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An aggregation-induced emission enhancement (AIEE)-active fluorescent sensor has been successfully designed
and synthesized, combining the AIE effect of tetraphenylethylene (TPE) with the cyanide acceptor of phenanthro
[9,10-d]imidazole. The sensor exhibits not only the property of AIEE in DCM/n-hexane or THF/H2O, but also the
phenomenon of mechanofluorochromic (MFC). It displays large Stokes shift (107 nm) due to the intramolecular
charge transfer (ICT) process. The cation of CN− boosts the ICT process tomake the greater Stokes shift (184 nm)
with the fluorescent color vary from blue-green to sodium-yellow and visually turning from light yellow to dark
yellow in the naked eyes. The results of Job's plot, ESI-MS and the DFT calculations provide the stoichiometric
ratio and electronic properties of the sensor. Furthermore, the sensor could be applied to qualitative and quanti-
tative detection of CN− on test paper strips.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Cyanide compounds are vital in chemical, medicine, fuel industry
and heavy industry fields, because of not only thewide range of sources
but also thewide range of uses [1,2] such as goldmining, electroplating,
metallurgy, synthetic fiber and resin industry [3]. However, cyanide
compounds are one of the most toxic substances to the environment
and human health [4,5]. Cyanide is absorbed through the skin, the
eyes or gastrointestinal tract into the body, breaking down toxic cyanide
ions, which can inhibit the activity of 42 enzymes in the cell [6–9] taking
cytochromeoxidase, peroxidase and decarboxylase [10,11] for example.
Among them, cytochrome oxidase is susceptible to prussiate which can
easily bind to trivalent iron in oxidized cytochrome oxidase to inhibit its
lessening to divalent iron, break the oxidation process of transmitting
electrons, and eventually lead to respiratory failure and death [12–15].
Therefore, the urgent problem to be solved at present is how to quickly,
efficiently and easily detect cyanide ions in the environment and daily
life. Traditional methods for detecting cyanide ions require expensive
instruments and complicate operations, which limit the application of
these methods [16,17]. In recent years, colorimetric and fluoresent
methods have become the research hotpot in ion detection field, be-
cause of their simple operation and cheap instrument [18,19]. Cyanide
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ions colorimetric and fluorescence sensors are usually combined by
binding sites and signal groups in a certain way to achieve the purpose
of detection [20,21]. According to the different binding modes, it is
mainly divided into the following categories: hydrogen bonding type,
deprotonation type, addition reaction type and coordination action
type [22–25]. For example, Kasushik and co-works [26] reported that
hydrogen-bond-based thiourea recognition sites would rapidly detect
fluoride ions and cyanide ions in the naked eyes, but the disadvantage
was that it would not achieve specific recognition [26]. Bhattacharya
and groupmembers synthesized sensor molecules with anthraquinone
imidazoie as the framework [27]. The compound was indentified fluo-
ride ions and cyanide ions in acetonitrile by intramolecular electron
transfer mechanism, and achieved a single colorimetric recognition of
cyanide ions by changing the solvent system [27].

With the research of colorimetric and fluorescent sensors, more and
more sensors have been reported and proposed, such as imidazole de-
rivatives, rhodamine derivatives and coumarin fluorescent derivatives,
which have high fluorescent quantum yield, good photostability and
molar extinction coefficient [28–30]. But they also exhibit fatal irre-
pressible drawbacks such as aggregation-caused quenching (ACQ),
small stoke shifts (<10 nm) and background interference, limiting
their practical applications [31,32].

Academician Tang Benzhong and members of his research group
proposed aggregation-induced emission (AIE) for the first time in
2001 to overcome the notorious ACQ phenomenon [33–35].
Aggregation-induced emission was the opposite process of the
aggregation-caused quenching, showing weak fluorescence or even no
fluorescence in the non-aggregating state, but enhancing fluorescence
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in the aggregated state [36,37]. For instance, hydrazone imide deriva-
tives, anthracene derivatives and tetraphenylene derivatives exhibited
AIE phenomena and would be applied to biological detection [38,39].
Among them, tetraphenylene was the characteristics of simple synthe-
sis and easy modification, so many tetraphenylene derivatives had
been designed and proposed. For example, (E)-1,2-di([1,1′:4′,1″-
terphenyl]-4-yl)-1,2-diphenylethene [40], tetra(4-pyridylphenyl)eth-
ylene [41], 9,9′-bixanthenylidene [42], but there were few studies on
linking tetraphenyl to imidazole. Combination the application of imid-
azole derivatives in the field of ion detection with the advantages of
tetraphenylene [43,44], An AIEE-active fluorescent sensor (Scheme 1)
2-(5-(4-(1,2,2-triphenylvin-yl)phenyl)thiophen-2-yl)-1H-phenanthro
[9,10-d]imidazole (TPI) was designed and synthesized for cyanide ion
identification.

