potency against Wnt signaling. One of the new compounds, **3a**, was further

characterized by various *in vitro* and *in vivo* biological assays. Compound **3a** showed improved bioavailability, promising efficacy against diet-induced metabolic disorders in mice. In addition, compound **3a** was well tolerated in mice without any notable toxicity.

Figure 1. Structures of known Wnt/ β -catenin pathway inhibitors LGK974, PRI724, XAV939, pyrvinium, and the design of new triazole-based inhibitors **3a-3u**.

RESULTS AND DISCUSSION

Synthesis. The synthesis of compounds 3a-3u is detailed in Scheme 1. Diazotization of the amino group of anilines 1a-1n using sodium nitrite (NaNO₂) and aqueous HCl, followed by the treatment of the intermediate with sodium azide (NaN₃) gave azides, which underwent cyclization with β -ketoester in EtONa/EtOH yielded trizaole-3-carboxylic acids 2a-2p. Next, PyCIU-mediated coupling of compounds 2a-2p with various aromatic amines in dichloroethane (DCE) provided target compounds 3a-3r in moderate to good yields. Finally, Pd-catalyzed cross-coupling of compound 3r with various potassium trifluoroborate derivatives yielded products 3s-3u in good yields.

^{*a*}Reagents and conditions: (a) (i) NaNO₂, HCl, NaN₃, H₂O, 0 °C; (ii) ethyl 3-oxobutanoate for **2a-2n**, ethyl 3-oxopentanoate for **2o**, ethyl 4-methyl-3-oxopentanoate for **2p**, EtONa, EtOH, 80 °C; (b) 2-aminoquinoline for **3a-3p**, naphthalen-2-amine for **3q**, 6bromoquinolin-2-amine for **3r**, PyCIU, DIPEA, DCE, 80 °C; (c) potassium trifluoroborate derivatives, Pd(OAc)₂, XPhos, Cs₂CO₃, THF/H₂O, 80 °C, 24-48 h.

Structure-Activity Relationship. Compound **3a** indicated an excellent IC₅₀ value of 4.1 nM in the luciferase gene reporter assay for Wnt signaling activity, which is over 1,000-fold higher than that of **3b** (3-methyl group) and **3c** (4-methyl group), and 180-fold higher than the parent compound pyrvinium (Table 1). Additional methyl group at the 3- (**3l**) or 4-position (**3m**) of the phenyl ring led to new inhibitors with 34- and 66-fold decreased potencies, respectively. The naphthyl analog **3n** was a weak inhibitor with an IC₅₀ value of 5.5 μ M. These results indicated that single *ortho*-substitution is preferred on the phenyl ring. Substitution of the 2-methyl group with various functionalities generated new inhibitors **3d**-**3k**. Among them, the F-analog (**3d**) demonstrated excellent potency with an IC₅₀ value in the sub-nanomolar range. The Br- (**3e**), NC- (**3f**), and MeO- (**3g**) analogs also showed low nM potencies. However, large substituents such as amide (**3h**), ketone (**3i**), morpholine (**3j**) and Ph (**3k**) turned out to be detrimental to the inhibitory activity.

Next, substitution effects of the triazole core (R_2) were studied using compounds **3o** and **3p**. Compared to inhibitor **3d**, the ethyl analog **3o** was slightly less potent. However with the branched isopropyl group, compound **3p** turned out to be over 20-fold less potent than compound **3d**. These results indicated that small group was preferred at the R_2 position.

In addition, removal of the quinoline nitrogen yielded compound 3q that totally lost inhibitory activity. This result highlighted the importance of the quinoline nitrogen in maintaining high potency. Finally, we sought to explore the possibility of expanding the quinoline ring system. The Br-substituted compound 3r indicated similar potency as that of the parent compound pyrvinium. Similarly, potent inhibitors were obtained when morpholine (3s), piperidine (3t), or thiomorpholine (3u) were included at the same R₃

 Journal of Medicinal Chemistry

position. These results indicated that further expansion of the quinoline ring could impair the activity of the inhibitor.

Table 1. Inhibition of Wnt/β-Catenin Signaling Pathway by Compounds 3a-3u

Cmpds	R_1	R ₂	R ₃	Х	$IC_{50} (nM)^a$
3 a	2-Me	Me	Н	Ν	4.1 ± 0.4
3 b	3-Me	Me	Н	Ν	>10,000
3c	4-Me	Me	Н	Ν	>10,000
3d	2-F	Me	Н	Ν	1.2 ± 0.2
3e	2-Br	Me	Н	Ν	7.6 ± 0.3
3 f	2-CN	Me	Н	Ν	34 ± 4.3
3g	2-OMe	Me	Н	Ν	18 ± 3.3
3h	2-CONH ₂	Me	Н	Ν	>10,000
3 i	2-COMe	Me	Н	Ν	$8,800 \pm 1322$
3j	2-morpholine	Me	Н	Ν	$1,900 \pm 5.4$
3k	2-Ph	Me	Н	Ν	390 ± 68.1
31	2,3-diMe	Me	Н	Ν	140 ± 5.8
3m	2,4-diMe	Me	Н	Ν	270 ± 23.8
3n	2,3-Ph (fused)	Me	Н	Ν	$5,500 \pm 1186$
30	2-F	Et	Н	Ν	4.7 ± 0.7
3 p	2-F	<i>i</i> -Pr	Н	Ν	25 ± 0.5
3q	2-Me	Me	Н	СН	$4,900 \pm 743$
3r	2-Me	Me	Br	Ν	830 ± 98.2
38	2-Me	Me		Ν	1,300 ± 169
3t	2-Me	Me	N N	Ν	$1,200 \pm 168$

^{*a*}The values of IC₅₀ for each compound to inhibit the Wnt signaling activity, as determined from the luciferase reporter gene assay, were calculated and data are expressed as mean IC₅₀ (nM) \pm SE of each compound from three independent experiments. Note that compounds **3a-3u** did not present any apparent cytotoxicity during the short treatment duration used for the luciferase gene reporter assay (Table S2).

Compound 3a, a Potent Inhibitor of the Wnt/*β***-Catenin Signaling Pathway.** As model compounds, we next chose compounds **3a** and **3n** and further evaluated them in various biological assays. We chose compound **3a** over the more potent compound **3d** (Table 1) because in the assessment of their potential cytotoxicity in unstimulated normal HEK293 cells with a longer incubation time of 72 h relative to that for the above reporter assay, we found that **3d** was more cytotoxic than **3a** (Figure S1). While compound **3d** was more potent than 3a, their potencies remained in the same magnitude. Compound 3a showed superior potency in HEK293 cells in the presence of Wnt signaling activators LiCl and Wnt3a (Figure 2A, B). Compound **3a** inhibited the Wnt/ β -catenin signaling pathway by stabilization of Axin and subsequent β -catenin degradation (Figure 2C-E and Figure S2A-B). Stabilization of Axin was confirmed by the increased cytoplasmic punctas as has been demonstrated previously by other Axin stabilizers.⁴³ The expression of the pathway target genes including CycD1 and Axin2 was repressed at the messenger RNA (mRNA) levels. In the presence of LiCl, which activates Wnt/β -catenin pathway via the inhibition of GSK3 β , compound **3a** decreased the cellular level of β -catenin while the inactive analog **3n** had little effect (Figure 2F).

The downregulation of β -catenin levels and the consistent efficacy of compound **3a** in both Wnt3a- and LiCl-conditioned medium suggested a mechanism different from that of the parent compound pyrvinium, whose effect is diminished in the presence of LiCl.³⁶ We performed additional studies with varying concentrations of LiCl, and observed no effect by LiCl in changing the inhibitory potency of compound **3a** towards Wnt/ β -catenin signaling pathway (Figure S2).

Figure 2. Characterization of compound **3a** as an inhibitor of Wnt/ β -catenin signaling pathway. (A) TCF/LEF responsive luciferase reporter assay in HEK293 cells with varying concentration of compound **3a** and (B) compound **3n** in Wnt3a- or LiCl-conditioned medium. The data were fitted to determine the IC₅₀ of inhibition of LiCl- and Wnt3ainduced activation of the Wnt/ β -catenin signaling pathway (mean \pm S.D, n = 4). (C) Confocal microscope images of **3a**-treated HEK293 cells for detection of Axin (Axin1). The cells were incubated with 1 μ M of compound **3a** for 14 h. The nucleus was stained by DAPI. (D) Western blot analysis showing the effect of compound **3a** treatment on the

levels of β -catenin and Axin1 proteins in HEK293 cells in the presence of WNT3a. The cells were treated with the compound for 2 h. (E) The mRNA expression of the target genes of Wnt/ β -catenin signaling pathway. The cells were treated for 48 h and harvested with TriZol reagent. *p < 0.05. (F) Western blot analysis of HEK293 cells treated with compounds **3a** and **3n** in the presence of lithium chloride for 24 h. RLU- Relative light units.

Mechanism of Wnt/*β***-catenin Pathway Inhibition by Compound 3a.** Sequential phosphorylation of β -catenin on residues Ser33, Ser37 and Thr41 by GSK3 β is a critical step in β -catenin degradation. By causing increase in the phosphorylation at these sites, many small molecule Wnt inhibitors facilitate the degradation of β -catenin. To further ascertain if our new inhibitors function through a similar mechanism, we examined the inhibitory potency of compound 3a in HEK293 cells overexpressed with wild-type and mutant (S33Y) β -catenin (Figure S3). Overexpression of both exogenous β -catenin plasmids led to significant increases in Wnt signaling activities as reflected by the luciferase reporter gene assay, with the S33Y mutant giving a larger increase than the wild Nonetheless, compound **3a** inhibited Wnt signaling with a similar potency type. irrespective of overexpression of either β -catenin, suggesting that the inhibitory effects of compound **3a** may be independent of GSK3 β phosphorylation of at least Ser33 on β catenin. Note that aside from Ser33 phosphorylation, $GSK3\beta$ also phosphorylates Ser37 and Thr41 of β -catenin. Thus the mutated β -catenin construct used in our assay may not be sufficient to impair the function of GSK3 β , as immunoprecipitation of β -catenin showed that compound **3a** strengthened the binding of GSK3 β and Axin to β -catenin (Figure 3A).

Journal of Medicinal Chemistry

Thus, the results suggest that compound **3a** treatment may lead to fortification of the destruction complex to propagate the degradation of β -catenin.

We next silenced major components of the β -catenin destruction complex, CK1 α , GSK3 β and Axin1, to assess their contribution to the effect of inhibitor **3a**. Only the knockdown of CK1 and GSK3 β partially abolished the Wnt inhibitory effect while Axin1 silencing had no effect on the gene reporter assay of inhibitor **3a** (Figure 3B). Next, we performed surface plasmon resonance (SPR) analysis using recombinant CK1 α , GSK3 β , and Axin to determine the binding affinity of compound **3a** to these proteins. We found that compound **3a** could not bind to CK1 α and Axin (data not shown), while exhibiting a weak binding ($K_D = 4.3 \mu$ M) for recombinant GST-tagged GSK3 β (Figure S4A-C). Further, we knocked down GSK3 β and performed the reporter assay for compound **3a**. The results show that exclusion of GSK3 β only decreased the effect of compound **3a** by 1.7 fold (IC₅₀ of si-control = 20 nM *vs*. si-GSK3 β = 34 nM) (Figure S4D). The non-correlation of the IC₅₀ value from the reporter assay to the K_D of weak binding to GSK3 β suggests that GSK3 β is probably not the main target of compound **3a**, although it may play a direct role in the inhibitory effect of compound **3a** on Wnt/ β -catenin signaling pathway.

