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Abstract 

Trichomonas vaginalis causes trichomoniasis; the most common but overlooked non-

viral sexually transmitted disease worldwide. The treatment is based at 5’-

nitroimidazoles, however, failure are related to resistance of T. vaginalis to 

chemotherapy. Caatinga is a uniquely Brazilian region representing a biome with type 

desert vegetation and plants present diverse biological activity, however, with few 

studies. The aim of this study was to investigate the activity against T. vaginalis of 

different plants from Caatinga and identify the compounds responsible by the activity. A 

bioguided fractionation of M. rufula was performed and four major compounds were 

identified: caproate of α-amyrin (1b), acetate of β-amyrin (2a), caproate of β-amyrin 

(2b), and acetate of lupeol (3a). In addition, six derivatives of α-amyrin (1), β-amyrin (2) 

and lupeol (3) were synthesized and tested against the parasite. Ursolic acid (5) 

reduced about 98% of parasite viability after 2h of incubation and drastic ultrastructural 

alterations were observed by scanning electron microscopy. Moreover, 5 presented 

high cytotoxicity to HMVII and HeLa cell line and low cytotoxicity against Vero line at 50 

µM (MIC against the parasite). Metronidazole effect against T. vaginalis resistant 

isolate was improved when in association with 5. 

 

Keywords: Trichomonas vaginalis; Caatinga plants; triterpenes; ursolic acid; 

cytotoxicity. 
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Abbreviations: 1H or 13C NMR, proton or carbon nuclear resonance magnetic; CDCl3, 

deuterated chloroform; TMS, tetramethylsilane; EI, electron ionization; MS, mass 

spectroscopy; GC, gas chromatography; RI, retention index; IR, infrared spctra; IPA, 

Instituto Agronômico de Pernambuco; VLC, vaccum liquid chromatography; EtOAc, 

ethyl acetate; MeOH, methanol; TLC, thin liquid chromatography; DMAP, 4-

dimethylaminopyridine; (1), α-amyrin; (2), β-amyrin; (3), lupeol; (1a), acetate of α-

amyrin; (1b), caproate of α-amyrin; (2a), acetate of β-amyrin; (2b), caproate of β-

amyrin; (3a), acetate of lupeol; (3b), caproate of lupeol; DMSO, dimethyl sulfoxide; 

TYM, trypticase-yeast maltose medium; SEM, scanning electron microscopy; MTT, 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. 

 

Trichomonas vaginalis is a flagellated protozoan that causes trichomoniasis, the 

number one non-viral sexually transmitted disease worldwide.1 The parasite colonizes 

the human tract and causes vaginitis in women and urethritis in men. Serious 

consequences are related to trichomoniasis, including cervical and prostate cancers 

increased risks,2 adverse pregnancy outcomes and an increased susceptibility to 

human immunodeficiency virus acquisition.3 Metronidazole, an antibiotic of the 

nitroimidazole class, is the first-line treatment for trichomoniasis. Nevertheless, T. 

vaginalis resistance to metronidazole is rising4 and requires new strategies to treat this 

neglected infection. Natural products play an important role in the search for new active 

drugs. 

Caatinga is a semi-arid region of Brazil Northeastern with a great diversity of 

plants and animals, however it is yet poorly studied and its potential is underestimated. 

The plants Croton nummularius Baill., Senna lechriosperma H.S.Irwin & Barneby, and 

Manilkara rufula (Miq.) H.J. Lam, Blumea are native and endemic of Northeast of 

Brazil. Several biological activities have been attributed to plants of Croton, Senna and 

Manilkara genera, such as anti-inflammatory and analgesic,5 anti-microbial, anti-
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parasitic, anti-HIV and antitumoral.6 Moreover, anti-T. vaginalis activity of M. dissecta 

crude extract was reported.7 The necessity of studies in this area is requiring, because 

there is a scarcity of studies about Caatinga plants. 

The miscellaneous of activities related to Manilkara sp. may be attributed to the 

presence of a range of secondary metabolic in these species, such as saponins, 

flavonoids, tannins, and triterpenes.8 These compounds present a variety of biological 

activities, such as anti-inflammatory, antiviral, antibacterial, antifungal, and antitumor.9 

Moreover, triterpenes showed potential activity against protozoa, such as Leishmania, 

Trypanosoma, Plasmodium and Trichomonas vaginalis.10,11 Triterpenes are important 

candidates for designing lead compounds for new active agents development, as 

showed by Guimarães et al.12 Moreover, structural modifications approaches help to 

improve biological activities against etiological agents and, nowadays, have showed an 

increasing interest. 