2. Experimental

2.1. General methods

All chemicals and solvents were acquired the analytical grade by
bargain and utilized without further purification. 1H NMR and 13C
NMR spectra were noted on a Bruker AV500 (500 MHz) NMR spec-
trometer utilizing tetramethylsilane as the internal standard. Mass
spectra were obtained using an Agilent 1100 ion trap LC/MS MSD sys-
tem. Fluorescence spectra and UV–Vis absorption spectra were
measured with a Hitachi F-4500 fluorescence spectrophotometer and
an Agilent 8453 UV–Vis spectrophotometer, respectively. The fluores-
cencequantumyieldwas resolved theQYC11347-11 (absolute PL quan-
tum yield spectrometer). XRD researches were performed in the
Shimadzu XRD-6000 diffractometer with Ni-filtered and graphite-
monochromated Cu Ka radiation (λ = 1.54 Å, 40 kV, 30 mA). Dynamic
light scattering (DLS) studies were measured using Brookhaven
NanoBrook 90 Plus and scanning electron microscopy (SEM) were re-
corded on a SEM, Zeiss, Sigma. Anions (CN−, F−, Cl−, CH3COO−, NO3

−,
I−, CO3

2−, HCO3
−, HSO3

−, SO4
2−, H2PO4

−, SCN−, ClO4
−, HSO4

−, Br−, PO4
3−,

S2O3
2− and HPO4

2−) from their tetrabutylammonium salts were pre-
pared, which was diluted to 0.1 mol L−1 by deionized water to obtain
the stock solution.

2.2. Synthesis of TPI

As shown in Scheme 1, synthesis of compound 1 by Suzuki coupling,
compound 1 was prepared by reacting (2-(4-bromophenyl)ethene-
1,1,2-triyl)tribenzene (0.800 g, 2 mmol) with (5-formylthiophen-2-yl)
boronic acid (0.624 g, 4 mmol) in the presence of Pd(PPh3)4 and
Na2CO3 (4 g, 38 mmol) in tetrahydrofolate (THF, 30 mL containing
10% water). Refluxing at 360 K was continued until TLC revealed that
the reaction was complete, after being extracted with DCM. Purification
by silica gel column chromatography in petroleum ether and ethyl ace-
tate (45: 1) to compound 1 (56%) pale green solid after drying the sol-
vent. 1H NMR (500 MHz, DMSO-d6): δ (ppm) 6.99–7.10 (m, 8H),
7.13–7.24 (m, 9H), 7.62 (d, 1H, J = 9.5 Hz), 7.71 (d, 1H, J = 4.5 Hz),
8.03 (d, 1H, J = 4.5 Hz), 9.91 (s, 1H). (Fig. S1).
Scheme 1. Synthet
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Synthesis of TPI by compound 1 (0.1 g, 0.23 mmol) was dissolved in
methanol (15 mL) and placed in a one-neck flask, and phenanthrene-
9,10-dione (0.07 g, 0.3 mmol) and ammonium acetate (0.7 g, 9 mmol)
were added to the solution to allow the reaction mixture to be at
360 K. The mixture was stirred at reflux temperature until a solid pre-
cipitated. It was cooled to room temperature, washed with methanol
until no impurities, and dried to give a yellow solid (0.08 g, yield:
55%). 1H NMR (500 MHz, DMSO-d6): δ (ppm) 6.60 (d, 1H, J = 4 Hz),
6.99 (d, 3H, J = 7.5 Hz), 7.15–7.06 (m, 4H), 7.27–7.22 (m, 6H), 7.29
(d, 3H, J = 8.0 Hz), 7.33 (d, 1H, J = 7.0 Hz), 7.37 (t, 3H, J = 6.5 Hz),
7.59 (d, 1H, J = 4.0 Hz), 7.81 (d, 3H, J = 25 Hz), 8.78 (d, 2H, J =
7.5 Hz), 9.02 (d, 2H, J = 3.5 Hz), 13.76 (s, 1H,), 13C NMR (126 MHz,
DMSO-d6): δ (ppm) 122.30, 122.38, 122.56, 124.27, 124.68, 125.20,
125.76, 125.99, 127.08, 127.18, 127.27, 127.30, 127.36, 137.65, 127.73,
127.99, 128.03, 128.25, 128.31, 128.42, 128.51, 131.14, 131.19, 131.24,
131.80, 132.05, 133.35, 137.35, 140.42, 141.48, 143.48, 143.59, 144.47,
145.03. MS-ESI (m/z): 631.21 [M+ H]+ (calcd 631.1) (Fig. S2).