In order to determine the inhibitory effect of compound **3a** in other cells bearing mutations that lead to an activated Wnt/ β -catenin pathway, we overexpressed the luciferase reporter constructs in SW480 and HepG2 cell lines. The SW480 cells have inactivating mutations in APC, which lead to ineffective tethering of β -catenin to the destruction complex and subsequent increase in cytoplasmic and nuclear β -catenin levels.⁴⁴ In contrast, HepG2 cells contain a deletion of the amino acids 25-140 of the *CTNNB1* (encoding β -catenin) gene, which includes the binding sites of GSK3 β and CK1 α (Figure

3C).⁴⁵ Inhibition of the reporter gene activity by compound **3a** was well observed in SW480 cells, but insignificant in HepG2 cells (Figure 3D). These results suggest the necessity of the full length of β -catenin with intact GSK3 β and CK1 α sites for the inhibitory activity of compound **3a**.

Figure 3. Role of Wnt/ β -catenin pathway effector proteins in the inhibition by compound **3a**. (A) Immunoprecipitation of β -catenin in HEK293 to determine the effect of compound **3a** treatment (12 h) on the interaction of β -catenin with other pathway effector proteins. (B) TCF/LEF gene reporter assay of compound **3a** in the presence of knockdown of GSK3 β , Axin and CK1 α . The HEK293 cells were treated with or without compound **3a** (20 nM) for 24 h. (C) Western blot analysis of protein expression of β -catenin in SW480 and HepG2 cells. (D) TCF/LEF gene reporter assay of SW480 and HepG2 cells treated

with compound **3a**. Data are represented as mean \pm S.D, n = 3. RLU- relative light units. *** p < 0.001.

Compound 3a Decreased Lipid Accumulation and Altered the Expression of Lipogenic and Gluconeogenic Genes in Hepatocytes. It has been reported that the Wnt/ β -catenin pathway may play a role in cellular metabolism. Specifically, Axin has been implicated in lipid metabolism. In mice, knockdown of Axin results in significantly increased hepatic lipid accumulation.⁴⁶ Because compound **3a** stabilized the cellular level of Axin, we performed a Nile red staining assay to examine the effect of compound 3a on lipid accumulation in human hepatic Huh7 cells (Figure 4A). Treatment of the cells with compound 3a dramatically decreased lipid accumulation. Similar effects were observed by a known Axin stabilizer XAV939. Next, we performed a quantitative PCR to determine the effect of compound **3a** on the gene expression of lipogenesis and gluconeogenesis in mouse hepatocytes. Our results showed that compound 3a downregulated the mRNA levels of the gluconeogenic (PEPCK and G6PASE) and lipogenic genes (FASN, ACAA1A, ACOT4, and SCD1) (Figure 4B). These results suggested that compound 3a might decrease the accumulation of lipids in hepatocytes by downregulating gluconeogenic and lipogenic pathways as a consequence of Axin stabilization.

Figure 4. Compound **3a** decreased lipid accumulation and the expression of lipogenic and gluconeogenic genes in hepatocytes. (A) Nile red staining assay of the Huh7 cells treated with 5 μ M of compounds XAV939 or **3a** for 36 h and together with 200 μ M oleate for 16 h. TD, transmitted light differential interference contrast image. (B) The mRNA expression of various lipogenic and gluconeogenic genes in normal mouse hepatocytes treated with 5 μ M of compound **3a**. Data represents mean \pm S.D. of triplicates.

In Vivo Efficacy of Compound 3a against Diet-Induced Metabolic Disorders in Mice. With the promising *in vitro* effects of compound **3a** on metabolism in hepatocytes, we Page 17 of 54

further studied its efficacy in vivo against metabolic disorders using a mouse model. Initially, we briefly assessed the pharmacokinetic and physicochemical properties of compound **3a**. Compared to the reported parameters for pyrvinium, our new analogue showed improved physicochemical and pharmacokinetic properties with an oral bioavailability of 21% (pyrvinium has less than 1%). The plasma half-life of compound **3a** is 2.8 - 3.3 h, with an oral maximal concentration of $2.2 \,\mu$ g/mL in the plasma after a single dose of 10 mg/kg (Table S3). We then proceeded to efficacy studies in the high fat diet-fed mouse model. We performed a pilot dose escalation study to determine the optimal dose for compound 3a and to ensure little or no toxicity to the mice (data not shown). While we did not observe any noticeable toxicity at up to 200 mg/kg of compound 3a, we found promising efficacy and hepatic improvement at 40 mg/kg so we chose this dose to conduct a more comprehensive study in mice. Wild type C57BL/6J mice were fed with a high fat diet or normal chow diet for 6 weeks before treatment. The mice were then divided into four groups: two were fed normal chow and the other two were fed with the high fat diet. Compound **3a** was administered intraperitoneally every 2 days at 40 mg/kg for 11 weeks, a dose selected based on the pilot dose escalation studies. After 11 weeks of treatment, compound **3a** significantly improved glucose tolerance in the high fat diet group (Figure 5A-B). The inhibition of Wnt signaling and the improvement of glucose tolerance by compound **3a** were confirmed by the decreased hepatic mRNA levels of Wnt target genes and those of gluconeogenesis and lipogenesis in the mice fed with the high fat diet, respectively (Figure 6A). Of note, the effects of compound 3a on gene expression were insignificant in the mice fed with the normal chow diet, suggesting a selectivity of compound **3a** towards metabolic disorders (Figure 6B).

Figure 5. Improvement of glucose tolerance by compound **3a** in *C57BL/6J* mice fed with a high fat diet. (A) Intraperitoneal glucose tolerance test (IPGTT) was carried out on the mice fed with the high fat diet (HFD) and normal chow diet (NC) at the start of treatment (WK0) and after 11 weeks (WK11) of treatment. The mice received intraperitoneal injection of 40 mg/kg compound **3a** or vehicle (corn oil) every two days. (B) The area under the curve (AUC, min*mg/dL) for the IPGTT. Data represents mean \pm SEM, n = 5 per group. **p* < 0.05 as compared to the vehicle group.

Figure 6. Effects of compound **3a** on the hepatic expression of select Wnt/β -catenin pathway target genes and those involved in energy metabolism in mice. (A) The mRNA expression of select genes in the mice fed with a high fat diet. (B) The mRNA expression of select genes in the mice fed with normal chow diet. The mice received *i.p.* injection of

40 mg/kg compound **3a** or vehicle (corn oil) every two days for 11 weeks. Data represents mean \pm SEM, n = 5 per group. * p < 0.05, ** p < 0.01.

To further assess the efficacy of compound **3a** against the metabolic disorders induced by the high fat diet in mice, we conducted additional measurements. The body weight and the liver weight adjusted by the body weight were increased in the high fat diet-fed mice. However, the increases were suppressed by the treatment of compound **3a**. Of note, the treatment caused no effects in the normal chow diet-fed mice (Figure 7). Consistently, in our hepatic histological examination, compound 3a treatment drastically reduced the hepatic lipid accumulation induced by the high fat diet. In addition, the hepatic triglyceride content and the serum cholesterol level were reduced by the treatment of compound 3a in the high fat diet-fed mice. Importantly, the mice that received compound 3a treatment did not exhibit any significant toxicity as indicated by the blood chemical measurements of liver and kidney function and by the histological examination (Table 2, Figure S5). Taken together, the effects of compound **3a** were pronounced in the mice with metabolic disorders induced by the high fat diet. Inhibition of the Wnt signaling pathway appeared to mediate the efficacy of compound **3a** against the metabolic disorders induced by the high fat diet because the results phenocopied those seen in genetic knockdown of Axin, Ctnnb1 (βcatenin) and *Tcf7l2* in the mice fed a high fat diet.^{11,46,47}

Figure 7. Effects of compound **3a** treatment on body weight gain and hepatic lipid accumulation in *C57BL/6J* mice. (A) Body weight gain in high fat diet and normal chow group mice treated with 40 mg/kg compound **3a** or vehicle (corn oil). (B) Hematoxylin and eosin staining for liver tissue samples. (C) Hepatic triglyceride content and (D) the ratio of liver/body weight in high fat diet-fed mice. The mice received *i.p.* injection of 40 mg/kg compound **3a** or vehicle (corn oil) every two days for 11 weeks. V= vehicle, **3a** = Compound **3a**. * p < 0.05.

Physiologic		High fat diet (n=10)			Normal chow (n=10)		
parameter	Unit	vehicle	3 a	p-value	vehicle	3 a	p-value
ALT	U/L	63.3 ± 26.9	21.0 ± 1.9	NS	20.0 ± 5.1	12.8 ± 1.6	NS
Alkaline	U/L	58.3 ± 3.8	51.0 ± 4.6	NS	66.5 ± 1.8	57.5 ± 1.1	NS
Phosphatase							
AST	U/L	131 ± 15.6	94.8 ± 17.2	NS	119 ± 28.3	74.5 ± 6.25	NS
Total bilirubin	mg/dL	0.20 ± 0.0	0.20 ± 0.03	NS	0.20 ± 0.0	0.20 ± 0.0	NS
Cholesterol	mg/dL	316 ± 25.0	223 ± 18.1	0.003	183 ± 16.6	194 ± 13.7	NS
Creatinine Jaffe	mg/dL	0.30 ± 0.02	0.20 ± 0.02	NS	0.20 ± 0.01	0.2 ± 0.01	NS
LDH	U/L	469 ± 67	313 ± 40.8	< 0.001	324 ± 63.5	190 ± 20.2	< 0.001
Triglycerides	mg/dL	93.5 ± 12.1	85.3 ± 7.7	NS	69.0 ± 2.5	55.0 ± 4.8	NS
BUN	mg/dL	17.3 ± 0.5	14.8 ± 0.3	NS	19.0 ± 1.8	21.8 ± 0.5	NS
Uric Acid	mg/dL	6.30 ± 0.5	4.80 ± 0.6	NS	4.00 ± 0.2	3.80 ± 0.3	NS

Table 2. Serum Biochemical Parameters in Mice Received Compound 3a or Vehicle

The mice were fed either a high-fat diet or normal chow diet. Data analysis was performed using ANOVA and Tukey's post-hoc test. The values are expressed as mean ± SE. NS, not significant; ALT, Alanine Aminotransferase; AST, Aspartate aminotransferase; LDH, Lactate dehydrogenase; BUN, Blood urea nitrogen.

CONCLUSION

We have designed, synthesized, and characterized a novel class of triazole-based compounds as novel inhibitors of the Wnt/ β -catenin signaling pathway. One inhibitor of the class, compound **3a**, potently inhibits Wnt/ β -catenin signaling pathway and elicits favorable efficacy against the metabolic disorders induced by high fat diet. Our results have indicated that the new inhibitors stabilized the cellular level of Axin, fortifying the β -catenin destruction complex to attenuate β -catenin cytoplasmic level and suppress the transcription of Wnt/ β -catenin pathway target genes. The identification of direct protein target of compound **3a** is currently underway in our group using biotinylated chemical affinity chromatography, proteomics, and other biochemical methods. Based on the parent scaffold for these new compounds, further modification can be made to generate potent analogues with even improved drug properties that may be applied to the treatment of metabolic disorders, such as fatty liver, diabetes, and obesity, and other diseases, such as cancers, with aberrant regulation of Wnt/ β -catenin pathway.