In order to investigate the potential against T. vaginalis, leaves and branches of 

C. nummularius, M. rufula and S. lechriosperma were collected at Parque Nacional do 

Catimbau (PARNA do Catimbau), Pernambuco, Brazil (837’S 3708’W) in February 

2012 with authorization of SISBIO 16.806 Instituto Chico Mendes de Conservação da 

Biodiversidade (ICMBio). Voucher specimens have been deposited in the Herbarium of 

the Instituto Agronômico de Pernambuco (IPA) as C. nummularius (IPA 86868), M. 

rufula (IPA 84889) and S. lechriosperma (IPA 84959). The dried leaves and branches of 

the three plants were powered and extracted with ethanol:water. Polar components 

were removed by liquid-liquid extraction with acetate and n-butanol. Non-polar fraction 

was subjected to a sequential vacuum liquid chromatography (VLC).13 

In addition, six derivatives of α-amyrin (1), β-amyrin (2), and lupeol (3) were 

synthesized14 (Figure 1A) and the compounds identification was performed by IR, 1H 

and 13C NMR, and HR-ESI-MS15-20. The data were compared with previous study.21 
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The parasites used in this study were Trichomonas vaginalis 30236 

metronidazole-sensitive isolate from ATCC and TV-LACM2R metronidazole-resistant 

isolate (fresh clinical isolates from female patients from Laboratório de Análises 

Clínicas e Toxicológicas, Faculdade de Farmácia, UFRGS, Brazil; project with ethical 

approval by UFRGS Ethical Committee, number 18923). Trophozoites were cultured as 

previously described by Diamond.22 Anti-T. vaginalis assays were performed.23 

Moreover, the minimum inhibitory concentration (MIC) of ursolic acid (5) was 

determined by eightfold dilution, ranging of 100 – 0.78 µM. After 24 h of incubation, the 

viability was evaluated by counting in hemocytometer with exclusion dye trypan blue 

0.2% and comparing with parasites untreated. After MIC determination, parasites were 

inoculated to fresh TYM medium and MIC was confirmed. The effect of 5 on parasite 

growth and viability was performed.24 In addition, the viability of the parasites was 

assessed using fluorescein diacetate (FDA) (Sigma, USA) and propidium iodide (PI) 

(Sigma, USA). Parasites were treated or not with 5 at 50 μM for 0, 2, 4, 6, and 12 h and 

stained with 10 μg/mL of FDA and 10 μg/mL of PI for 20 min for fluorescence analysis. 

In order to verify parasite ultrastructure changes induced by 5, scanning 

electron microscopy (SEM) was performed as described in previous study with T. 

vaginalis.25 Also, the cytotoxicity of UA to HMVII (vaginal epithelial melanoma cell), 

HeLa (cervical cancer cell), and VERO (kidney epithelial cells) lines was performed.26 

The association of 5 and metronidazole was performed against TV-LACM2R isolate at 

6.25 or 12.5 μM of 5 in association or not with 15 and 73 μM metronidazole. All the 

experiments were performed in triplicate and with at least three independent cultures (n 

= 3). Student’s t test was chosen for comparisons between two groups. The results are 

expressed as the mean ± SEM of at least three individual experiments. P < 0.05 was 

considered a statistically significant difference. Analyses were performed using 

Statistical Package for the Social Sciences (SPSS) software v.14. 
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Ethanolic extracts of leaves and branches of C. nummularius and S. 

lechriosperma showed a slight reduction (about 40%) of T. vaginalis viability at 1.0 

mg/mL (Figure 2A). Studies demonstrated that different species of Croton and Senna 

present a range of biological activities,5 however, we did not find reports about anti-T. 

