# ChemComm

## COMMUNICATION



View Article Online View Journal | View Issue

# Published on 26 February 2014. Downloaded by Universitat Autonoma de Barcelona on 29/10/2014 10:27:40.

# Asymmetric semipinacol rearrangement of 2,3-allenols with *N*-bromo-1,8-naphthalimide<sup>†</sup>

Binjie Guo, Chunling Fu\* and Shengming Ma\*

Received 28th January 2014, Accepted 25th February 2014

Cite this: Chem. Commun., 2014,

DOI: 10.1039/c4cc00767k

50 4445

www.rsc.org/chemcomm

A method using quinidine and optically active binol-derived phosphoric acid as a cocatalyst to catalyze the asymmetric semipinacol rearrangement of 2,3-allenols forming optically active 3-bromo-3enals that contain an all-carbon quaternary stereocenter has been developed. After some further treatments, the products with practical enantiomeric purity could be prepared.

One of the most challenging topics in modern organic synthesis is asymmetric construction of chiral quaternary all-carbon stereocenters, and it has always been in high demand for the development of synthetic methodologies.<sup>1</sup> In our previous work,<sup>2</sup> we showed that 3-halo-3-enals or 2-halo-2-alkenyl ketones that contain an  $\alpha$ -quaternary all carbon stereocenter may be formed by the electrophilic addition/1,2-shift of 2,3-allenols with X<sup>+</sup> (X = Br, I). We hypothesized that the semipinacol rearrangement of allenols could also be asymmetrically catalyzed to afford chiral 3-halo-3-enals that contain a quaternary all-carbon stereocenter<sup>3,4</sup> (Scheme 1).



Scheme 1 Asymmetric semipinacol rearrangement of 2,3-allenols.

In our initial study, 1-(4-methoxylphenyl)-2-butyl-2,3-allenol **1a** was used as a model substrate with *N*-bromo-1,8-naphthalimide  $2^5$  as X<sup>+</sup> sources. We chose the commonly used cinchona alkaloid derivatives, such as (DHQD)<sub>2</sub>PYR, (DHQD)<sub>2</sub>PHAL, (DHQD)<sub>2</sub>PYDZ and (DHQD)<sub>2</sub>AQN<sup>6</sup> as catalysts. But to our disappointment, only very low enantiomeric selectivity (<10% ee) was observed (Table 1, entries 1–4). Then, we just used the simplest quinidine as

| <b>—</b> н | $ \begin{array}{c}     Bu-n \\     \hline         \\         \\         \\         $ | Br<br>N O<br>2 equiv<br>2 | catalys<br>toluene | t (10 mol%)<br>t, N <sub>2</sub> , rt, t<br>n-Bu<br>n-Bu<br>n-Bu<br>0- $p0$ - $p0$ | Br<br>CHO<br>R- <b>3</b> a                     |
|------------|--------------------------------------------------------------------------------------|---------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Entry      | Catalyst                                                                             | Acid                      | <i>t</i> (h)       | Isolated yield<br>of <i>R</i> - <b>3a</b> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ee of <i>R</i> -3 <b>a</b> <sup>b</sup><br>(%) |
| 1          | (DHQD) <sub>2</sub> PYR                                                              | _                         | 7                  | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -8                                             |
| 2          | (DHQD) <sub>2</sub> PHAL                                                             | _                         | 17                 | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                              |
| 3          | (DHQD) <sub>2</sub> PYDZ                                                             | _                         | 13.5               | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                              |
| 4          | (DHQD) <sub>2</sub> AQN                                                              | —                         | 14.7               | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                              |
| 5          | Quinidine (20%)                                                                      | —                         | 12                 | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                             |
| 6          | Quinidine (20%)                                                                      | (R)- <b>4a</b>            | 2.3                | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37                                             |
| 7          |                                                                                      | (R)-4a                    | 26                 | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                              |
| 8          | Quinine (20%)                                                                        | (S)-4a                    | 11                 | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -30                                            |

Table 1 Optimization of the asymmetric reaction between allenol 1a and 2<sup>a</sup>

<sup>*a*</sup> All reactions were performed with 0.1 mmol of **1a** in 2 mL of toluene unless otherwise noted. <sup>*b*</sup> Determined by HPLC analysis using a chiral stationary phase.

the catalyst. And to our delight, the enantioselectivity was increased to 21% ee with a yield of 79% (Table 1, entry 5). According to the literature, the use of chiral phosphoric acid as a cocatalyst may dramatically enhance the stereochemical control of cinchona alkaloid derivatives.<sup>7</sup> So (*R*)-(-)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (*R*-4a) was added as a cocatalyst. In fact, the enantiomeric excess was improved to 37% ee with a yield of 81% (Table 1, entry 6). What's more, *R*-4a only gave racemic 3a in the absence of quinidine (Table 1, entry 7). Quinine in the presence of *S*-acid (*S*-4a) gave a yield of 92% and -30% ee (Table 1, entry 8).