EXPERIMENTAL SECTION

1. Chemical Analysis. All chemicals were obtained from commercial suppliers and used without further purification. Analytical thin layer chromatography was visualized by ultraviolet light at 256 nM. ¹H NMR spectra were recorded on a Varian (400 MHz) spectrometer. Data are presented as follows: chemical shift (in ppm on the δ scale relative to $\delta = 0.00$ ppm for the protons in tetramethylsilane (TMS), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (*J*/Hz). ¹³C NMR spectra were recorded at 100 MHz, and all chemical shifts values are reported in ppm on the δ scale with an internal reference of δ 77.0 or 39.0 for CDCl₃ or DMSO-*d*₆, respectively. The purities of title compounds were determined by analytic HPLC, performed on an Agilent 1100 instrument and a reverse-phase column (Waters XTerrra RP18, 5 μ M, 4.6 × 250 mm). All compounds were eluted with 45% CH₃CN/55% H₂O (0.1% TFA) over 20 min with a detection at 260 nm and a flow rate at 1.0 mL/min. All tested compounds were >95% purity. Yields were not optimized. Compounds **1a-n** and potassium trifluoroborate derivatives were commercially available.

General Procedure A: Synthesis of Compounds 2a-2p. To a mixture of substituted aniline 1a-1n (20 mmol) in concentrated HCl (8.0 mL) was added a solution of NaNO₂ (1.4 g, 21 mmol) in H₂O (6.0 mL) dropwise at 0 °C. The mixture was stirred at 0 °C for 1 h followed by the addition of a solution of NaN₃ (1.3 g, 20 mmol) in H₂O (6.0 mL) at 0 °C. The resulting mixture was stirred for another 1 h, extracted with diethyl ether (Et₂O) for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated. To the resulting residue was added ethyl 3-oxobutanoate, or ethyl 4-methyl-3-oxopentanoate (22 mmol) and a solution of NaOEt

(2.04 g, 30 mmol) in EtOH (120 mL) at room temperature. The mixture was stirred at 80 °C overnight, cooled and concentrated. To the resulting residue was added HCl (1 N, 250 mL) and the resulting precipitate was collected by filtration and washed with water to offer the crude product that was recrystallized from EtOH to give **2a-2p** (25-83%).

5-Methyl-1-(*o***-tolyl)-1***H***-1,2,3-triazole-4-carboxylic acid (2a).** The title compound was synthesized according to General Procedure A (55%): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 13.16 (s, 1H), 7.57-7.52 (m, 2H), 7.46-7.44 (m, 2H), 2.32 (s, 3H), 2.00 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 163.0, 140.1, 136.5, 135.5, 134.6, 131.7, 131.2, 127.8, 127.6, 17.1, 9.6.

5-Methyl-1-(*m***-tolyl**)**-1***H***-1,2,3-triazole-4-carboxylic acid (2b).** The title compound was synthesized according to General Procedure A (50%): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 13.47 (s, 1H), 7.85 (t, J = 8.0 Hz, 1H), 7.78-7.73 (m, 3H), 2.83 (s, 3H), 2.75 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 163.0, 140.0, 139.3, 136.9, 135.7, 131.2, 130.0, 126.4, 123.0, 21.3, 10.3.

5-Methyl-1-(p-tolyl)-1H-1,2,3-triazole-4-carboxylic acid (2c). The title compound was synthesized according to General Procedure A (46%): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 13.08 (s, 1H), 7.42-7.38 (m, 4H), 2.41 (s, 3H), 2.36 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 163.1, 140.3, 136.8, 133.3, 130.5, 125.7, 123.2, 21.2, 10.1.

1-(2-Fluorophenyl)-5-methyl-1*H*-1,2,3-triazole-4-carboxylic acid (2d). The title compound was synthesized according to General Procedure A (60%). ¹H-NMR (400 MHz, DMSO- d_6) δ 13.24 (s, 1H), 7.74-7.68 (m, 2H), 7.64-7.56 (m, 1H), 7.52-7.45 (m, 1H), 2.40

(s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 162.8, 157.5, 155.0, 140.8, 136.7, 133.5, 133.5, 129.5, 126.1, 123.2, 123.0, 117.6, 117.4, 9.5.

1-(2-Bromophenyl)-5-methyl-1*H***-1,2,3-triazole-4-carboxylic acid (2e).** The title compound was synthesized according to General Procedure A (80%): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 13.26 (s, 1H), 7.98-7.96 (m, 1H), 7.73-7.62 (m, 3H), 2.34 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 167.6, 145.3, 141.3, 139.3, 138.8, 138.1, 134.9, 134.4, 125.9, 14.4.

1-(2-Cyanophenyl)-5-methyl-1*H***-1,2,3-triazole-4-carboxylic acid (2f).** The title compound was synthesized according to General Procedure A (71%): ¹H-NMR (400 MHz, DMSO- d_6) δ 13.37 (s, 1H), 8.23-8.21 (d, *J* = 6.8 Hz, 1H), 8.05-8.01 (t, *J* = 7.2 Hz), 7.92-7.87 (m, 2H), 2.47 (s, 3H); ¹³C-NMR (100 MHz, DMSO- d_6) δ 162.7, 140.6, 136.9, 136.8, 135.3, 134.9, 132.0, 128.8, 115.6, 110.5, 9.8.

1-(2-Methoxyphenyl)-5-methyl-1*H*-1,2,3-triazole-4-carboxylic acid (2g). The title compound was synthesized according to General Procedure A (80%): ¹H-NMR (400 MHz, DMSO- d_6) δ 13.14 (s, 1H), 7.66-7.62 (t, *J* = 8.0 Hz, 1H), 7.49-7.47 (d, *J* = 8.0 Hz, 1H), 7.35-7.33 (d, *J* = 8.0 Hz, 1H), 7.20-7.16 (t, *J* = 8.0 Hz, 1H), 3.80 (s, 3H), 2.31 (s, 3H); ¹³C-NMR (100 MHz, DMSO- d_6) δ 163.0, 154.1, 140.8, 136.3, 132.7, 128.9, 123.9, 121.3, 113.3, 56.4, 9.5.

1-(2-Carbamoylphenyl)-5-methyl-1*H***-1,2,3-triazole-4-carboxylic acid (2h).** The title compound was synthesized according to General Procedure A (65%): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 13.10 (s, 1H), 7.93 (s, 1H), 7.70-7.68 (m, 1H), 7.67-7.62 (m, 2H), 7.55-7.52 (m, 1H), 7.38 (s, 1H), 2.38 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 167.6, 163.2, 140.8, 136.0, 135.9, 131.4, 131.0, 129.1, 128.5, 129.1, 128.5, 128.3, 9.9.

1-(2-Acetylphenyl)-5-methyl-1*H***-1,2,3-triazole-4-carboxylic acid (2i).** The title compound was synthesized according to General Procedure A (40%): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 8.02-7.99 (m, 1H), 7.77-7.73 (m, 2H), 7.61-7.59 (m, 1H), 2.32 (s, 3H), 2.26 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 199.0, 163.0, 140.7, 136.5, 136.3, 133.3, 132.6, 131.5, 130.4, 128.8, 29.3, 9.8.

5-Methyl-1-(2-morpholinophenyl)-1*H***-1,2,3-triazole-4-carboxylic acid (2j).** The title compound was synthesized according to General Procedure A (83%): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 13.17 (s, 1H), 7.63-7.59 (t, *J* = 8.0 Hz, 1H), 7.44-7.42 (d, *J* =8.0 Hz, 1H), 7.33-7.31 (d, *J* = 8.0 Hz, 1H), 7.30-7.26 (t, *J* = 8.0 Hz, 1H), 3.42 (br s, 4H), 2.63 (br s, 4H), 2.38 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 162.9, 148.0, 140.5, 136.7, 132.3, 129.2, 129.1, 124.0, 120.9, 66.6, 51.4, 10.0.

1-([1,1'-Biphenyl]-2-yl)-5-methyl-1*H***-1,2,3-triazole-4-carboxylic acid (2k).** The title compound was synthesized according to General Procedure A (65%): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 7.72-7.68 (m, 1H), 7.63-7.61 (m, 2H), 7.53-7.51 (m, 1H), 7.26-7.21 (m, 3H), 7.02-6.96 (m, 2H), 1.97 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 164.2, 140.1, 138.9, 137.9, 137.5, 133.5, 131.5, 131.4, 129.3, 129.0, 128.8, 128.4, 128.3, 9.5.

1-(2,3-Dimethylphenyl)-5-methyl-1*H***-1,2,3-triazole-4-carboxylic acid (2l).** The title compound was synthesized according to General Procedure A (70%): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 13.14 (s, 1H), 7.46-7.45 (m, 1H), 7.36-7.32 (m, 1H), 7.26-7.25 (m, 1H), 2.36 (s, 3H), 2.30 (s, 3H), 1.81 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 167.8, 144.9, 143.9, 141.2, 139.3, 138.9, 137.0, 131.6, 130.1, 24.9, 18.7, 14.3.

1-(2,4-Dimethylphenyl)-5-methyl-1*H***-1,2,3-triazole-4-carboxylic acid (2m).** The title compound was synthesized according to General Procedure A (73%): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 13.01 (s, 1H), 7.28-7.24 (m, 2H), 7.20-7.18 (m, 1H), 2.34 (s, 3H), 2.26 (s, 3H), 1.88 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 163.0, 140.9, 140.1, 136.4, 135.1, 132.2, 132.1, 128.0, 127.5, 21.1, 17.0, 9.6.

5-Methyl-1-(naphthalen-1-yl)-1*H***-1,2,3-triazole-4-carboxylic acid (2n).** The title compound was synthesized according to General Procedure A (72%): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 13.15 (s, 1H), 8.27-8.25 (d, *J* = 8.0 Hz, 1H), 8.16-8.14 (d, *J* = 8.0 Hz, 1H), 7.80-7.30 (m, 2H), 7.69-7.65 (t, *J* = 8.0 Hz, 1H), 7.62-7.58 (t, *J* = 8.0 Hz, 1H), 7.14-7.12 (d, *J* = 8.0 Hz, 1H), 2.31 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 163.0, 141.1, 136.7, 134.1, 131.5, 129.2, 128.9, 128.8, 127.9, 127.7, 126.2, 126.0, 122.0, 9.7.

5-Ethyl-1-(2-fluorophenyl)-1*H***-1,2,3-triazole-4-carboxylic acid (20).** The title compound was synthesized according to General Procedure A (80%): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 13.31 (s, 1H), 7.77-7.74 (m, 2H), 7.64-7.59 (t, *J* = 8.8 Hz, 1H), 7.52-7.48 (t, *J* = 8.0 Hz, 1H), 2.84-2.78 (q, *J* = 7.2 Hz, 2H), 1.02-0.98 (t, *J* = 7.2 Hz, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 167.4, 162.6, 160.1, 150.5, 140.9, 138.6, 138.5, 134.6, 130.9, 130.8, 122.3, 122.1, 21.6, 17.6.