vaginalis activity of Senna sp. nor Croton sp. 
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Figure 2. 
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In the case of M. rufula extracts (leaves and branches), at 1.0 mg/mL, the 

parasite viability was reduced up to 100% and 80% (Figure 2A), respectively, showing 

a promising activity of M. rufula extracts against T. vaginalis. These results agreed with 

the literature, which was demonstrated anti-T. vaginalis activity of M. dissecata.7 Taking 

into account the potential of M. rufula extract against the parasite, the crude extract of 

this plant was bioguided fractionated. After, repeated column chromatography on silica 

gel was performed, two major triterpene-enriched fractions were obtained (ML-5.16.13 

and ML-5.16.40). These fractions promoted a low reduction of parasite viability, 26.3% 

and 40.1%, respectively (Figure 2B). Regarding the scarcity of chemical studies from 

M. rufula, GC-MS and NMR analysis were performed to identify the mainly compounds 

in the triterpene-enriched fractions. Taking into account that these compounds are 

largely found in nature and their structures are already known, the M. rufula 

compounds identification was based in literature comparison: 1b, 2a, 2b, and 3a 

(Figure 1B).27 Despite these compounds are known, it is the first time that these 

compounds were isolated and identified in M. rufula, highlighting the importance of 

such study of plants from Caatinga region. Many plants from Caatinga show a great 

potential, however, the phytochemical and biological properties from the most of these 

plants have never been studied before. 

In attempting to improve M. rufula fractions biological activity and to 

characterize the activity of isolated compounds, six derivatives based on 1, 2, and 3 

(Figure 2A) structures were synthesized: 1a, 1b, 2a, 2b, 3a, and 3b (Figure 2B). This 

strategy is considered a hot research topic in medicinal chemistry over ten decades 

and demonstrated the potential of natural compounds derivatives as leading 

compounds.11,28 The anti-T. vaginalis activity of the six synthesized derivatives, the 

standards 1, 2, and 3 and derivatives acids oleanolic (4) and ursolic acid (5) was 

performed. As demonstrated at Table 1, semi-synthetic compounds demonstrated a low 

reduction of the parasite viability. The compound 3b presented the lowest reduction of 
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T. vaginalis viability, 28.6% at 100 µM, in comparison with negative control. The other 

compounds reduced about 40% of trophozoite viability. Although data from literature 

demonstrate that derivatives from different skeleton have different biological activity,29 

herein, we demonstrated that derivatives obtained from three different skeleton showed 

similar anti-T. vaginalis activities. The compounds 1, 2, 3 and 4 demonstrated a weak 

reduction of T. vaginalis viability, representing a reduction of less than 25% the parasite 

viability at 100 µM (Table 1). 

Table 1. Anti-trichomonal activity of standards and semi-synthesized 

compounds. Results are mean ± SD of three different experiments performed in 

triplicate. 

Compounds T. vaginalis viability at 100 µM 

(mean ± SD)a 

Control 100.00 ±   0.00 

MTZ 0.00 ±  0.00 

α-amyrin (1) 76.10 ±   1.59 

β-amyrin (2) 84.30 ±   6.23 

Lupeol (3) 117.80 ±   16.80 

Oleanolic acid (4) 78.30 ±   8.94 

Ursolic acid (5) 0.00 ±   0.00 

Acetate of α-amyrin (1a) 56. 40 ±   2.46 

Caproate of α-amyrin (1b) 56.20 ±   0.05 

Acetate of β-amyrin (2a) 54.50 ±   1.06 

Caproate of β-amyrin (2b) 62.80 ±   3.61 

Acetate of lupeol (3a) 59.80 ±   4.47 

Caproate of lupeol (3b) 71.40 ±   8.36 
a
T. vaginalis viability was determined by comparison with negative control. MTZ is a positive control. 

 

In contrast, 5 reduced 100% the T. vaginalis viability at the same concentration 

(100 µM) of other evaluated compounds and the MIC was 50 µM (Figure 3A). As 

demonstrated by Cos et al.30 pure compounds are considered relevant and selective 

when present IC50-values below 25 µM. Nevertheless, T. vaginalis is an extracellular 



  

10 
 

organism and an endpoint more robust is required for activity assays; therefore, the 

anti-T. vaginalis activity is usually expressed as MIC-values,31 because it is necessary 

a compound that totally abolish the parasite growth, avoiding further growth. In this 

sense, 5 presented a relevant and selective activity against T. vaginalis, demonstrating 

a potential for new alternative to treat trichomoniasis. To overcome subjective counting 

mistakes of trophozoite counting under microscopy observation, parasites at MIC and 

one concentration above were inoculated in fresh TYM medium and the viability 

assessed each 24 h during 144 h. After 24 h of incubation in new medium, the 

parasites at 50 and 100 µM of compound 5 did not grow, confirming that 50 µM is a 

real MIC and the effect was antiproliferative and nonreversible, since parasite growth 

was inhibited after removal of the compound from medium (Figure 3A inset). 
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Figure 3. 