Then, other chiral-binol-derived phosphoric acids were examined. As we can see, when iodo-substituted acid (**4b**) was used, the ee value could be improved to 50% (Table 2, entry 1). A much better ee of 72% was achieved when phenyl-substituted acid (**4c**) was used (Table 2, entry 2). Further optimization on the phenyl group, such as the bulky *t*-butyl group (**4d**), the electron-donating group (4-MeO (**4e**), 4-Me (**4f**)), the electron-withdrawing group (4-CF<sub>3</sub>, **4g**) and 4-phenyl (**4h**)

Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, P. R. China.

E-mail: masm@sioc.ac.cn; Fax: +86-21-6416-7510

 $<sup>\</sup>dagger$  Electronic supplementary information (ESI) available: CCDC 980926. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/ c4cc00767k

gave no better results (Table 2, entries 3–7). When the 2-naphthyl (**4i**) or the 9-anthryl (**4j**) group was introduced instead of the phenyl group, we observed 53% ee and 30% ee, respectively (Table 2, entries 8 and 9). When the styryl (**4k**) group was introduced, the ee value dropped to 48% with a yield of 75% (Table 2, entry 10). Alcohols have been used as additives in some reports,<sup>3g</sup> due to the possible formation of the hydrogen bond enhancing the stereo-selectivity of the catalyst. To our delight, we found that the addition of 10 mol% of MeOH could slightly improve the ee value to 74% and gave a yield of 82% even with 15 mol% of quinidine and 5 mol% of *R*-phenyl-acid (**4c**) (Table 1, entry 11). Other conditions such as solvent effect, temperature, the ratio of catalysts, additives and X<sup>+</sup> sources have also been screened (see ESI†), but no better results were achieved.

Table 2 Optimization of the asymmetric semipinacol rearrangement of allenol  $1a^{\text{a}}$ 

| $ \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $ |                                         |              |           |                                |                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|-----------|--------------------------------|--------------------------|--|
| Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R                                       | <i>t</i> (h) | Yield     | of $R$ -3 $\mathbf{a}^{b}$ (%) | ee of $R$ -3 $a^{c}$ (%) |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I (4b)                                  | 11.5         | 81        |                                | 50                       |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ph ( <b>4c</b> )                        | 12.3         | 80        |                                | 72                       |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $4-t-BuC_{6}H_{4}$ (4d)                 | 3.8          | 85        |                                | 59                       |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-MeOC <sub>6</sub> H <sub>4</sub> (4e) | 3.7          | 88        |                                | 33                       |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $4 - MeC_6H_4$ (4f)                     | 4.8          | 76        |                                | 59                       |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $4 - CF_3C_6H_4$ (4g)                   | 16           | 75        |                                | 60                       |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $4 - PhC_6H_4(4h)$                      | 13           | 89        |                                | 43                       |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-Naphthyl (4i)                         | 3.7          | 88        |                                | 53                       |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9-Anthryl (4j)                          | 4.3          | 81        |                                | 30                       |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Styryl (4k)                             | 11           | 75        |                                | 48                       |  |
| $11^d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ph ( <b>4c</b> )                        | 3            | 82        |                                | 74                       |  |
| $12^{d,e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ph ( <b>4c</b> )                        | 2.7          | 73        |                                | 27                       |  |
| 13 <sup><i>a,f</i></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ph ( <b>4c</b> )                        | 1            | 68        |                                | 8                        |  |
| $14^{d,g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ph ( <b>4c</b> )                        | 25           | $\sim 75$ |                                | 53                       |  |

<sup>*a*</sup> All reactions were performed with 0.1 mmol of **1a** in 2 mL of toluene unless otherwise noted. <sup>*b*</sup> Yield of an isolated product. <sup>*c*</sup> Determined by HPLC analysis using a chiral stationary phase. <sup>*d*</sup> 15 mol% of quinidine, 5 mol% of **4c** and 10 mol% of MeOH were used. <sup>*e*</sup> NBS was used instead of **2**. <sup>*f*</sup> 1,3-Dibromohydantoin was used instead of **2**. <sup>*g*</sup> The reaction was conducted at -30 °C.