1-(2-Fluorophenyl)-5-isopropyl-1*H*-1,2,3-triazole-4-carboxylic acid (2p). The title compound was synthesized according to General Procedure A (25%): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 13.01 (s, 1H), 7.77-7.74 (m, 2H), 7.64-7.60 (t, *J* = 8.0 Hz, 1H), 7.52-7.48 (t, *J* = 8.0 Hz, 1H), 3.24-3.20 (m, 1H), 1.23-1.21 (d, *J* = 6.8 Hz, 6H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 167.6, 162.8, 160.3, 153.5, 140.6, 138.7, 138.6, 135.0. 130.8, 122.2, 122.0, 29.5, 24.6.

General Procedure B: Synthesis of Compounds 3a-3r. To a solution of 2aminoquinoline or naphthalen-2-amine or 6-bromoquinolin-2-amine (0.5 mmol) and 2a-2p (0.675 mmol) in DCE (2 mL) was added PyCIU (0.775 mmol) and DIPEA (2.33 mmol). The mixture was stirred at 80 °C overnight, then cooled and concentrated. To the resulting residue was added ethyl acetate (30 mL), and the mixture was washed with brine, dried over Na₂SO₄ and concentrated. The crude material was purified by column chromatography (hexane/AcOEt, v/v = 4/1 to 2/1) to give products 3a-3r (47-69%).

5-Methyl-*N***-(quinolin-2-yl)-1-***(o***-tolyl)-1***H***-1,2,3-triazole-4-carboxamide (3a).** The title compound was synthesized according to General Procedure B (60%, a white solid): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 10.22 (s, 1H), 8.49-8.47 (d, *J* = 8.8 Hz, 1H), 8.42-8.40 (d, *J* = 8.8 Hz, 1H), 8.00-7.98 (d, *J* = 8.0 Hz, 1H), 7.91-7.89 (d, *J* = 8.0 Hz, 1H), 7.69 (t, *J* = 8.0 Hz, 1H), 7.61-7.56 (m, 3H), 7.51-7.50 (m, 2H), 2.45 (s, 3H), 2.04 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 160.0, 150.8, 146.8, 139.5, 139.1, 137.6, 135.5, 134.4, 131.8, 131.4, 130.7, 128.3, 127.8, 127.7, 127.7, 126.4, 125.8, 114.7, 17.2, 9.4. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₈N₅O, 344.1511, found, 344.1510. HPLC: *t*_R = 8.75 min, 98.2%.

5-Methyl-*N***-(quinolin-2-yl)-1-(m-tolyl)-1***H***-1,2,3-triazole-4-carboxamide** (**3b**). The title compound was synthesized according to General Procedure B (65%, a white solid): ¹H-NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 8.57 (d, *J* = 8.0 Hz, 1H), 8.22 (d, *J* = 8.0 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.70 (t, *J* = 7.2, 7.6 Hz, 1H), 7.47 (d, *J* = 7.2 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.33 (s, 1H), 7.27 (d, *J* = 5.6 Hz, 1H), 2.71 (s, 3H), 2.48 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 160.0, 150.6, 146.9, 140.1, 138.4, 138.1, 137.9, 135.3, 130.9, 129.9, 129.4, 127.8, 127.5, 126.4, 125.9, 125.1, 122.2, 114.2,

21.3, 9.9; HRMS (ESI): calcd. for C₂₀H₁₈N₅O [M + H]⁺ 344.1511, found 344.1508. HPLC: $t_{\rm R} = 6.51$ min, 100%.

5-Methyl-N-(quinolin-2-yl)-1-(*p***-tolyl)-1***H***-1,2,3-triazole-4-carboxamide (3c).** The title compound was synthesized according to General Procedure B (68%, a white solid): ¹H-NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.55 (d, *J* = 8.0 Hz, 1H), 8.20 (d, *J* = 8.0 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.68 (t, *J* = 7.6, 8.0 Hz, 1H), 7.45 (t, *J* = 6.8, 8.0 Hz, 1H), 7.43-7.35 (m, 4H), 2.68 (s, 3H), 2.46 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 160.0, 150.6, 146.9, 140.4, 138.4, 138.1, 137.9, 132.9, 130.2, 129.9, 127.8, 127.5, 126.4, 125.1, 125.0, 114.2, 21.3, 9.9; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₈N₅O, 344.1511; found, 344.1511. HPLC: *t*_R = 6.40 min, 99.9%.

1-(2-Fluorophenyl)-5-methyl-N-(quinolin-2-yl)-1H-1,2,3-triazole-4-carboxamide

(**3d**). The title compound was synthesized according to General Procedure B (50%, a white solid): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 10.25 (s, 1H), 8.46-8.44 (m, 2H), 7.97-7.54 (m, 9H), 2.52 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 159.8, 157.5, 155.0, 150.8, 146.8, 140.2, 139.1, 137.7, 133.7, 130.6, 129.5, 128.2, 127.7, 126.4, 126.2, 125.8, 123.0, 117.7, 117.5, 114.7, 9.3. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₉H₁₅FN₅O, 348.1261; found, 348.1252. HPLC: *t*_R = 9.53 min, 99.9%.

1-(2-Bromophenyl)-5-methyl-N-(quinolin-2-yl)-1H-1,2,3-triazole-4-carboxamide

(**3e**). The title compound was synthesized according to General Procedure B (68%, a white solid): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 10.26 (s, 1H), 8.48-8.46 (d, *J* = 8.0 Hz, 1H), 8.41-8.39 (d, *J* = 8.0 Hz, 1H), 8.02-8.99 (t, *J* = 8.8 Hz, 2H), 7.91-7.89 (d, *J* = 8.0 Hz, 1H), 7.77-7.67 (m, 4H), 7.57-7.53 (d, *J* = 8.0 Hz, 1H), 2.46 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 164.6, 155.5, 151.6, 144.7, 143.9, 142.3, 139.2, 138.9, 138.3, 135.4, 135.0, 134.5, 133.0,

132.5, 131.2, 130.6, 125.9, 119.6, 14.2. HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{19}H_{15}BrN_5O_2$, 408.0460; found, 408.0458. HPLC: $t_R = 8.21 \text{ min}$, 99.9%.

1-(2-Cyanophenyl)-5-methyl-*N*-(quinolin-2-yl)-1*H*-1,2,3-triazole-4-carboxamide (3f). The title compound was synthesized according to General Procedure B (57%, a white solid): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 10.35 (s, 1H), 8.49-8.46 (d, *J* = 8.8 Hz, 1H), 8.40-8.38 (d, *J* = 8.8 Hz, 1H), 8.27-8.25 (d, *J* = 8.0 Hz, 1H), 8.08-8.04 (t, *J* = 8.0 Hz, 1H), 7.99-7.96 (t, 2H), 7.94-7.90 (t, *J* = 8.0 Hz, 2H), 7.79-7.75 (t, *J* = 8.0 Hz, 1H), 7.57-7.53 (t, *J* = 8.0 Hz, 1H), 2.60 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 159.7, 150.8, 146.8, 140.1, 139.1, 138.0, 136.6, 135.4, 135.1, 132.1, 130.7, 128.8, 128.3, 127.8, 126.4, 125.8, 115.6, 114.9, 110.5, 9.6. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₅N₆O, 355.1307; found 355.1304. HPLC: *t*_R = 7.45 min, 99.8%.

1-(2-Methoxyphenyl)-5-methyl-N-(quinolin-2-yl)-1H-1,2,3-triazole-4-carboxamide

(**3g**). The title compound was synthesized according to General Procedure B (48%, a white solid): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 10.28 (s, 1H), 8.61-8.51 (m, 2H), 8.09 (m, 1H), 8.01 (m, 1H), 7.88 (m, 1H), 7.78 (m, 1H), 7.66 (m, 2H), 7.52-7.47 (m, 1H), 7.35-7.32 (m, 1H), 3.97-3.94 (q, *J* = 4 Hz, 3H), 2.56-2.53 (q, *J* = 4 Hz, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 160.0, 154.1, 150.9, 146.2, 140.2, 139.1, 137.3, 132.9, 130.6, 128.9, 128.2, 127.7, 126.4, 125.7, 123.7, 121.4, 114.7, 113.4, 56.5, 9.4. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₈N₅O₂, 360.1460; found, 360.1460. HPLC: *t*_R = 8.88 min, 99.8%.

1-(2-Carbamoylphenyl)-5-methyl-*N***-(quinolin-2-yl)-1***H***-1,2,3-triazole-4-carboxamide** (**3h**). The title compound was synthesized according to General Procedure B (49%, a pale yellow solid): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 10.13 (s, 1H), 8.48-8.46 (d, *J* = 8.8 Hz, 1H), 8.42-8.39 (d, *J* = 8.8 Hz, 1H), 8.06 (s, 1H), 7.99-7.97 (d, *J* = 8.0 Hz, 1H), 7.90-7.88

(d, J = 8.0 Hz, 1H), 7.80-7.74 (m, 4H), 7.68-7.66 (m, 1H), 7.57-7.53 (t, J = 8.0 Hz, 1H), 7.49 (s, 1H), 2.50 (s, 3H); ¹³C-NMR (100 MHz, DMSO- d_6) δ 172.3, 164.8, 155.6, 151.6, 145.1, 143.9, 141.7, 139.7, 137.6, 136.2, 135.9, 135.4, 133.9, 133.3, 133.0, 132.5, 131.2, 130.5, 119.4, 14.4. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₇N₆O₂, 373.1413; found, 373.1413. HPLC: $t_{\rm R} = 2.72$ min, 95.0%.

1-(2-Acetylphenyl)-5-methyl-*N***-(quinolin-2-yl)-1***H***-1,2,3-triazole-4-carboxamide (3i).** The title compound was synthesized according to General Procedure B (48%, a brown solid): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 10.37 (s, 1H), 8.65-8.63 (d, *J* = 8.8 Hz, 1H), 8.58-8.56 (d, *J* = 8.8 Hz, 1H), 8.30-8.28 (d, *J* = 7.2 Hz, 1H), 8.16-8.14 (d, *J* = 8.0 Hz, 1H), 8.07-8.01 (m, 3H), 7.95-7.89 (m, 2H), 7.74-7.70 (t, *J* = 7.2 Hz, 1H), 2.67 (s, 6H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 203.7, 164.7, 155.6, 151.6, 144.9, 143.9, 142.3, 140.9, 138.2, 137.1, 136.4, 135.4, 133.6, 133.0, 132.5, 131.2, 130.5, 119.5, 34.1, 14.3. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₁₈N₅O₂, 372.1460; found, 372.1455. HPLC: *t*_R = 7.39 min, 99.2%.

5-Methyl-1-(2-morpholinophenyl)-N-(quinolin-2-yl)-1H-1,2,3-triazole-4-

carboxamide (**3j**). The title compound was synthesized according to General Procedure B (48%, a white solid): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 10.20 (s, 1H), 8.48-8.46 (d, *J* = 8.8 Hz, 1H), 8.43-8.40 (d, *J* = 8.8 Hz, 1H), 7.99-7.97 (d, *J* = 8.4 Hz, 1H), 7.90-7.88 (d, *J* = 8.4 Hz, 1H), 7.78-7.74 (t, *J* = 8.0 Hz, 1H), 7.66-7.62 (t, *J* = 8.0 Hz, 1H), 7.57-7.53 (t, *J* = 8.0 Hz, 1H), 7.50-7.48 (d, *J* = 8.0 Hz, 1H), 7.37-7.33 (t, *J* = 8.0 Hz, 1H), 7.31-7.29 (d, *J* = 8.0 Hz, 1H), 3.45 (br s, 4H), 2.67 (br s, 4H), 2.50 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 159.9, 150.8, 146.8, 139.8, 139.1, 137.8, 132.4, 130.6, 129.3, 129.0, 128.3, 127.7, 126.4, 125.7, 124.1, 121.0, 114.7, 66.6, 51.4, 9.7. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₃H₂₃N₆O₂, 415.1882; found, 415.1873. HPLC: *t*_R = 10.48 min, 99.6%.

