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A B S T R A C T

4-(Succinimido)-1-butane sulfonic acid as an efficient and reusable Brönsted acid catalyzed the

synthesis of pyrano[4,3-b]pyran derivatives under solvent-free conditions. The catalyst can be prepared

by mixing succinimide and 1,4-butanesultone that is more simple and safer than the preparation of

succinimide sulfonic acid. This method has the advantages of high yield, clean reaction, simple

methodology and short reaction time. The catalyst could be recycled without significant loss of activity.

� 2014 Nader Ghaffari Khaligh. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All

rights reserved.
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1. Introduction

Pyridone and pyran structural units are widely occurring in
various molecules exhibiting a wide range of biological activities
and serve as a specific nonnucleoside reverse transcriptase
inhibitor of HIV-1 [1,2], inotropic and vasodilatatory drugs [3],
antitumors and antioxidants [4,5], rhinovirus 3C protease inhibi-
tors [6], anticancers [5,7], potential antiviral and antileishmanial
agents [8]. Also compounds containing a 2-pyridone moiety fused
with a substituted pyran ring are reported as a Ca2+ inhibitor [9],
active against multidrug resistant KB-VI cancer cells and a selective
cytotoxicity profile [10]. Therefore, a variety of synthetic strategies
have been developed for the preparation of dihydropyrano[4,3-
b]pyran derivatives that often proceeds through the formation of
the intermediate Knoevenagel products and their subsequent
reactions with 4-hydroxy-6-methylpyran-2-one [11] or a multi-
component reaction of pyrone with malononitrile and various
aromatic aldehydes [9].

Homogeneous inorganic acids and alkali such as sulfuric acid,
potassium hydroxide and sodium hydroxide can act as the
catalysts in organic transformations. However, these catalysts
have some disadvantages: they are strongly corrosive and
nonrenewable and may easily cause environmental pollution
54
55
56E-mail address: author@university.edu.
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through wastewater or sludge discharging. Solid acids as economic
and ecologically benign catalysts have offered unique properties
and important advantages over the homogeneous inorganic acids
in organic synthesis in recent years; for example, operational
simplicity, environmental compatibility, nontoxic, low cost, and
ease of isolation [10–15]. However, they have some disadvantages,
for example, although zeolites demonstrate higher activity, their
reactions typically give a variety of undesired by-products due to
the higher temperatures employed and metal triflates are costly
and moisture sensitive and also some of the catalysts require the
special efforts to prepare [16]. Ion exchange resins are limited in
application because they are thermally unstable above 120 8C in
the acid form [17].

Green Chemistry with its 12 principles would like to increases
the efficiency of synthetic methods, to use less toxic solvents,
reduce the stages of the synthetic routes and minimize waste as far
as practically possible [18]. One of the key areas of green chemistry
is the replacement of hazardous solvents with environmentally
benign ones or the elimination of solvents altogether [18–20].
By changing the methodologies of organic synthesis health and
safety will be advanced in the small scale laboratory level but
also will be extended to the industrial large scale production
processes through the new techniques. Another beneficiary of
course will be the environment through the use of less toxic
reagents, minimization of waste and more biodegradable by-pro-
ducts [21–23].
butane sulfonic acid as a Brönsted acid catalyst for synthesis of
Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.10.009
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Scheme 1. Synthesis of 4-(succinimido)-1-butane sulfonic acid (SBSA) by using

solar energy.
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Recently, succinimide sulfonic acid was synthesized and their
plication in the variety of organic transformations was
vestigated [24]. Herein, a new Brönsted acid, namely, 4-
uccinimido)-1-butane sulfonic acid (SBSA) is introduced and

 application in the promotion of the synthesis of dihydropyr-
o[4,3-b]pyran derivatives is described. The present study is
veloped as a new preparative procedure for this class of
terocyclic scaffolds by utilizing SBSA under solvent-free
nditions.