With the optimized reaction conditions in hand, we studied the scope of this reaction with the typical results summarized in Table 3. Allenols with alkyl groups on the 2-position mostly gave an ee value over 70%. For example, when the ethyl group (**1b**) was introduced, **3b** was produced with a yield of 77% and 77% ee (Table 3, entry 2). Propyl (**1c**), pentyl (**1d**), hexyl (**1e**) and decyl (**1f**) substituted allenols gave 83–87% yields and 72–77% ee (Table 3, entries 3–6). For secondary alkyl groups, probably due to the steric effect, iso-propyl (**1g**) and cyclohexyl (**1h**) substituted allenols gave the products with lower ee values of 66% and 64%, respectively (Table 3, entries 7 and 8). To our delight, when the allyl group (**1i**) was introduced, **3i** was afforded with a yield of 78% and 76% ee: no reaction occurred to the allylic C==C bond (Table 3, entry 9). When the benzyl group (**1j**) was introduced, **3j** was afforded with a yield of 75% and 78% ee (Table 3, entry 10), while 2-(3-phenylpropyl) substituted enal (**3k**) was afforded

with a yield of 80% and 71% ee (Table 3, entry 11). Interestingly, it was observed that with the parent phenyl (11) group, the result was rather poor with only 8% ee of 31 (Table 3, entry 12).

 Table 3
 The scope of the asymmetric semipinacol rearrangement of allenol<sup>a</sup>

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                | -            | -                      |                                            |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------|------------------------|--------------------------------------------|--|--|
| $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & &$ |                                                |              |                        |                                            |  |  |
| Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R                                              | <i>t</i> (h) | Yield of $R-3^{b}$ (%) | ee of $R$ -3 <sup><math>c</math></sup> (%) |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>n</i> -Bu ( <b>1a</b> )                     | 3.2          | 75 ( <b>3a</b> )       | 75                                         |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Et (1b)                                        | 2.5          | 77 ( <b>3b</b> )       | 77                                         |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $n-C_{3}H_{7}$ (1c)                            | 3            | 83 ( <b>3c</b> )       | 77                                         |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $n-C_{5}H_{11}$ (1d)                           | 4.2          | 87 ( <b>3d</b> )       | 73                                         |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $n-C_{6}H_{13}$ (1e)                           | 2.5          | 85 ( <b>3e</b> )       | 72                                         |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $n-C_{10}H_{21}$ (1f)                          | 4            | 83 ( <b>3f</b> )       | 73                                         |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i-Pr ( <b>1g</b> )                             | 3            | 70 ( <b>3g</b> )       | 66                                         |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c-C <sub>6</sub> H <sub>11</sub> ( <b>1h</b> ) | 3            | 98 ( <b>3h</b> )       | 64                                         |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Allyl (1i)                                     | 3            | 78 ( <b>3i</b> )       | 76                                         |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bn ( <b>1j</b> )                               | 11.5         | 75 ( <b>3j</b> )       | 78                                         |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $Ph(CH_2)_3$ (1k)                              | 3            | 80 ( <b>3k</b> )       | 71                                         |  |  |
| $12^d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ph (11)                                        | 3            | 59 ( <b>3l</b> )       | 8                                          |  |  |

<sup>*a*</sup> All reactions were performed with 0.5 mmol of **1** in 10 mL of toluene unless otherwise noted. <sup>*b*</sup> Yield of an isolated product. <sup>*c*</sup> Determined by HPLC analysis using a chiral stationary phase. <sup>*d*</sup> The reaction was conducted on a 0.2 mmol scale of **1**.

It is interesting to observe that the electronic nature of the aryl group may also influence the enantioselectivity of the reaction: 1-(4-ethoxyl)phenyl substituted allenol (**1m**) gave almost the same results: 80% yield and 73% ee (Table 4, entry 1); allenol **1n** with the 3,4-methylenedioxyphenyl group on the 1-position gave a yield of 65% and a little lower 62% ee (Table 4, entry 2); it is worth noting that a heteroaryl such as 2-thienyl substituted allenol **1o** may also afford the product in 73% yield and 68% ee under the standard reaction conditions (Table 4, entry 3). However, when the aryl group was replaced with the 4-MeC<sub>6</sub>H<sub>4</sub> (**1q**) group, both the yield and ee of the products dropped (Table 4, entry 5).