1-([1,1'-Biphenyl]-2-yl)-5-methyl-*N*-(quinolin-2-yl)-1*H*-1,2,3-triazole-4-carboxamide (3k). The title compound was synthesized according to General Procedure B (58%, a white solid): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 10.11 (s, 1H), 8.45-8.43 (d, *J* = 8.0 Hz, 1H), 8.33-8.31 (d, *J* = 8.0 Hz, 1H), 7.98-7.96 (d, *J* = 8.0 Hz, 1H), 7.89-7.87 (d, *J* = 8.0 Hz, 1H), 7.81-7.69 (m, 5H), 7.56-7.52 (t, *J* = 7.2 Hz, 1H), 7.34-7.32 (m, 3H), 7.09-7.07 (m, 2H), 2.16 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 159.7, 150.7, 146.8, 139.6, 139.1, 137.4, 137.2, 132.8, 131.9, 131.5, 130.6, 129.5, 129.2, 128.7, 128.5, 128.2, 127.7, 126.4, 125.8, 114.7, 9.28. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₅H₂₀N₅O, 406.1668; found, 406.1665. HPLC: *t*_R = 11.17 min, 99.9%.

1-(2,3-Dimethylphenyl)-5-methyl-*N***-(quinolin-2-yl)-1***H***-1,2,3-triazole-4-carboxamide** (**3**). The title compound was synthesized according to General Procedure B (67%, a white solid): ¹H-NMR (400 MHz, CDCl₃) δ 9.95 (s, 1H), 8.57-8.55 (d, *J* = 8.4 Hz, 1H), 8.23-8.21 (d, *J* = 8.4 Hz, 1H), 7.93-7.91 (d, *J* = 8.8 Hz, 1H), 7.81-7.79 (d, *J* = 8.4 Hz, 1H), 7.71-7.67 (t, *J* = 8.0 Hz, 1H), 7.49-7.45 (t, *J* = 7.2 Hz, 1H), 7.40-7.38 (d, *J* = 7.2 Hz, 1H), 7.31-7.27 (t, *J* = 8.0 Hz, 1H), 7.12-7.10 (d, *J* = 8.0 Hz, 1H), 2.50 (s, 3H), 2.39 (s, 3H), 1.91 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 160.1, 150.6, 146.9, 139.1, 139.0, 138.4, 137.7, 134.3, 134.0, 132.2, 129.9, 127.8, 127.5, 126.5, 126.4, 125.1, 124.8, 114.2, 20.3, 14.0, 9.3. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₂₀N₅O, 358.1668; found, 358.1670. HPLC: *t*_R = 11.23 min, 99.9%.

1-(2,4-Dimethylphenyl)-5-methyl-*N***-(quinolin-2-yl)-1***H***-1,2,3-triazole-4-carboxamide** (**3m**). The title compound was synthesized according to General Procedure B (69%, a white solid): ¹H-NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 8.57-8.55 (d, *J* = 8.8 Hz, 1H), 8.23-8.21 (d, *J* = 8.8 Hz, 1H), 7.93-7.91 (d, *J* = 8.0 Hz, 1H), 7.82-7.80 (d, *J* = 8.0 Hz, 1H), 7.717.67 (t, J = 8.0 Hz, 1H), 7.49-7.45 (t, J = 8.0 Hz, 1H), 7.26-7.24 (d, J = 8.0 Hz, 1H), 7.20-7.18 (d, J = 8.0 Hz, 1H), 7.15-7.13 (d, J = 8.0 Hz, 1H), 2.51 (s, 3H), 2.44 (s, 3H), 2.03 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 160.1, 150.6, 141.1, 138.9, 138.4, 137.7, 135.1, 132.1, 131.7, 129.9, 127.8, 127.7, 127.5, 126.9, 126.4, 125.1, 114.2, 21.5, 17.1, 9.3. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₂₀N₅O 358.1668, found 358.1661. HPLC: $t_{\rm R} = 17.12$ min, 99.9%.

5-Methyl-1-(naphthalen-1-yl)-N-(quinolin-2-yl)-1H-1,2,3-triazole-4-carboxamide

(3n). The title compound was synthesized according to General Procedure B (47%, a white solid): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 10.56 (s, 1H), 8.76-8.69 (m, 2H), 8.58-8.56 (d, *J* = 8.0 Hz, 1H), 8.46-8.44 (d, *J* = 8.0 Hz, 1H), 8.26-8.24 (d, *J* = 8.0 Hz, 1H), 8.19-8.17 (d, *J* = 8.0 Hz, 1H), 8.10 (s, 1H), 8.07-8.10 (m, 2H), 7.97-7.95 (m, 1H), 7.92-7.89 (t, *J* = 6.4 Hz, 1H), 7.82 (t, *J* = 6.4 Hz, 1H), 7.49-7.47 (d, *J* = 8.0 Hz, 1H), 2.67 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 160.0, 150.9, 146.8, 140.4, 139.2,137.8, 134.1, 131.7, 131.4, 130.7, 129.2, 128.9, 128.8, 128.3, 127.8, 127.7, 126.4, 126.3, 126.0, 125.8, 122.1, 114.7, 9.5. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₃H₁₈N₅O, 380.1511; found, 380.1512. HPLC: *t*_R = 9.54 min, 97.4 %.

5-Ethyl-1-(2-fluorophenyl)-*N*-(**quinolin-2-yl**)-1*H*-1,2,3-triazole-4-carboxamide (30). The title compound was synthesized according to General Procedure B (60%, a white solid): ¹H-NMR (400 MHz, DMSO- d_6) δ 10.28 (s, 1H), 8.49-8.46 (d, *J* = 8.8 Hz, 1H), 8.42-8.40 (d, *J* = 8.8 Hz, 1H), 8.00-7.98 (d, *J* = 8.8 Hz, 1H), 7.91-7.89 (d, *J* = 8.8 Hz, 1H), 7.84-7.75 (m, 3H), 7.69-7.65 (t, *J* = 8.0 Hz, 1H), 7.57-7.53 (m, 2H), 2.96-2.91 (q, *J* = 7.2 Hz, 2H), 1.11-1.08 (t, *J* = 7.2 Hz, 3H); ¹³C-NMR (100 MHz, DMSO- d_6) δ 164.4, 162.6, 160.1, 155.6, 151.6, 149.9, 143.9, 142.1, 138.8, 138.7, 135.4, 134.6, 133.0, 132.5, 131.2, 131.0,

130.9, 130.5, 122.4, 122.2, 119.5, 21.6, 17.5. HRMS (ESI): m/z $[M + H]^+$ calcd for C₂₀H₁₇FN₅O, 362.1417; found, 362.1415. HPLC: $t_R = 14.04 \text{ min}, 99.7\%$.

1-(2-Fluorophenyl)-5-isopropyl-N-(quinolin-2-yl)-1H-1,2,3-triazole-4-carboxamide

(**3p**). The title compound was synthesized according to General Procedure B (69%, a white solid): ¹H-NMR (400 MHz, DMSO-*d*₆) δ 10.34 (s, 1H), 8.49-8.47 (d, *J* = 8.8 Hz, 1H), 8.43-8.41 (d, *J* = 8.8 Hz, 1H), 8.00-7.98 (d, *J* = 8.8 Hz, 1H), 7.91-7.89 (d, *J* = 8.8 Hz, 1H), 7.84-7.75 (m, 3H), 7.69-7.65 (t, *J* = 8.0 Hz, 1H), 7.57-7.53 (m, 2H), 3.24-3.20 (m, 1H), 1.34-1.32 (d, *J* = 7.2 Hz, 6H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 164.3, 162.8, 160.3, 155.6, 153.1, 151.6, 143.9, 142.1, 138.9, 138.8, 135.4, 134.9, 133.0, 132.5, 131.2, 131.0, 130.5, 128.4, 128.3, 122.3, 122.1, 119.5, 29.7, 24.8. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₁₉FN₅O, 376.1574; found, 376.1581. HPLC: *t*_R = 10.69 min, 99.0%.

5-Methyl-*N***-(naphthalen-2-yl)-1-***(o***-tolyl)-1***H***-1,2,3-triazole-4-carboxamide (3q).** The title compound was synthesized according to General Procedure B (57%, a white solid): ¹H-NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H), 8.47 (s, 1H), 7.87-7.81 (m, 3H), 7.67-7.64 (dd, *J*₁ = 1.6 Hz, *J*₂ = 8.8 Hz, 1H), 7.53-7.39 (m, 5H), 7.26 (s, 1H), 2.53 (s, 3H), 2.09 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 159.4, 138.4, 138.1, 135.5, 135.2, 134.3, 133.9, 131.5, 130.8, 130.7, 128.8, 127.7, 127.6, 127.2, 127.1, 126.5, 125.0, 119.8, 116.4, 17.2, 9.2. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₁₉N₄O, 343.1559; found, 343.1561. HPLC: *t*_R = 11.64 min, 98.6%.

N-(6-Bromoquinolin-2-yl)-5-methyl-1-(*o*-tolyl)-1*H*-1,2,3-triazole-4-carboxamide (3r). The title compound was synthesized according to General Procedure B (60%, a white solid): ¹H-NMR (400 MHz, CDCl₃) δ 9.98 (s, 1H), 8.59 (d, *J* = 8.4 Hz, 1H), 8.13 (d, *J* = 8.0 Hz, 1H), 7.95 (s, 1H), 7.80-7.75 (m, 2H), 7.51-7.49 (m,1H), 7.45-7.40 (m, 2H), 7.26 (s, 1H), 2.51 (s, 3H), 2.08 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 160.0, 150.8, 139.0, 137.8, 135.5, 134.2, 133.4, 131.5, 130.9, 129.5, 129.3, 127.1, 118.7, 115.0, 17.2, 9.3; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₇BrN₅O, 422.0616; found, 422.0621. HPLC: $t_{\rm R} = 8.14$ min, 98.2%.

General Procedure C: Synthesis of Compounds 3s-3u. In a conical shaped microwave vial was added 3r (0.169 mmol), potassium trifluoroborate derivatives (0.338 mmol), 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (XPhos, 0.034 mmol), cesium carbonate (0.507 mmol), and palladium (II) acetate (0.017 mmol), THF (0.5 mL) and water (0.05 mL). The reaction mixture was sealed and stirred at room temperature for 10 min. Once a clear solution was obtained, the vial was heated to 80 °C for 15 min followed by 145 °C for 45 min. After cooling, the reaction mixture was diluted with DCM and dried over Na₂SO₄. The solution was filtered, concentrated and purified by column chromatography (5-15% MeOH in DCM) to give compounds 3s-3u (55-73%).