 Experimental

1. General

Chemicals were purchased from Fluka AG, Merck and Synthetic
emicals Ltd. Reaction monitoring and purity determination of
e products were accomplished by TLC or GC–MS on an Agilent
-Mass-6890 instrument under 70 eV conditions. IR and FTIR
ectra were obtained using a Perkin-Elmer spectrometer 781 and
uker Equinox 55 using KBr pellets for solid and neat for liquid
mples in the range of 4000–400 cm�1. In all the cases the 1H NMR
ectra were recorded with Bruker Avance 400 MHz instrument
ing. Mass spectra were recorded with PESciex model API
00 instrument. Microanalyses were performed on a Perkin-

mer 240-B microanalyzer. Melting points were recorded on a
chi B-545 apparatus in open capillary tubes.

2. Synthesis of 4-(succinimido)-1-butane sulfonic acid (SBSA)

Succinimide (0.99 g, 10 mmol) was added to 1,4-butane sultone
.5 mL 14.4 mmol) and stirred continuously for 10 h at 40–50 8C

 using solar energy to obtain 4-(succinimio)-1-butane sulfonic
id as a white solid. The viscous liquid was washed by diethyl
her for three times to remove any unreacted starting materials,
d then a white solid was obtained. The resulting SBSA was dried

 constant weight in vacuum at 60 8C. The white needles were
tained by crystallization in a mixture of ethanol and water using
w evaporation technique (2.12 g, yield 90.2%). Mp 222 8C (dec.);

 (KBr, cm�1): nmax 3140, 3090, 2980, 2940, 1740, 1640, 1600,
60, 1380, 1190, 1120, 1040; 1H NMR (300 MHz, D2O): d 1.75–

68 (m, 2H, –CH2–), 2.03–1.91 (m, 2H, –CH2–), 2.64 (s, 4H, –CH2–

2–, Succinimide), 2.95 (t, J = 7.4 Hz, –CH2–S), 4.23 (t, J = 6.9 Hz,
, –CH2–N); 13C NMR (75 MHz, D2O): d 22.3 (C2 of butane), 28.2

3 of butane), 29.3 (CH2 of succinimide), 49.3 (N–CH2), 51.2
–CH2), 186.5 (C55O).

3. The preparation of 2-amino-4-aryl-7-methyl-5-oxo-4,5-

hydropyrano[4,3-b]pyran-3-carbonitriles (2)

In a 25 mL round bottom flask a mixture of 4-hydroxy-6-
ethylpyran-2-one (1.0 mmol), aromatic aldehyde (1.0 mmol),
alononitrile (1.0 mmol) were mixed in presence of 4-(succini-
ido)-1-butane sulfonic acid (10 mg) at 60 8C under solvent-free
ndition for appropriate time. After completion of the reaction
onitored by TLC), the reaction mixture was cooled to room

mperature and water was added and the solid precipitated was
tered to separate the catalyst. Water was evaporated under
duced pressure and the catalyst was recovered and used for the
xt run. The solid product was recrystallized from ethanol to yield
e pure product.
2-Amino-4-(4-fluorophenyl)-7-methyl-5-oxo-4,5-dihydropyr-

o[4,3-b]pyran-3-carbonitrile (2c): Colorless solid; mp 221–
3 8C; IR (KBr, cm�1): nmax 3369, 3317, 3195, 2924, 2194,
15, 1678, 1641, 1618, 1591, 1378, 1259, 1138, 1091, 1032, 978;
 NMR (400 MHz, DMSO-d6): d 2.19 (s, 3H, CH3), 4.28 (s, 1H, CH),
Please cite this article in press as: N.G. Khaligh, 4-(Succinimido)-1
pyrano[4,3-b]pyran derivatives under solvent-free conditions, Chin
6.31 (s, 1H, CH), 7.19 (brs, 2H, NH2), 7.19–7.22 (m, 2H, ArH),
7.31–7.34 (m, 2H, ArH).