<sup>*a*</sup> All reactions were performed with 0.5 mmol of **1** in 10 mL of toluene unless otherwise noted. <sup>*b*</sup> Yield of an isolated product. <sup>*c*</sup> Determined by HPLC analysis using a chiral stationary phase. <sup>*d*</sup> The absolute configuration of **30** is *S* according to the sequence rule.

| Table 4 | The scope of | the asymmetric | c semipinaco | l rearrangement | of a | llenol |
|---------|--------------|----------------|--------------|-----------------|------|--------|
|---------|--------------|----------------|--------------|-----------------|------|--------|

ChemComm

It is worth noting that after recrystallization<sup>8</sup> from the solution of  $CH_2Cl_2$  and *n*-hexane three times, the ee value of **3k** reached 99% (17% yield). The absolute configuration of **3k** was determined by the X-ray diffraction study<sup>9</sup> (Fig. 1). A large scale reaction of **1k** (882.5 mg, 3.0 mmol) was also conducted and the ee value of **3k** reached 94% after twice recrystallization with 40% yield (for details, see the ESI<sup>†</sup>).



To demonstrate the practicality of this reaction, another gramscale reaction of **1c** was further conducted. The reaction of **1c** (1.0908 g, 5.0 mmol) with **2** afforded the corresponding product **3c** (1.1428 g) with a yield of 77% and 74% ee. Further treatment of **3c** with 2,4-dinitrophenylhydrazine in the mixed solution of EtOH and H<sub>2</sub>O catalyzed by H<sub>2</sub>SO<sub>4</sub> (98%) gave hydrazone **5c** in a yield of 92% and 75% ee. After crystallization from the solution of CH<sub>2</sub>Cl<sub>2</sub> and *n*-hexane, the crystals (7% ee, 19% yield) were removed and evaporation of the mother liquid gave the optically active enantiomer with 99% ee (72% yield), which was then dried, and subsequently stirred in the solution of dioxane with concentrated hydrochloric acid (12 M) at 50 °C for 17.7 h to afford enal *R*-**3c** in a yield of 81% and 98% ee (Scheme 2).



Scheme 2 Preparation of R-3c with 98% ee.

In conclusion, we have developed a method using quinidine and chiral-binol-derived phosphoric acid as a cocatalyst to catalyze the asymmetric semipinacol rearrangement of 2,3-allenols forming chiral 3-bromo-3-enals that contain a quaternary all-carbon stereocenter. With further treatments, the 3-bromo-3-enals with practical enantiomeric excess may be prepared. However, the real identity of the catalyst has not been established. Due to the easy availability of the allenols, the catalysts, and the potential of the highly functionalized aldehydes, this method will be of high interest to the community. Further study on this reaction is being actively pursued in this laboratory.

Financial support from the National Basic Research Program of China (2011CB808700) and the National Nature Science Foundation of China (21232006) is greatly appreciated. Shengming Ma is a Qiu Shi Adjunct Professor at the Zhejiang University. We thank Miss Qiong Yu in this group for reproducing the results presented in Table 3, entries 2 and 9, and entry 2 in Table 4.