3. Results and discussion

3.1. Optical characterization

The UV–Vis absorption spectrums of TPI in pure THF
(2.0 × 10−5 mol L−1) and solid state were recorded in Fig. 1A. The ab-
sorption peaks of TPI in pure THF were 321 nm and 394 nm, in that a
relatively weaker absorption peak at 321 nmwas due to the π-π* tran-
sitions, and amain absorption peaks at 394 nmwas due to the intramo-
lecular charge transfer (ICT) process [38]. The absorption band of solid
TPI (λmax = 401 nm) was slight red-shifted, compared with that of
TPI (λmax = 394 nm) in pure THF, presumably on account of the aggre-
gation formation and the intermolecular interactions occurrence in the
solid state [45]. The fluorescence spectrum of TPI showed bright blue
fluorescence at 501 nm in THF when excited at 394 nm (Fig. 1A), and
exhibited large stock shift (107 nm), whereas this solid state showed
bright blue-green fluorescence at 522 nm. The photograph of TPI in
THF solutions and solid statewere shown in Fig. 1B. In addition, thefluo-
rescence lifetime of TPI was found to be 0.05 ns in THF solutions,
whereas the fluorescence lifetime was found to be 0.49 ns in the solid
state. The longer fluorescence lifetime could be due to the restriction
of intramolecular rotations in the solid state [46]. At the same time
photophysical data of TPIwere summarized in Table 1.

3.2. Aggregation induced emission enhancement (AIEE) properties

To research the probable AIEE behavior of TPI, this spectral behavior
was explored in the good andpoor solvents. AIEE characteristics of com-
pound TPI was based on emission and UV–Vis absorption spectral as-
sessments in various n-hexane fraction (fh = 0–98%) of DCM/n-
hexane mixtures (Fig. 2A). The emission of TPIwas weak in DCM solu-
tion and increased slowly until the ratio of n-hexane increased to 80%.
Afterwards, the remarkable emission enhancement was recorded for
TPI at fh of 90% and 98%, which were 2-fold (90%) and 6-fold (98%)
higher than that in pure DCM, respectively. As fh altered from 0 to
ic route of TPI.
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Fig. 1. (A) The absorption and fluorescence spectra of TPI compound in pure THF solution and in solid states and (B) their photographic images under 365 nm UV light.
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90%, the absorption bands of TPI in DCM/n-hexane had little changed
compared to it in DCM solution. However, the absorption peak intensi-
ties of TPI slightly increased as fh increasing to 98% (Fig. S3). Addition-
ally, limiting the intramolecular motions of TPI in aggregation states
made the fluorescence quantum yield of TPI remarkably increase from
0.042 (fh = 0%) to 0.101 (fh = 98%) and resulted in the emission im-
provement [47,48]. These results indicated that TPIdisplayedAIEE char-
acteristics in DCM/n-hexane mixtures. Further, the morphological
transition of the TPI in the DCM/n-hexane mixture solution (fh =
98%) was determined by scanning electron microscopy (SEM) and dy-
namic light scattering (DLS) as shown in Fig. S4 and Fig. S5. DLS result
revealed that the particulate size of aggregates changedwith increasing
various n-hexane fraction in the DCM/n-hexanemixture. SEM images of
TPI clearly indicated the morphological aggregates state.