2-Amino-4-(4-bromophenyl)-7-methyl-5-oxo-4,5-dihydropyr-
ano[4,3-b]pyran-3-carbonitrile (2d): Colorless solid; mp 225–
227 8C; IR (KBr, cm�1): nmax 3381, 3322, 3197, 2921, 2204, 1712,
1676, 1643, 1611, 1596, 1384, 1263, 1141, 1095, 1036, 972; 1H
NMR (400 MHz, DMSO-d6): d 2.21 (s, 3H, CH3), 4.31 (s, 1H, CH), 6.27
(s, 1H, CH), 7.18 (d, 2H, J = 8.0 Hz, ArH), 7.25 (s, 2H, NH2), 7.46 (d,
2H, J = 8.0 Hz, ArH).

4,40-(1,4-Phenylene)bis(2-amino-7-methyl-5-oxo-4,5-dihy-
dropyrano[4,3-b]pyran-3-carbonitrile) (2m): Colorless solid; mp
256–258 8C; IR (KBr, cm�1): nmax 3372, 3317, 3196, 2196, 1699,
1673, 1614, 1463, 1383; 1H NMR (400 MHz, DMSO-d6): d 2.16 (s,
6H, 2CH3), 4.19 (s, 2H, 2CH), 6.22 (s, 2H, 2CH), 7.06 (s, 4H, Ar-H),
7.13 (brs, 4H, 2NH2); 13C NMR (100 MHz, DMSO-d6): d 18.9, 35.5,
57.8, 98.0, 119.4, 127.5, 130.1, 136.6, 142.4, 158.6, 161.2, 161.9,
162.8, 174.8; MS(ESI): m/z [M+1]+ 483; Anal. Calcd. for
C26H18N4O6: C, 64.73; H, 3.73; N, 11.62%. Found: C, 64.62; H,
3.83; N, 11.78%.

3. Results and discussion

Part of our research is aiming to introduce the eco-efficient
methodology that allows decreasing the amount of waste and a
lesser use of hazardous materials is proposed. In preparation of
succinimide-N-sulfonic acid, chlorosulfonic acid was stirred with
succinimide to generate gaseous HCl [24]. However, it has the
disadvantage of using chlorosulfonic acid which causes severe
burns and reacts exothermically and violently with water
producing sulfuric acid, hydrochloric acid, and large quantities
of dense white acid fumes. Also it is very toxic by inhalation and
corrosive to metals. The present catalyst was prepared by mixing
succinimide and 1,4-butane sultone that is more simple and safer.
The synthesis of 4-(succinimido)-1-sulfonic acid involved stirring
same equivalents of succinimide and 1,4-butane sultone at
40–50 8C for 6 h. The present method does not use traditional
heater. Instead, 10 mirrors reflect the sunlight onto the 25 mL
round bottom flask. When the concentrated sunlight strikes the
round bottom flask, it heats the mixture of reaction to 40–60 8C.
The viscous liquid was washed by diethyl ether, and then a white
solid was obtained. The resulting SBSA was dried to constant
weight in vacuum. The structure was confirmed by IR, 1H NMR, and
13C NMR. The content of water of SBSA was 5.4% using Karl–Fischer
titration method. SBSA was soluble in DMSO, DMF, water,
methanol and ethanol; however it was immiscible with diethyl
ether, ethyl acetate, and dichloromethane. So the catalyst can be
separated conveniently from products by simple phase separations
(Scheme 1).

To evaluate the effect of the amount of SBSA, condensation of
4-hydroxy-6-methylpyran-2-one, 4-nitrobenzaldehyde (1e) and
malononitrile was carried out in presence of different amounts
of (2.1%, 4.2% and 8.5 mol%) under solvent-free conditions
(Scheme 2). It was observed that 4.2 mol% of SBSA was an
optimum amount for this model reaction to furnish the desired
product in high yield. Increasing the amount of the catalyst beyond
4.2 mol% did not increase the yield noticeably. Also the different
-butane sulfonic acid as a Brönsted acid catalyst for synthesis of
. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.10.009
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reaction temperatures (r.t. �80 8C) were analyzed and the results
showed that 88% of 2-amino-4-(4-nitrophenyl)-7-methyl-5-oxo-
4,5-dihydropyrano[4,3-b]pyran-3-carbonitrile was offered in the
presence of 4.2 mol% SBSA at 60 8C within 60 min. Higher
temperatures caused more spots on the TLC and it seems that
by-products were obtained. The reaction was not completed at
60 8C even after 4 h in absence of SBSA and only 38% of 2e was
offered.