5-Methyl-N-(6-(morpholinomethyl)quinolin-2-yl)-1-(o-tolyl)-1H-1,2,3-triazole-4-

carboxamide (**3s**). The title compound was synthesized according to General Procedure C (73%, a white solid): ¹H-NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.54 (d, *J* = 8.8 Hz, 1H), 8.17 (d, *J* = 8.8 Hz, 1H), 7.86 (d, *J* = 7.6 Hz, 1H), 7.71-7.69 (m, 2H), 7.49-7.47 (m, 1H), 7.43-7.39 (m, 2H), 7.25 (d, *J* = 7.2 H, 1H), 3.74-3.67 (m, 6H), 2.50-2.51 (m, 7H), 2.06 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 160.0, 150.5, 146.4, 138.8, 138.2, 137.7, 135.5, 134.2, 131.5, 131.4, 130.9, 127.8, 127.4, 127.1, 126.1, 114.3, 66.8, 63.1, 53.6, 17.2, 9.3; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₅H₂₇N₆O₂, 443.2195; found, 443.2189. HPLC: *t*_R = 1.96 min, 97.2%.

Page 37 of 54

5-Methyl-*N***-**(**6**-(**piperidin-1-ylmethyl**)**quinolin-2-yl**)**-1**-(*o*-**tolyl**)**-**1*H***-1**,**2**,**3**-**triazole-4**-**carboxamide (3t).** The title compound was synthesized according to General Procedure C (55%, a white solid): ¹H-NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 8.51 (d, *J* = 8.0 Hz, 1H), 8.15 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 1H), 7.68-7.66 (m, 2H), 7.47-7.46 (m, 1H), 7.42-7.36 (m, 2H), 7.24 (d, *J* = 7.6 Hz, 1H), 3.61 (s, 2H), 2.49 (s, 3H), 2.41-2.40 (m, 4H), 2.05 (s, 3H), 1.58-1.57 (m, 4H), 1.43-1.41 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 159.9, 150.3, 146.3, 138.8, 138.2, 137.8, 135.8, 135.5, 134.3, 131.7, 131.5, 130.8, 127.5, 127.2, 127.1, 126.1, 114.1, 63.6, 54.6, 25.9, 24.3, 17.2, 9.3; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₆H₂₉N₆O, 441.2403; found, 441.2417. HPLC: *t*_R = 2.05 min, 100%.

5-Methyl-N-(6-(thiomorpholinomethyl)quinolin-2-yl)-1-(*o***-tolyl)-1***H***-1,2,3-triazole-4carboxamide (3u).** The title compound was synthesized according to General Procedure C (70%, a white solid): ¹H-NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 8.53 (d, *J* = 8.4 Hz, 1H), 8.16 (d, *J* = 8.8 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 1H), 7.68-7.66 (m, 2H), 7.50-7.47 (m, 1H), 7.43-7.37 (m, 2H), 7.25 (d, *J* = 7.6 Hz, 1H), 3.66 (s, 2H), 2.74-2.69 (m, 8H), 2.50 (s, 3H), 2.06 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 159.9, 150.4, 146.4, 138.8, 138.1, 137.8, 135.5, 135.1, 134.2, 131.5, 131.3, 130.9, 127.8, 127.1, 127.1, 126.1, 114.2, 63.4, 55.0, 28.0, 17.2, 9.3; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₅H₂₇N₆OS, 459.1967; found, 459.1955. HPLC: *t*_R = 2.12 min, 99.9%.

2. Wnt-HEK293 Luciferase Reporter Assay in a 1536-Well Plate Format. Stably transfected Wnt-HEK293 cells were generated by transfection of HEK293 cells with TCF based M50 Super 8x TOPFlash plasmid along with a pLenti-GFP-Puro empty plasmid (Addgene). The clones carrying the TOPFlash and GFP constructs were screened with 2 μ g/ml puromycin for a period of 3 weeks. Stably expressing clones were validated with

prototypical Wnt activators (WNT3a and LiCl) and inhibitor (XAV939). For our screening studies, cells were dispensed at 2000/well in 4 µL of the Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine serum into white-solid 1,536-well plates (Greiner Bio-One North America Inc., Monroe, NC) using flying reagent dispenser (FRD, Aurora Discovery, San Diego, CA). The assay plates were incubated for overnight at 37 °C. Then 23 nL of test compounds were transferred to the assay plates using pintool station (Wako, San Diego, CA), followed by the addition of 1 µL of 200 ng/mL recombinant human Wnt-3a (R&D Systems Inc., Minneapolis, MN) using an FRD to all the wells except in the top half portions of the first four columns which received the control assay medium instead. The assay plates were incubated for 24 h at 37 °C. The cell viability was determined as described below. For luciferase reporter assay, 4 µL/well ONE-Glo reagent (Promega Corporation) was added using an FRD and luminescence signal was measured through ViewLux plate reader after 30 min incubation at room temperature. Data were expressed as relative fluorescence units (cell viability assay) and relative luminescence units (luciferase reporter assay).

3. Confirmatory Luciferase Reporter Assay in a 24-Well Plate Format. Plasmids M50 Super 8x TOPFlash and FOPflash were gifts from Randall Moon (Addgene plasmid # 12456 and 12457).⁴⁸ Renilla luciferase was used as a control for the gene reporter assays. Human pcDNA3-wild type and pcDNA3-S33Y β -catenin were gifts from Eric Fearon (Addgene plasmid # 19286 and 16828).⁴⁹ HEK293 cells were transfected with the plasmids for 16 h using lipofectamine 2000 (Qiagen). Compounds were incubated with the transfected cells for additional 24 h and luciferase was measured using Promega's Dual-Luciferase Reporter Assay System according to the manufacturer's directives. Calculations

were carried out by using the ratio of the TOPFlash or FOPFlash luciferase adjusted by the Renilla luciferase.

4. Determination of Cell Viability. The effects of compounds on cell viability were determined under two incubation conditions. First, the cell viability under the condition for luciferase reporter assay was measured. The assay 1536-well plates were incubated with a compound for 24 h at 37 °C. Then 1 μ L/well CellTiter-Fluor reagent (Promega Corporation, Madison, WI) was added using an FRD and fluorescence signal was measured through ViewLux plate reader (Perkin Elmer, Boston, MA) after 30 min incubation at 37 °C. Second, the cytotoxic effects of select compoundswere assessed in unstimulated normal HEK293 cells with inherently low background Wnt pathway activity. The cells were plated at a density of 3.5×10^5 /well in 24-well plates for 24 h and then incubated with each compound for a much longer incubation time of 72 h relative to that for the reporter assay. Cell viability was determined by using CellTiter-Fluor reagent according to manufacturer's instruction.

5. Immunocytochemistry Analysis. HEK293 cells were seeded on slides coated with poly-D-lysine. In the following day, the cells were treated with compounds with or without Wnt activation by 20 mM LiCl or Wnt3a conditioned medium. Then the cells were washed once with PBS and fixed with 10% formalin (Sigma) at room temperature for 20 min. The cells were permeabilized with methanol for 5 min and washed three times with PBS. Blocking solution containing 5% bovine serum albumin in PBS was added to the slides for 1 h. Primary antibodies were incubated with the slide overnight and then secondary antibodies were added for additional 2 h. Further wash step was carried out and DAPI was

incubated with the slide for 30 min. The slides were washed twice and mounted prior to microscopy analysis.

6. Cellular Fractionation and Western Blot Analysis. Lysis of the cells were carried out using lysis buffer (10 mM HEPES, 100 μ M EDTA, 10 mM KCl, 0.5% NP40, protease and phosphatase inhibitor cocktails).⁵⁰ Cells were lysed for 20 min, vortexed for 10 seconds and centrifuged at 13,000 x g for 15 min. Tissue lysis was carried out using RIPA Lysis Buffer System (Santa Cruz Biotechnology, #sc-24948) and its fractionation was carried out strictly as published by Wieckowski *et al.*⁵¹

Proteins were quantitated with bicinchoninic acid assay. The adjusted protein concentrations were resolved on 10% SDS-PAGE gel. This was transferred to nitrocellulose membrane and western blot was carried out using antibodies specific for the proteins as followed: β -actin (Abcam), p-catenin (#9561), Axin (#2087) were purchased from Cell Signaling, and β -catenin (sc-133240), GSK-3 α/β (sc-7291) were from Santa Cruz Biotechnology.

Overexpression pcDNA3 plasmid vectors for Flag tagged human beta-catenin and beta-catenin S33Y were gifts from Eric Fearon (Addgene plasmid #19286).⁴⁹ All siRNAs were purchased from Sigma-Adrich.

7. Quantitative PCR. Total RNA was extracted from cells or tissues using Trizol reagent (Thermo Fisher) following the manufacturer's instructions. Reverse transcription was carried out to obtain the complementary DNA, which was further used to determine the gene expression using quantitative PCR. The human primers used in our studies are

outlined in Supplementary table 1 (Table S1) and those of the mouse have been previous published.¹¹

8. Immunoprecipitation. Following experiments, cells were washed in PBS and scraped into new Eppendorf tubes. Cell lysis was carried out with IP lysis buffer (25 mM Tris, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 5% glycerol; pH 7.4) for 20 min. The lysates were centrifuged at 13,000 x g for 15 min and the supernatant was collected and pellet discarded. Protein A/G plus beads (Santa Cruz biotechnology) were added to preclear the lysate for 1 h. The lysate was centrifuge at 1,000 x g for 1 min and the supernatant was transferred to a new Eppendorf tube. Protein concentration was determined with the BCA assay and 2 mg total protein was used for the immunoprecipitation experiment using the indicated antibodies overnight. The protein beads were then added to the lysates and incubated for 12 h. The samples were centrifuge at 1,000 x g for 1 min and further washed with lysis buffer three times. Laemmli sample buffer was added to the final pelleted beads. The sample was heated at 95 °C for 5 min, then vortexed and centrifuge for additional 1 min. The supernatant was immunoblotted for the indicated proteins.

9. RNAi Mediated Knockdown. All knockdown studies were carried out with lipofectamine RNAimax (Thermofisher) for RNAi transfection according to manufacturer's instructions. Small interfering RNAs were purchased from Sigma-Aldrich. Cells were transfected for 36 h and treated with compounds for additional 24 h prior to harvest unless otherwise indicated.

10. Surface Plasmon Resonance (SPR) Analysis. SPR assays were performed and analyzed by the University of Maryland School of Medicine Biosensor Core Facility. GST tagged human GSK3 β (#14-306-D) was purchased from Millipore Sigma.

11. Nile Red Staining. Huh7 cells were seeded on coverslips coated with rat Collagen I overnight. The cells were then treated with varying concentrations of the compounds for 36 h and together with 200 μ M sodium oleate for additional 12 h. The Hanks' Balanced Salt solution (HBSS) was used to wash the cells once and incubated with the cells along with 1 μ M Nile red for 10 min at 37 °C in the dark. Excess Nile red was washed off with HBSS buffer and the cells were imaged with a fluorescence microscope using 552/636 nm (excitation/emission) lamp settings.

12. Animals. The animal experiments received prior approval from and followed the guidelines of the Institutional Animal Care and Use Committee (IACUC) of the University of Maryland Baltimore. All the mice were housed in 12-h light/ 12-h dark cycle with food and water provided *ad libitum*. For the efficacy studies, mice were either fed a standard normal chow diet or high fat diet (45% kcal fat) purchased from Harlan Laboratories (Indianapolis, IN). All experiments utilized the *C57BL/6J* mice purchased from the Jackson Laboratories (Bar Harbor, ME).