Different luminescence response was present with the alter-
ation of water, a polar and poor solvent, in THF solution (Fig. 2B).
The fraction of water ranging from 0% to 20%, the emission inten-
sity descended mildly. Subsequently the emission intensity
ascended slowly with the fw from 20% to 70%, the emission inten-
sity improved dramatically with the fw from 70% to 80%, and the
fw more than 80% the emission converted to decrease. The emission
color appeared red-shift (34 nm) from blue-green (501 nm) to
pure green (535 nm) with the reason that the dye molecules had
different conformations and packing modes at the aggregation
states [49]. In the mixture of the higher water content (fw > 80%),
the dye molecules might rapidly agglomerated in an irregular
way to induce less emission [50,51]. The fluorescence quantum ef-
ficiency of TPI raised from 0.039 (fw =0%) to 0.09 (fw =80%). Thus,
TPI featured the unique AIEE characteristics in THF/water mix-
tures, also. In addition, the AIEE behavior could be further con-
firmed by DLS and SEM measurements, as shown in Fig. 2C and D.
The Optical properties for TPI under different environment were
summarized in Table S1.
Table 1
Optical properties for TPI.

Sample THF Δλe Solid

λmax (nm)a λem (nm)b τ(ns)c λmax (nm)a λem(nm)b τ(ns)c

TPI 321, 394 501 0.05 107 290, 401 522 0.49

a Absorption wavelength.
b The wavelength of emission maximum.
c The fluorescence lifetime.
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3.3. Mechanofluorochromic behavior of TPI

The mechanofluorochromic characteristics of compound TPI were
further investigated by emission spectral (Fig. 3A). The solid sample
was then crushed with a pestle, and the fluorescence emission color of
the sample changed (Fig. 3B). The blue green luminescence (521 nm)
transformed into bright green luminescence (542 nm) with a moderate
red-shift (21 nm) after crushing (Fig. 3C). Significantly, after treating
the ground sample with DCM vapor, the fluorescence emission could
be essentially reverted to its initial emission with the color changing
(Fig. 3D). This mechanochromic luminescence transition of TPI would
be repeated many times between the blue green luminescence and
bright green luminescence by alternating grinding and fuming pro-
cesses (Fig. S6). The powder X-ray diffraction (PXRD) technique was
used to reveal the reason for the mechanofluorochromic behavior of
TPI, and the results indicated that this phenomenon occurred due to
the change in molecular packing modes [52]. As shown in Fig. S7, the
diffraction patterns of the solid sample and the solvent fumed powders
clearly exhibited sharp and intense reflections, indicating TPI form mi-
crocrystals. In contrast, the ground powders did not exhibit any notice-
able diffraction in the PXRD profile, reflecting its amorphous.

3.4. Analytical studies of TPI

The binding ability of TPI with different anions including CN−, F−,
Cl−, CH3COO−, NO3

−, I−, CO3
2−, HCO3

−, HSO3
−, SO4

2−, H2PO4
−, SCN−,

ClO4
−, HSO4

−, Br−, PO4
3−, S2O3

2− and HPO4
2− was also investigated by

fluorescence spectroscopy in DCM (2.0 × 10−5 mol L−1) at room tem-
perature. When excited at 441 nm, upon adding 9.0 equiv. of CN−, the
fluorescence emission peak of TPI exhibited a theatrical enhancement
(~8.3 folds) and transformed from 500 nm to 595 nm due to the TPI-
CN− complex form (Fig. 4A). Simultaneously, TPI-CN− complex exhib-
ited greater stock shift (184 nm) than that in TPI (107 nm), which
would be easy to facilitate ICT processes [50]. The apparentfluorescence
color turned from blue-green to sodium-yellow (Fig. 4C) with the visi-
ble color changing from light yellow to dark yellow (Fig. S7). After addi-
tion 9.0 equiv. of other anions, no obvious fluorescence variations were
observed. The results indicated that TPI could be used as a fluorescent
sensor for the naked-eye detection of CN− in DCM. In order to evaluate
the TPI anti-jamming capability for detecting CN− in the presence of
various anions (Fig. 4B), the experiment of anti-interferencewas carried
out. There was scarcely any interference in the emission intensity was
seen by addition CN− (9.0 eq.) to TPI solution in the presence of various
anions (10 eq.). Thus, these results indicated TPI could be served as an
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Fig. 2. (A) Thefluorescence spectra of TPI in THF/n-hexanewith different fractions (inset: photos of TPI inDCM/n-hexane under 365 nmexcitation and PL relative intensity of TPI). (B) The
fluorescence spectra of TPI in THF/H2Owith different fractions (inset: photos of TPI in THF/H2O under 365 nmexcitation and the PL relative intensity of TPI). (C) Size distribution of TPI in
THF/H2O. (D) SEM images of TPI in THF/H2O (fw = 99%).
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excellentfluorescent sensor for CN−detectionwith favorable selectivity
and enjoyable anti-interference.