In order to evaluate the generality of this model reaction, a
range of 2-amino-4-aryl-7-methyl-5-oxo-4,5-dihydropyrano[4,3-
b]pyran-3-carbonitriles 2a–m were prepared under optimized
reaction conditions in presence of SBSA (Table 1). The aryl
aldehydes which possess electron-donating and electron-with-
drawing substituents and heteryl aldehydes provided desired
dihydropyrano[4,3-b]pyrans in good to high yields without
involving any side products (Table 1, entries 1–13). However,
aliphatic aldehydes did not undergo pyranization even within long
reaction time and elevated temperature; TLC and GC–MS analysis
of the reaction mixture showed numerous products. The electron-
donating substituents caused lower yields and longer reaction
times than electron-withdrawing substituents (Table 1, entries 5,
7, 9 and 10). 4,40-(1,4-Phenylene)bis(2-amino-7-methyl-5-oxo-
4,5-dihydropyrano[4,3-b]pyran-3-carbonitrile) 2m was obtained
in 80% yield when terephthaldehyde 1m was reacted with
malononitrile and 4-hydroxy-6-methylpyran-2-one in molar ratio
1.0:2.0:2.0 under optimized reaction conditions (Table 1, entry 13).
4-Dimethylaminobenzaldehyde failed to give the corresponding
pyran derivative and the starting materials were quantitatively
recovered under the same conditions (Table 1, entry 14). The
explanation for this result may be due to the strong electron-
donating dimethylamino group which will reduce the reactivity.
A degree of tautomerisation may occur with formation of a
Table 1
Synthesis of 2-amino-4-aryl-7-methyl-5-oxo-4,5-dihydropyrano[4,3-b]pyran-3-carboni

Entry Substrate (1) Product (2) Time (min) 

1 C6H5–CHO a 80 

2 4-Cl–C6H4–CHO b 75 

3 4-F–C6H4–CHO c 70 

4 4-Br–C6H4–CHO d 80 

5 4-NO2–C6H4–CHO e 60 (60, 60, 6

6 4-CH3–C6H4–CHO f 90 

7 4-CH3O–C6H4–CHO g 95 

8 3-Br–C6H4–CHO h 70 

9 3-NO2–C6H4–CHO i 62 

10 3,4-(CH3O)2–C6H3–CHO j 95 

11 Furfural k 80 

12 2-Thiophene carbaldehyde l 80 

13 1,4-(CHO)2–C6H4 m 90 

14 4-Dimethylaminobenzaldehyde n 120 

a Reaction conditions: 4-hydroxy-6-methylpyran-2-one (1.0 mmol), aromatic aldehyd
b Isolated yield.
c Recycled SBSA.

d Reaction conditions: 4-hydroxy-6-methylpyran-2-one (2.0 mmol), aromatic aldehyde 

Please cite this article in press as: N.G. Khaligh, 4-(Succinimido)-1-
pyrano[4,3-b]pyran derivatives under solvent-free conditions, Chin. 
quinonoid structure as shown in Scheme 3 and thus decrease the
reactivity of the aldehyde group [25].

New products were characterized by IR, 1H NMR, 13C NMR,
MASS spectra and elemental analysis and known products were
characterized by IR and 1H NMR and comparison of their melting
points with those of authentic samples.

SBSA was isolated and could be recycled up to five times
without any significant loss of activity (Table 1, entry 5). The
proposed mechanism for the formation of the product via tandem
Knoevenagel-cyclo condensation is outlined in Scheme 4. Carbonyl
group of aldehyde (1) was activated by Brönsted acid SBSA. Next,
nucleophilic attack of the malononitril on the carbonyl carbon was
caused to form intermediate arylidene malononitrile. Subsequent
Michael addition of 4-hydroxy-6-methylpyran-2-one followed by
cyclization afforded the product (2).