13. Mouse Efficacy and Pharmacokinetic Study Design. For the efficacy study, four groups of 8 week-old male mice weighing 24-27 g were used for the experiments. Two groups of mice were fed high fat diet obtained from Harlan Laboratories (#TD.08811) containing 45% kcal fat initially for 6 weeks, then in combination with intraperitoneal injection of 40 mg/kg compound **3a** or vehicle (corn oil) every two days until the end of the experiments. The other two groups received normal chow diet throughout the study with or without 40 mg/kg compound **3a**. Intraperitoneal glucose tolerance test (IPGTT) was performed before and at the end of compound/vehicle treatment. Mice were sacrificed one week after the second glucose tolerance test and about 24 h following the final dose.

For the pharmacokinetic evaluations, compound **3a** was dissolved at 1 mg/ml with 10% Kolliphor EL and 10% Polyethylene Glycol in saline. Ten mice were separated into two groups for intravenous and oral administration. Compound **3a** was given at 10 mg/kg to the mice and blood samples were collected *via* tail vein at various time points and analyzed by LC/MS/MS.

14. Intraperitoneal Glucose Tolerance Test. Mice were fasted for 6-8 h in new cages without food. Following this, the mice were injected intraperitoneally glucose solution (2 g/kg) in saline. Glucometer was used to measure blood glucose levels from tail vein in a time dependent manner.

15. Triglyceride Assay. Serum triglyceride level and liver triglyceride content were quantitated using Triglyceride Quantitation Assay Kit (Abcam, #ab65336) following the instructions from the manufacturer.

16. Hematoxylin and Eosin Staining. Tissue embedding and hematoxylin and eosin staining was carried out by the University of Maryland School of Medicine Pathology Core Facility.

17. Serum Biochemical Analysis. Comprehensive clinical biochemical assays to determine metabolic status, liver and renal function were carried out by VRLTM-Maryland (Gaithersburg, MD).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publication websites.

¹H and ¹³C NMR spectra of new compounds and molecular formula strings and additional data.

AUTHOR INFORMATION

Corresponding Authors

*For Y.S.: phone, 410-706-7358; Email: yshu@rx.umaryland.edu

*For F.X.: phone, 410-706-8521; Email: fxue@rx.umaryland.edu

ACKNOWLEDGEMENTS

We thank the National Institute of General Medical Sciences of the US National Institutes of Health (NIH) for research support [R01GM099742] to Y.S. Dr. Yan Shu is a co-founder for and owns equity in Optivia Biotechnology. We also thank the Chinese National Natural Science Foundation [#21702073] to W.Y. and FX, and HuaiAn Science and Technology Bureau [HAC201706] to W.Y. and F.X. This work was supported in part by the Intramural Research Program of the National Center for Advancing Translational Sciences (NCATS).

ABBREVIATION USED

- APC Adenomatous polyposis coli
- $GSK3\beta$ Glycogen synthase kinase
- LEF/TCF T-cell factor/lymphoid enhancer factor

1	
2 3	TCF7L $2 - transcription factor 7 like 2$
4 5	CK Casain kinasa
6	CK – Casem Kinase
7 8	CBP - CREB-binding protein
9 10	FDA – food and drug administration
11	LiCl – lithium chloride
12 13	IPGTT – Intraperitoneal glucose tolerance test
14 15	HFD – high fat diet
16 17	NC – normal chow diet
18 19	AUC – Area under the curve
20	$K_{\rm D}$ – dissociation constant
22	IC ₅₀ - half-maximal inhibitory concentration
23 24	-
25 26	
27	
28	
29 30	
31	
32	
33 34	
35	
36	
37	
39	
40	
41	
42 43	
44	
45	
46 47	
48	
49	
50 51	
52	
53	
54 55	
56	
57	
58 50	45
60	ACS Paragon Plus Environment

REFERENCES

(1) Clevers, H.; Nusse, R. Wnt/β-catenin signaling and disease. *Cell* **2012**, *149*, 1192-1205.

(2) Valenta, T.; Hausmann, G.; Basler, K. The many faces and functions of β -catenin. *EMBO J.* **2012**, *31*, 2714-2736.

(3) Oh, D. Y.; Olefsky, J. M. Medicine. Wnt fans the flames in obesity. *Science* **2010**, *329*, 397-398.

(4) Bordonaro, M. Role of Wnt signaling in the development of type 2 diabetes. *Vitam. Horm.* **2009**, *80*, 563-581.

(5) Schinner, S. Wnt-signalling and the metabolic syndrome. *Horm. Metab. Res.* 2009, *41*, 159-163.

(6) Grant, S. F.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Manolescu, A.; Sainz,

J.; Helgason, A.; Stefansson, H.; Emilsson, V.; Helgadottir, A.; Styrkarsdottir, U.; Magnusson, K. P.; Walters, G. B.; Palsdottir, E.; Jonsdottir, T.; Gudmundsdottir, T.; Gylfason, A.; Saemundsdottir, J.; Wilensky, R. L.; Reilly, M. P.; Rader, D.J.; Bagger, Y.; Christiansen, C.; Gudnason, V.; Sigurdsson, G.; Thorsteinsdottir, U.; Gulcher, J. R.; Kong, A.; Stefansson, K. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. *Nat. Genet.* **2006**, *38*, 320-323.

(7) Gaulton, K. J.; Nammo, T.; Pasquali, L.; Simon, J. M.; Giresi, P. G.; Fogarty, M. P.;
Panhuis, T. M.; Mieczkowski, P.; Secchi, A.; Bosco, D.; Berney, T.; Montanya, E.;
Mohlke, K. L.; Lieb, J. D.; Ferrer, J. A map of open chromatin in human pancreatic islets. *Nat. Genet.* 2010, *42*, 255-259.

(8) Stitzel, M. L.; Sethupathy, P.; Pearson, D. S.; Chines, P. S.; Song, L.; Erdos, M. R.; Welch, R.; Parker, S. C.; Boyle, A. P.; Scott, L. J.; NISC Comparative Sequencing

1	
2	
4	
5	
6	
7	
8 Q	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20 21	
22	
23	
24	
25 26	
27	
28	
29	
30	
32	
33	
34	
35	
30	
38	
39	
40	
41	
43	
44	
45	
46	
48	
49	
50	
51	
52 53	
54	
55	
56	
57 58	
50 59	
60	

Program, Margulies, E. H.; Boehnke, M.; Furey, T. S.; Crawford, G. E.; Collins, F. S. Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. *Cell Metab.* **2010**, *12*, 443-455.

(9) Lyssenko, V.; Lupi, R.; Marchetti, P.; Del Guerra, S.; Orho-Melander, M.; Almgren, P.; Sjögren, M.; Ling, C.; Eriksson, K. F.; Lethagen, A. L.; Mancarella, R.; Berglund, G.; Tuomi, T.; Nilsson, P.; Del Prato, S.; Groop, L. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. *J. Clin. Invest.* 2007, *117*, 2155-2163.
(10) Savic, D.; Ye, H.; Aneas, I.; Park, S. Y.; Bell, G. I.; Nobrega, M. A. Alterations in TCF7L2 expression define its role as a key regulator of glucose metabolism. *Genome Res.* 2011, *21*, 1417-1425.

(11) Yang, H.; Li, Q.; Lee, J. H.; Shu, Y. Reduction in Tcf7l2 expression decreases diabetic susceptibility in mice. *Int. J. Biol. Sci.* **2012**, *8*, 791-801.

(12) Ip, W.; Shao, W.; Chiang, Y. T.; Jin, T. The Wnt signaling pathway effector TCF7L2
is upregulated by insulin and represses hepatic gluconeogenesis. *Am. J. Physiol. Endocrinol. Metab.* 2012, *303*, E1166-1176.

(13) Shao, W.; Wang, D.; Chiang, Y. T.; Ip, W.; Zhu, L.; Xu, F.; Columbus, J.; Belsham,
D. D.; Irwin, D. M.; Zhang, H.; Wen, X.; Wang, Q.; Jin, T. The Wnt signaling pathway
effector TCF7L2 controls gut and brain proglucagon gene expression and glucose
homeostasis. *Diabetes* 2013, 62, 789-800.

(14) Boj, S. F.; van Es, J. H.; Huch, M.; Li, V. S.; José, A.; Hatzis, P.; Mokry, M.; Haegebarth, A.; van den Born, M.; Chambon, P.; Voshol, P.; Dor, Y.; Cuppen, E.; Fillat, C.; Clevers, H. Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. *Cell* **2012**, *151*, 1595-1607.

(15) Thompson, M. D.; Moghe, A.; Cornuet, P.; Marino, R.; Tian, J.; Wang, P.; Ma, X.;
Abrams, M.; Locker, J.; Monga, S. P.; Nejak-Bowen, K. β-Catenin regulation of farnesoid
X receptor signaling and bile acid metabolism during murine cholestasis. *Hepatology* 2018, 67, 955-971.

(16) Popov, V. B.; Jornayvaz, F. R.; Akgul, E. O.; Kanda, S.; Jurczak, M. J.; Zhang, D.;
Abudukadier, A.; Majumdar, S. K.; Guigni, B.; Petersen, K. F.; Manchem, V. P.; Bhanot,
S.; Shulman, G. I.; Samuel, V. T. Second-generation antisense oligonucleotides against βcatenin protect mice against diet-induced hepatic steatosis and hepatic and peripheral
insulin resistance. *FASEB J.* 2016, *30*, 1207-1217.

(17) Kahn, M. Can we safely target the WNT pathway? *Nat. Rev. Drug Discov.* **2014**, *13*, 513-532.

(18) Polakis, P. Drugging Wnt signalling in cancer. EMBO J. 2012, 31, 2737-2746.

(19) Zimmerman, Z. F.; Moon, R. T.; Chien, A. J. Targeting Wnt pathways in disease. *Cold Spring Harb. Perspect. Biol.* **2012**, *4*, a008086.

(20) Wodarz, A.; Nusse, R. Mechanisms of Wnt signaling in development. *Annu. Rev. Cell Dev. Biol.* 1998, *14*, 59-88.

(21) Ohishi, K.; Toume, K.; Arai, M. A.; Koyano, T.; Kowithayakorn, T.; Mizoguchi, T.;
Itoh, M.; Ishibashi, M. 9-Hydroxycanthin-6-one, a β-carboline alkaloid from eurycoma longifolia, is the first Wnt signal inhibitor through activation of glycogen synthase kinase 3β without depending on casein kinase 1α. J. Nat. Prod. 2015, 78, 1139-1146.

(22) Lu, D.; Choi, M. Y.; Yu, J.; Castro, J. E.; Kipps, T. J.; Carson, D. A. Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108*, 13253-13257.

1	
2	
3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
50	

(23) Hao, J.; Ao, A.; Zhou, L.; Murphy, C. K.; Frist, A. Y.; Keel, J. J.; Thorne, C. A.; Kim,
K.; Lee, E.; Hong, C. C. Selective small molecule targeting β-catenin function discovered
by in vivo chemical genetic screen. *Cell Rep.* 2013, *4*, 898-904.