To further estimate the dose-dependent fluorescence response of
TPI to CN− was decided by fluorescence titration in DCM at room tem-
perature (Fig. 5A). As the CN− from 0 to 9.0 equiv. dropped into the
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Fig. 3. (A) Solid state fluorescence spectra of TPI before and after the grinding, and after treatm
(B) the solid sample, (C) the ground solid sample, (D) the solid sample after the treatment wi

4

solution of TPI (2.0 × 10−5mol L−1), the peak at 595 nmascended grad-
uallywith the peak at 500 nmdescending (Fig. 5B). Accompanied by the
fluorescent color of the solution transforming from blue-green to
sodium-yellow, simultaneously the fluorescence quantum yield re-
markable was increased from 0.042 (TPI) to 0.23 (TPI-CN− complex).
0000

ent with DCM vapor (λem= 400 nm). Photographic images of TPI under 365 nmUV light:
th DCM vapor.
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These results indicated that the sensor TPI could also be used as a latent
CN− fluorescent sensor application. For the CN− in a concentration
ranging from 0 to 9.0 eq., the emission intensities revealed a fine linear
relationship (Y = 44.8*X + 68.02857, R = 0.99098) (Fig. 5C). The de-
tection limit was calculated to be 0.09258 μm L−1 based on reported
means [53], which was much lower than the maximum contaminant
level (1.9 μm L−1) for CN− in drinking water set by the WHO.

3.5. Detection mechanism for CN−

The 1H NMR analysis further demonstrated the sensor TPI binding
from with CN− in DMSO-d6 (Fig. 6). Upon gradual adding of CN−, the
–NH proton signal (located at 13.76 ppm) of TPI declined gradually
until disappeared, which indicated the interaction of highly electroneg-
ative CN− with –NH proton. To further verify the binding stoichiometry
of TPI-CN−, Job's plot experimentwas constructed by varying themolar
fraction of CN− from 0 to 1 under a constant total concentration
(2.0 × 10−5 mol L−1). The concentration of TPI + CN− complex
achieved the maximum when the molar fraction of [TPI]/
([TPI] + [CN−]) was 0.5, which suggested stoichiometry between TPI
and CN− was 1:1 (Fig. S8). The formation of TPI + CN− complex was
further verified by the ESI mass spectrometry analysis (Fig. S9). TPI re-
vealed a main peak at 631.1 m/z ([TPI + H]+) and another major peak
produced at 656.6 m/z as 9 eq. of CN− added owing to [TPI-CN+ H]+

(calculated 656.2). These results reinforced that the binding stoichiom-
etry between TPI and CN− was 1:1.

3.6. Practical application of aggregation induced emission

To further elucidate the effect of cyanide ion on the AIE behavior of
TPI, the fluorescence changes of TPI-CN− complex in DCM/n-hexane
mixtures with the volume ratio of n-hexane were studied. The Fig. S10
shown the fluorescence intensity of TPI-CN− complex gradually
5

increased with the addition of n-hexane until 80%. The emission wave-
length was blue-shifted, meanwhile the maximum n-hexane content
was 98%, the I/I0 value probably reached to 4.3, and the fluorescence
quantum yield were 0.23 and 0.419, respectively. The results indicated
that TPI-CN− complex also had an AIE behavior.