To validate the proposed mechanism, the synthesis of 2b was
carried out in two steps. Firstly, 4-chlorobenzylidene malononitrile
was prepared by the condensation of 4-chlorobenzaldehyde 1b
and malononitrile in presence of SBSA. Then product of the first
step was reacted with 4-hydroxy-6-methylpyran-2-one in pres-
ence of SBSA to give the product 2b (87%) in 45 min. This fact
triles in the presence of SBSA.a

Yield (%)b Mp (8C) Ref.

Found Reported

80 236 236–238 [21]

84 228–230 231–232 [22]

82 221–223 223–225 [8]

84 225–227 218–220 [8]

0, 62)c 88 (88, 88, 86, 86)c 220–222 216–218 [28]

72 218–220 223–225 [29]

70 210–212 205–207 [26]

69 217–219 216 [27]

74 218–220 234–236 [28]

70 198–202 198–202 [27]

78 118–120 223–224 [5]

74 238–240 242–244 [5]

85 256–258 – –

– – – –

e (1.0 mmol); malononitrile (1.0 mmol); SBSA (4.2 mol%); 60 8C; solvent-free.

(1.0 mmol); malononitrile (2.0 mmol); SBSA (4.2 mol% g); 60 8C; solvent-free.

butane sulfonic acid as a Brönsted acid catalyst for synthesis of
Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.10.009
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Scheme 4. The proposed mechanism for the synthesis of 2-amino-4-aryl-7-methyl-5-oxo-4,5-dihydropyrano[4,3-b]pyran-3-carbonitriles in presence of [BBMIm](HSO4)2 at

60 8C.

Table 2
Comparison of the present method with other reported strategiesQ4 for the synthesis of 2-amino-4-phenyl-7-methyl-5-oxo-4,5-dihydropyrano[4,3-b]pyran-3-carbonitrile.

Entry Catalyst Conditions Time (min) Yield (%) Ref.

1 NH4OAc (10 mol%) Neat, r.t. 10 94 [5]

2 [bmim][BF4] (1.5 g) 80 8C 180 85 [8]

3 Piperidine (1–2 drops) MeOH, reflux 60 79 [28]

4 1,1,3,3-N,N,N,N-Tetramethylguanidinium trifluoroacetate (TMGT) (1 mol%) 100 8C 60 77 [30]

5 – H2O, 80 8C 10.5 h 65 [31]

6 KF-Al2O3 EtOH, r.t. 8 h 76a [32]

7 MgO (0.25 g) H2O/EtOH, reflux 30 89 [33]

8 H6P2W18O62�18H2O (1 mol%) H2O, reflux 60 94 [34]

9 [BBMIm](HSO4)2 (500 mg) Neat, 60 8C 35 94 [35]

10 Thiourea dioxide (TUD) H2O, 80 8C 40 92 [36]

11 SBSA (4.2 mol%) Neat, 60 8C 60 88 This work
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ovided the evidence in support of the intermediate arylidene
alononitrile proposed pathway.

The comparison of the present methodology with previously
ported procedures for the synthesis of 2a is shown in Table 2. As
n be seen, the reaction catalyzed by SBSA at 60 8C give a
mparable yield, requires less amount of catalyst and less time
an other protocols and also it is reusable.

 Conclusion

In conclusion, a novel Brönsted acid is introduced and its
talytic activity was investigated for the synthesis of 2-amino-4-
yl-7-methyl-5-oxo-4,5-dihydropyrano[4,3-b]pyran-3-carboni-
ile derivatives under solvent-free conditions. To prepare of the
talyst, solar energy was applied for the first time and hazardous
aterial namely chlorosulfonic acid was avoided. The current
ethod has the advantages of simple experimental procedure,
od to high yield of products, and reusability of the catalyst.
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