 

The effect of 5 on parasite growth and viability was investigated by kinetic 

growth. After 24 h of incubation, untreated organisms (control) exhibited the classical 

growth peak. The treated organisms (50 µM of 5), in turn, did not present the classical 

growth peak and, after 12 h of incubation, this compound totally abolished parasite 

growth and only trichomonads debris could be observed (Figure 3B). To increase the 

accuracy of kinetic growth curve obtained by counting parasites in hemocytometer, flow 

cytometry assay was performed. The parasites treated or not with ursolic acid were 

evaluated at different times of incubation (2, 4, 6, and 12 h) and stained simultaneously 

with FDA and PI. Trophozoites with intact membranes retain FDA dye and were 

considered as viable organisms. In turn, parasites with compromised membranes 

incorporate PI dye and were assumed as nonviable. As can be seen in Figure 3C, 

untreated parasites (control condition) presented only FDA labeling. Trichomonas 

vaginalis treated with 5 exhibited FDA labeling, however, in comparison with control 

condition (untreated parasites), treated organisms presented much less labeling 

(Figure 3D). The next experiments performed with 5, the incubation time chosen was 2 
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h, because the organisms were burst and only debris was found in times longer than 2 

h. 

Furthermore, to evaluate morphological and ultrastructural effects of 5 on T. 

vaginalis, trophozoites were treated (or not, as control) with this compound and 

analyzed by SEM, as shown in Figure 4. Untreated trophozoites presented a typical 

shape, the teardrop morphology (Figure 4A). After 2 h of treatment with 5, drastic 

effects on parasite membrane were observed (Figure 4B-D). Firstly, the typical shape 

was disrupted and trophozoites became rounded (Figure 4B). Next, it was observed 

membrane projections and holes. In addition, undulating membrane and flagella was 

displayed (Figure 4C-D). As explained before, the treatment with 5 destroyed the 

trophozoites and incubation times longer than 2 h was not possible. SEM assay of T. 

vaginalis demonstrated that 5 treatment caused critical alterations, such as the 

appearance of rounded and wrinkled trophozoites and significant membrane damage. 

These features indicate that the parasite is in process of death, and have been 

previously reported for trichomonads treated with other compounds, such lycorine and 

candimine,32,33 and hydroxiquinuclidine derivative.34 
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Figure 4. 

 

Taking into account that treatment constitutes a major therapeutic challenge, 

because approximately 10% of T. vaginalis clinical isolates present some level of 

resistance to metronidazole,4 new alternatives to treat resistant isolates were 

necessary. The TV-LACM2R isolate is resistant to metronidazole (MIC is 73 µM)35 and 

low concentration of metronidazole (15 µM) reduced about 80% of trophozoite viability. 

Compound 5 was able to totally reduce TV-LACM2R viability at 12.5 µM (Figure 5A), 

demonstrating a great potential of this natural derivative against resistant T. vaginalis 

isolates. Furthermore, 5 was evaluated with 15 µM of metronidazole and at this 

concentration, the compound significantly improved metronidazole effect against TV-

LACM2R isolate, indicating a successful synergic effect (Figure 5B). 
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Figure 5 

 

Taking into account the potential of 5 against T. vaginalis sensitive and resistant 

to metronidazole isolates, the in vitro cytotoxicity of this compound was evaluated by 

MTT assay against HMVII and HeLa cancer cell lines and Vero normal cell line. As 
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showed in Figure 6, after 24 h of incubation, 5 at 50 µM reduced cancer cell lines 

viability about 60 and 50%, respectively. After 48 h of incubation, the compound 

showed higher toxicity to these cells, reducing about 90% of cell viability. These 

findings agreed with earlier studies that demonstrated a great potential of 5 and 

derivatives against cancer.28 Furthermore, the viability of Vero cells, normal cell line, 

was performed and about 30% of cell viability was reduced. In order to compare the 

activity anti-parasite versus cytotoxicity, the selectivity index (SI) of 5 was calculated as 