With the purpose of confirming the feasibility of practical application
of sensor TPI, the test strips weremade for the CN− detection. Firstly, test
strips were prepared by immersing filter papers into the DCM and n-
hexane solutions of TPI (2 × 10−5 mol L−1) for 10s and then dried in
air. As listed in Fig. S11, test paper strips showed that the blue-green fluo-
rescencewas visible in the naked eyes under the 365nmUV light, and the
result was consistent with the various n-hexane fraction. With the
treating of CN−, the test strips quickly changed from blue-green to
sodium-yellow in aggregation state and dark-yellow in non-aggregation
state. The test strip in aggregation statewasmore suitable for the CN−de-
tection with more dramatic color changing than that in non-aggregation
state (Fig. S12). After treating different anions into the test strips of aggre-
gation state, it could be apparently noticed that only CN−made a notable
fluorescence color change from blue-green to sodium-yellow under the
365 nm UV light (Fig. 7A), and the color of the test strips gradually
changed from dark yellow to light yellow under natural light (Fig. 7B).
The result indicated that the sensor TPI could be served as facilitation
test strips for a rapid detection of CN−. Furthermore, the fluorescent
color of the test strips gradually turned from blue-green to sodium-
yellow under the 365 nm UV light with the concentration of CN− raising
from0 to 2.5 ×10−4mol L−1 (Fig. 7C). All the above results demonstrated
the facilitation test strips of sensor TPI could be successfully used for
quantitative detecting CN−.

3.7. The density functional theory (DFT)

To supplementary comprehended the relationship between the op-
tical property and electronic structure, the density functional theory
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(DFT) calculationswas by B3LYP/6-311G (d) basis set with theG09 pro-
gram. As displayed in Fig. 8, for TPImolecule, the electron distribution of
HOMOwas amajority of localizing on 5-phenyl-thiophene, phenanthro
[9,10-d]imidazole unit, while that of the LUMO was distributed in the
part of the 5-phenyl-thiophene and imidazole unit. The electrons of
LUMO orbital wasmostly similar to the HOMO orbital electron distribu-
tion, which led to the certain restriction on intramolecular charge
Fig. 6. The 1H NMR spectra of TPI (red), TPI-CN− (blue) and TPI-CN− (black) in DMSO-d6
upon the addition of 0 eq., 5.0 eq. and 9.0 eq. CN−.
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transfer [54,55]. Nevertheless, the TPI-CN− compound, the electron dis-
tribution of HOMO was distributed the entire molecule. In contrast, the
electron distribution of LUMO was distributed in 5-phenyl-thiophene
and phenanthro[9,10-d]imidazole unit. Such a spatial frontier orbital
distributions revealed that TPI-CN− was easy to facilitate ICT processes
[50,56]. The calculated HOMO and LUMO energy levels for TPI were
− 0.19286 eV and − 0.06996 eV, respectively. However, TPI-CN− ex-
hibited a deeper HOMO (−0.20209) and LUMO (−0.08360) energy
level. The HOMO-LUMO band gaps in the TPI-CN− (0.11849 eV) was
found to be lower than the TPI (0.1229 eV), which could be due to the
TPI-CN− strong electron-withdrawing ability. These results of investi-
gations also corroborated, for instance, experimental observations of
red-shifted emission and large Stokes shifts (Table S2).
4. Conclusion

In summary, a fluorescent sensor of CN− was successfully synthe-
sized based on a phenanthro[9,10-d]imidazole AIEgen-based (TPI),
and its utilization in highly selective and sensitive real-time naked-eye
detection was proved according to the transforming fluorescence and
visible color. Meanwhile, the sensor could be applied to qualitative
and quantitative detection of CN− on test paper strips. The MFC behav-
ior, AIEE properties in two different solvent systems (DCM/n-hexane
and THF/H2O), the large stokes shift, ICT process and outstanding optical
properties strongly proved the feasibility of our sensor design strategy.
The results in this paper would support new methods for the fluores-
cence sensors in practical application in the future.



Fig. 7. Photograph showing: (A)fluorescent color change of TPI on test paper strips after treatingwith various anions under 365 nm light, (B) visible color change of TPI on test paper strips
after treating with various anions under natural light, (C) Fluorescence photos of different concentrations of CN−(× 10−5 mol L−1) on test paper strips.

Fig. 8. Optimized structures of TPI and TPI-CN−, HOMO and LUMO energy levels of TPI and TPI-CN−.
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