### Notes and references

- 1 Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis, ed. J. Christoffers and A. Baro, Wiley-VCH, Weinheim, Germany, 2005. For recent reviews on the asymmetric formation of quaternary carbon centers, see: (a) C. J. Douglas and L. E. Overman, *Proc. Natl. Acad. Sci.* U. S. A., 2004, **101**, 5363; (b) B. M. Trost and C. Jiang, *Synthesis*, 2006, 369; (c) P. G. Cozzi, R. Hilgraf and N. Zimmermann, *Eur. J. Org. Chem.*, 2007, 5969; (d) M. Bella and T. Gasperi, *Synthesis*, 2009, 1583.
- 2 (a) C. L. Fu, J. Li and S. M. Ma, *Chem. Commun.*, 2005, 4119–4121;
  (b) J. Li, C. L. Fu, G. Chen, G. Chai and S. M. Ma, *Adv. Synth. Catal.*, 2008, 350, 1376–1382.
- 3 For recent articles on the formation of quaternary carbon stereocenters via semipinacol rearrangement see: (a) B. M. Trost and T. Yasukata, J. Am. Chem. Soc., 2001, 123, 7162; (b) B. M. Wang, L. Song, C. A. Fan, Y. Q. Tu and W. M. Chen, Synlett, 2003, 1497-1499; (c) M. Wang, B. M. Wang, L. Shi, Y. Q. Tu, C. A. Fan, S. H. Wang, X. D. Hu and S. Y. Zhang, Chem. Commun., 2005, 5580-5582; (d) F. Kleinbeck and F. D Toste, J. Am. Chem. Soc., 2009, 131, 9178; (e) E. Zhang, C. A. Fan, Y. Q. Tu, F. M. Zhang and Y. L Song, J. Am. Chem. Soc., 2009, 131, 14626; (f) Q. W. Zhang, C. A. Fan, H. J. Zhang, Y. Q. Tu, Y. M. Zhao, P. M. Gu and Z. M. Chen, Angew. Chem., Int. Ed., 2009, 48, 8572; (g) Z. M. Chen, Q. W. Zhang, Z. H. Chen, H. Li, Y. Q. Tu, F. M. Zhang and J. M. Tian, J. Am. Chem. Soc., 2011, 133, 8818-8821; (h) H. Li, F. M. Zhang, Y. Q. Tu, Q. W. Zhang, Z. M. Chen, Z. H. Chen and J. Li, Chem. Sci., 2011, 2, 1839-1841; (i) C. H. Muller, M. Wilking, A. Ruhlmann, B. Wibbeling and U. Henneche, Synlett, 2011, 2043; (j) Z. M. Chen, B. M. Yang, Z. H. Chen, Q. W. Zhang, M. Wang and Y. Q. Tu, Chem.-Eur. J., 2012, 18, 12950-12954.
- 4 (a) F. Romanov-Michailidis, L. Guenee and A. Alexakis, Angew. Chem., Int. Ed., 2013, 52, 9266–9270; (b) F. Romanov-Michailidis, L. Guenee and A. Alexakis, Org. Lett., 2013, 15, 5890; (c) B. Alcaide, P. Almendros, A. Luna, S. Cembellin, M. Arno and L. R. Domingo, Chem.–Eur. J., 2011, 17, 11559; (d) B. Alcaide, P. Almendros, A. Luna and M. R. Torres, Adv. Synth. Catal., 2010, 352, 621.
- 5 Compound 2 was synthesized according to the literature: S. Fujisaki, S. Hamura, H. Eguchi and A. Nishida, *Bull. Chem. Soc. Jpn.*, 1993, 66, 2426–2428.
- 6 (a) K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K. S. Jeong, H. L. Kwong, K. Morikawa, Z. M. Wang, D. Q. Xu and X. L. Zhang, J. Org. Chem., 1992, 2768–2771; (b) G. A. Crispino, K. S. Jeong, H. C. Kolb, Z. M. Wang, D. Q. Xu and K. B. Sharpless, J. Org. Chem., 1993, 3785–3786.
- 7 (a) J. W. Xie, X. Huang, L. P. Fan, D. C. Xu, X. S. Li, H. Su and Y. H. Wen, Adv. Synth. Catal., 2009, 351, 3077-3082; (b) G. Bergonzini, S. Vera and P. Melchiorre, Angew. Chem., 2010, 122, 9879-9882 (Angew. Chem., Int. Ed., 2010, 49, 9685-9688); (c) X. Tian, C. Cassani, Y. Liu, A. Moran, A. Urakawa, P. Galzerano, E. Arceo and P. Melchiorre, J. Am. Chem. Soc., 2011, 133, 17934-17941; (d) O. Lifchits, M. Reisinger and B. List, J. Am. Chem. Soc., 2010, 132, 10227-10229; (e) J. Song, C. Guo, A. Adele, H. Yin and L. Gong, Chem.-Eur. J., 2013, 19, 3319-3323.
- 8 W. L. F. Armarego and C. L. L. Chai, *Purification of Laboratory Chemicals*, Elsevier Inc., 5th edn, 2003, pp. 14–17ISBN: 978-0-7506-7571-0.
- 9 Crystal data for compound  $\mathbf{\bar{3k}}$ : C<sub>20</sub>H<sub>21</sub>BrO<sub>2</sub>,  $M_W = 373.28$ , Monoclinic, space group *P*21, final *R* indices [ $I > 2\sigma(I)$ ],  $R_1 = 0.0472$ ,  $wR_2 = 0.0921$ , *R* indices (all data)  $R_1 = 0.0723$ ,  $wR_2 = 0.1047$ , a = 10.7903 (11) Å, b = 8.3733 (5) Å, c = 10.8570 (9) Å,  $\alpha = 90^\circ$ ,  $\beta = 110.884$  (10)°,  $\gamma = 90^\circ$ , V = 916.49(13) Å<sup>3</sup>, T = 293 (2) K, Z = 2, reflections collected/unique: 6043/2460 ( $R_{int} = 0.0344$ ), number of observations [ $> 2\sigma(I)$ ] 3325, parameters: 209. CCDC 980926.