(24) Gwak, J.; Hwang, S. G.; Park, H. S.; Choi, S. R.; Park, S. H.; Kim, H.; Ha, N. C.; Bae,
S. J.; Han, J. K.; Kim, D. E.; Cho, J. W.; Oh, S. Small molecule-based disruption of the Axin/β-catenin protein complex regulates mesenchymal stem cell differentiation. *Cell Res.* 2012, *22*, 237-247.

(25) Huang, S. M.; Mishina, Y. M.; Liu, S.; Cheung, A.; Stegmeier, F.; Michaud, G. A.;
Charlat, O.; Wiellette, E.; Zhang, Y.; Wiessner, S.; Hild, M.; Shi, X.; Wilson, C. J.;
Mickanin, C.; Myer, V.; Fazal, A.; Tomlinson, R.; Serluca, F.; Shao, W.; Cheng, H.; Shultz,
M.; Rau, C.; Schirle, M.; Schlegl, J.; Ghidelli, S.; Fawell, S.; Lu, C.; Curtis, D.; Kirschner,
M. W.; Lengauer, C.; Finan, P. M.; Tallarico, J. A.; Bouwmeester, T.; Porter, J. A.; Bauer,
A.; Cong, F. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. *Nature*2009, *461*, 614-620.

(26) Henderson, W. R., Jr.; Chi, E. Y.; Ye, X.; Nguyen, C.; Tien, Y. T.; Zhou, B.; Borok,
Z.; Knight, D. A.; Kahn, M. Inhibition of Wnt/beta-catenin/CREB binding protein (CBP)
signaling reverses pulmonary fibrosis. *Proc. Natl. Acad. Sci. U. S. A.* 2010, *107*, 1430914314.

(27) Toume, K.; Kamiya, K.; Arai, M. A.; Mori, N.; Sadhu, S. K.; Ahmed, F.; Ishibashi,
M. Xylogranin B: a potent Wnt signal inhibitory limonoid from Xylocarpus granatum. *Org. Lett.* 2013, *15*, 6106-6109.

(28) Lepourcelet, M.; Chen, Y. N.; France, D. S.; Wang, H. S.; Crews, P.; Petersen, F.;
Bruseo, C.; Wood, A. W.; Shivdasani, R. A. Small-molecule antagonists of the oncogenic
Tcf/beta-catenin protein complex. *Cancer Cell* 2004, *5*, 91-102.

(29) Park, H. Y.; Toume, K.; Arai, M. A.; Sadhu, S. K.; Ahmed, F.; Ishibashi, M. Calotropin: a cardenolide from calotropis gigantea that inhibits Wnt signaling by increasing casein kinase 1α in colon cancer cells. *Chembiochem* **2014**, *15*, 872-878.

(30) García-Reyes, B.; Witt, L.; Jansen, B.; Karasu, E.; Gehring, T.; Leban, J.; Henne-Bruns, D.; Pichlo, C.; Brunstein, E.; Baumann, U.; Wesseler, F.; Rathmer, B.; Schade, D.; Peifer, C.; Knippschild, U. Discovery of inhibitor of Wnt Production 2 (IWP-2) and related compounds as selective ATP-competitive inhibitors of Casein Kinase 1 (CK1) δ/ϵ . *J. Med. Chem.* **2018**, *61*, 4087-4102.

(31) Cha, P. H.; Cho, Y. H.; Lee, S. K.; Lee, J.; Jeong, W. J.; Moon, B. S.; Yun, J. H.; Yang, J. S.; Choi, S.; Yoon, J.; Kim, H. Y.; Kim, M. Y.; Kaduwal, S.; Lee, W.; Min do, S.; Kim, H.; Han, G.; Choi, K. Y. Small-molecule binding of the axin RGS domain promotesβcatenin and Ras degradation. *Nat. Chem. Biol.* **2016**, *12*, 593-600.

(32) Liu, J.; Pan, S.; Hsieh, M. H.; Ng, N.; Sun, F.; Wang, T.; Kasibhatla, S.; Schuller, A.
G.; Li, A. G.; Cheng, D.; Li, J.; Tompkins, C.; Pferdekamper, A.; Steffy, A.; Cheng, J.;
Kowal, C.; Phung, V.; Guo, G.; Wang, Y.; Graham, M. P.; Flynn, S.; Brenner, J. C.; Li,
C.; Villarroel, M. C.; Schultz, P. G.; Wu, X.; McNamara, P.; Sellers, W. R.; Petruzzelli,
L.; Boral, A. L.; Seidel, H. M.; McLaughlin, M. E.; Che, J.; Carey, T. E.; Vanasse, G.;
Harris, J. L. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. *Proc. Natl. Acad. Sci. U. S. A.* 2013, *110*, 20224-20229.

(33) Madan, B.; Ke, Z.; Harmston, N.; Ho, S. Y.; Frois, A. O.; Alam, J.; Jeyaraj, D. A.;

Pendharkar, V.; Ghosh, K.; Virshup, I. H.; Manoharan, V.; Ong, E. H.; Sangthongpitag,

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
20	
26	
27	
28	
29	
30	
21	
31	
32	
33	
34	
25	
22	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
1	
40	
46	
47	
48	
49	
FO	
50	
51	
52	
53	
54	
54	
55	
56	
57	
58	
50	
72	
60	

K.; Hill, J.; Petretto, E.; Keller, T. H.; Lee, M. A.; Matter, A.; Virshup, D. M.; Wnt addiction of genetically defined cancers reversed by PORCN inhibition. *Oncogene* **2016**, *35*, 2197-2207.

(34) Mo, M. L.; Li, M. R.; Chen, Z.; Liu, X. W.; Sheng, Q.; Zhou, H. M. Inhibition of the Wnt palmitoyltransferase porcupine suppresses cell growth and downregulates the Wnt/β-catenin pathway in gastric cancer. *Oncol. Lett.* **2013**, *5*, 1719-1723.

(35) Lu, W.; Lin, C.; Roberts, M. J.; Waud, W. R.; Piazza, G. A.; Li, Y. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/β-catenin pathway. *PLoS One* **2011**, *6*, e29290.

(36) Thorne, C. A.; Hanson, A. J.; Schneider, J.; Tahinci, E.; Orton, D.; Cselenyi, C. S.;
Jernigan, K. K.; Meyers, K. C.; Hang, B. I.; Waterson, A. G.; Kim, K.; Melancon, B.;
Ghidu, V. P.; Sulikowski, G. A.; LaFleur, B.; Salic, A.; Lee, L. A.; Miller, D. M. 3rd; Lee,
E. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. *Nat. Chem. Biol.* 2010, *6*, 829-836.

(37) Shinoda, K.; Ohyama, K.; Hasegawa, Y.; Chang, H. Y.; Ogura, M.; Sato, A.; Hong, H.; Hosono, T.; Sharp, L. Z.; Scheel, D. W.; Graham, M.; Ishihama, Y.; Kajimura, S. Phosphoproteomics identifies CK2 as a negative regulator of beige adipocyte thermogenesis and energy expenditure. *Cell Metab.* **2015**, *22*, 997-1008.

(38) Rossi, M.; Ruiz de Azua, I.; Barella, L. F.; Sakamoto, W.; Zhu, L.; Cui, Y.; Lu, H.; Rebholz, H.; Matschinsky, F. M.; Doliba, N. M.; Butcher, A. J.; Tobin, A. B.; Wess, J. CK2 acts as a potent negative regulator of receptor-mediated insulin release in vitro and in vivo. *Proc. Natl. Acad. Sci. U. S. A.* **2015**, *112*, E6818-6824.

(39) Zhong, L.; Ding, Y.; Bandyopadhyay, G.; Waaler, J.; Börgeson, E.; Smith, S.; Zhang,

M.; Phillips, S. A.; Mahooti, S.; Mahata, S. K.; Shao, J.; Krauss, S.; Chi, N. W. The PARsylation activity of tankyrase in adipose tissue modulates systemic glucose metabolism in mice. *Diabetologia* **2016**, *59*, 582-591.

(40) Smith, T. C.; Kinkel, A. W.; Gryczko, C. M.; Goulet, J. R. Absorption of pyrvinium pamoate. *Clin. Pharmacol. Ther.* **1976**, *19*, 802-806.

(41) Zhu, W.; Groh, M.; Haupenthal, J.; Hartmann, R. W. A detective story in drug discovery: elucidation of a screening artifact reveals polymeric carboxylic acids as potent inhibitors of RNA polymerase. *Chemistry* **2013**, *19*, 8397-8400.

(42) Baell, J. B.; Holloway, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. *J. Med. Chem.* **2010**, *53*, 2719-2740.

(43) Martino-Echarri, E.; Brocardo, M. G.; Mills, K. M.; Henderson, B. R. Tankyrase inhibitors stimulate the ability of tankyrases to bind axin and drive assembly of β -catenin degradation-competent axin puncta. *PLoS One* **2016**, *11*, e0150484.

(44) Rowan, A. J.; Lamlum, H.; Ilyas, M.; Wheeler, J.; Straub, J.; Papadopoulou, A.; Bicknell, D.; Bodmer, W. F.; Tomlinson, I. P. APC mutations in sporadic colorectal tumors: A mutational "hotspot" and interdependence of the "two hits". *Proc. Natl. Acad. Sci. U. S. A.* **2000**, *97*, 3352-3357.

(45) de La Coste, A.; Romagnolo, B.; Billuart, P.; Renard, C. A.; Buendia, M. A.; Soubrane, O.; Fabre, M.; Chelly, J.; Beldjord, C.; Kahn, A.; Perret, C. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. *Proc. Natl. Acad. Sci. U. S. A.* **1998**, *95*, 8847-8851.

(46) Zhang, Y. L.; Guo, H.; Zhang, C. S.; Lin, S. Y.; Yin, Z.; Peng, Y.; Luo, H.; Shi, Y.; Lian, G.; Zhang, C.; Li, M.; Ye, Z.; Ye, J.; Han, J.; Li, P.; Wu, J. W.; Lin, S. C. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. *Cell Metab.* **2013**, *18*, 546-555.

(47) Behari, J.; Li, H.; Liu, S.; Stefanovic-Racic, M.; Alonso, L.; O'Donnell, C. P.; Shiva,
S.; Singamsetty, S.; Watanabe, Y.; Singh, V. P.; Liu, Q. β-catenin links hepatic metabolic
zonation with lipid metabolism and diet-induced obesity in mice. *Am. J. Pathol.* 2014, *184*, 3284-3298.

(48) Veeman, M. T.; Slusarski, D. C.; Kaykas, A.; Louie, S. H.; Moon, R. T. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. *Curr. Biol.* **2003**, *13*, 680-685.

(49) Kolligs, F. T.; Hu, G.; Dang, C. V.; Fearon, E. R. Neoplastic transformation of RK3E by mutant beta-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. *Mol. Cell. Biol.* **1999**, *19*, 5696-5706.

(50) Schreiber, E.; Harshman, K.; Kemler, I.; Malipiero, U.; Schaffner, W.; Fontana, A. Astrocytes and glioblastoma cells express novel octamer-DNA binding proteins distinct from the ubiquitous Oct-1 and B cell type Oct-2 proteins. *Nucleic Acids Res.* **1990**, *18*, 5495-5503.

(51) Wieckowski, M. R.; Giorgi, C.; Lebiedzinska, M.; Duszynski, J.; Pinton, P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. *Nat. Protoc.* **2009**, *4*, 1582-1590.

TABLE OF CONTENTS GRAPHIC