the ratio of cytotoxicity to anti-parasite activity (SI = CC50 cell/IC50 T. vaginalis). The 

effectiveness of a compound is indicated by selectivity indices ≥10.36 Thus, low SI 

indicates high in vitro cytotoxicity of the compound and the lack of selectivity for the 

parasites. 
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Despite 5 demonstrated a promising anti-T. vaginalis activity, this compound 

presented a low SI against cancer and normal cell lines (Table 2), thereby, showing not 
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to be selective. Nevertheless, a compound that displayed a high cytotoxicity against 

mammalian cells should not be abandoned. It is important to emphasize however, that 

selectivity indices are important for general orientation, but must not be the unique 

criterion to decide whether a compound should be left aside or forwarded to animal 

model to continue the search for a new bioactive molecule. As demonstrated in 

different studies, some compounds showed very favorable SI in vitro assays, however, 

come out to be inactive or very toxic to animals.37-39 

Table 2. Comparison of anti-T. vaginalis activity and mammalian cells effects. 

Results are representative of three independent experiment. 

Condition MIC (µM) IC50 (µM) CC50 (µM) SI
a
 

Ursolic acid 50 35.3 HMVII Vero HMVII Vero 

   24 h 48 h 24 h 48 h 24 h 48 h 24 h 48 h 

   145.9 69.5 31.9 35.9 4.13 1.97 0.90 1.02 

a
SI – selectivity index. 

 

In conclusion, herein we demonstrated the potential of M. rufula from Caatinga 

region against T. vaginalis. Collectively, this study provides in vitro evidence that 5 is a 

potential alternative therapeutic choice for treating this pathogen. This compound is a 

natural compound that can be obtained from a byproduct from juice industry in large 

and cheap scale and can be used as prototype to development of new derivatives even 

more potent. 
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Figure legends 

Figure 1. (A) Structure of α-amyrin (1), β-amyrin (2), lupeol (3), oleanolic (4) and ursolic 

(5) acids. (B) Synthesis of α-amyrin (1a-b), β-amyrin (2a-b) and lupeol (3a-b) 

derivatives. 

 

Figure 2. Anti-T. vaginalis activity of (A) crude extracts at 1.0 mg/mL of Croton 

nummularius, Manilkara rufula and Senna lechriosperma leaves and branches. CL – C. 

nummularius leaves; CB – C. nummularius branches; ML – M. rufula leaves; MB – M. 

rufula branches; SL – S. lechriosperma leaves; SB – S. lechriosperma branches; (B) 

fractions of M. rufula leaves at 1.0 mg/mL. CTL – control condition (trophozoites 

untreated); MTZ – metronidazole (positive control); DMSO – vehicle control. Bars 

represent the mean ± SD of three different experiments (parasite suspensions) 

performed in triplicate. 

 

Figure 3. (A) MIC determination of UA against T. vaginalis 30236 isolate. Inset: MIC 

confirmation by counting trophozoite number after incubation on TYM fresh medium. 

(B) Kinetic growth curve of UA (50 µM), treated trophozoite in comparison to control 

(untreated parasites). (C) Dot plots of parasite viability treated or not with UA label with 

FDA-PI. (D) Viability quantification from flow cytometry assy. Results are mean ± SD of 

three different experiments (parasite suspensions) performed in triplicate. 

 

Figure 4. SEM of T. vaginalis under UA treatment 50 μM. (A) a typical untreated 

trophozoite displaying a tear-drop shape, four anterior flagella (af), undulating 
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membrane (um) and axostyle (ax); (B-D) after UA treatment for 2 h trophozoites 

displayed a profound membrane alterations. 

 

Figure 5. MIC determination of metronidazole against T. vaginalis TV-LACM2R isolate 

(A). Combinatory effect of UA and metronidazole against TV-LACM2R isolate (B). 

*MTZ and UA association statistically different from 15 µM MTZ treatment. Results are 

mean ± SD of three different experiments (parasite suspensions) performed in 

triplicate. 

 

Figure 6. Effect of 5 on the viability of HMVII, HeLa and Vero lines at 50 μM. 

Compound 5 was highly cytotoxic to HMVII and HeLa lines, while to Vero line it 

presented low cytotoxicity. Controls represent cells only in medium, without 5. Results 

are mean ± SD of three different experiments performed in triplicate. 
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