Preparation of β -Amino Esters by a Chiral Brønsted Acid Catalyzed Mannich-Type Reaction

Junji Itoh, Kohei Fuchibe, Takahiko Akiyama*

Department of Chemistry, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan Fax +81(3)59921029; E-mail: takahiko.akiyama@gakushuin.ac.jp Received 5 September 2007

Abstract: Mannich-type reactions of ketene silyl acetals with aldimines proceeded smoothly under the influence of 10 mol% of a cyclic chiral phosphate derivative derived from (*R*)-BINOL as a chiral Brønsted acid catalyst to furnish β -amino esters with excellent enantio-selectivities.

3c (10 mol%)

toluene, -78 °C

Key words: chiral Brønsted acid, asymmetric synthesis, catalyst, Mannich-type reaction, β -amino esters

OTMS

2

1

Scheme 1 Preparation of β -amino esters

Introduction

Chiral β -amino acids and their esters are useful intermediates for the preparation of biologically important nitrogen-containing compounds. There are a number of methods for the preparation of β -amino esters in enantiomerically enriched form. Mannich-type reactions of silyl enolates with aldimines provide a useful method for the preparation of β -amino carbonyl compounds.^{1,2} Several chiral Lewis acids have been developed as catalysts for Mannich-type reactions, with Cu, Zr, Ag, Pd, and others as the central metal.³

Recently, chiral organocatalysts have emerged as novel asymmetric catalysts.⁴ The salient features of organocatalysts are that they are (1) highly stabile toward water and oxygen, (2) easy to handle, and (3) metal-free and environmentally benign. L-Proline derivatives,⁵ chiral thioureas,⁶ and cinchona alkaloids⁷ have been reported to promote Mannich and Mannich-type reactions as organocatalysts.⁸

In 2004, our research group first demonstrated that enantiopure phosphoric acids, derived from (R)-BINOL, are highly effective as a chiral Brønsted acid catalyst for Mannich-type reactions.⁹ The phosphoric acid catalyst

SYNTHESIS 2008, No. 8, pp 1319–1322 Advanced online publication: 10.01.2008 DOI: 10.1055/s-2008-1032017; Art ID: E19207SS © Georg Thieme Verlag Stuttgart · New York was further applied by us¹⁰ and others¹¹ to numerous kinds of asymmetric reactions, such as nucleophilic addition to aldimines, cycloaddition reactions, reductions, the Nazarov reaction, and so on¹² in addition to the Mannich and Mannich-type reactions.¹³

dr = 87:13 to 100:0 81–96% ee

The synthetic procedure outlined in Scheme 1 constitutes the treatment of ketene silyl acetals 2 with aldimines 1 in the presence of 10 mol% of phosphoric acid 3c to give the corresponding β -amino esters 4 with high diastereoselectivity and high to excellent enantioselectivity.

Scope and Limitations

Chiral phosphoric acids (Figure 1) were extensively examined for the reaction of a ketene silyl acetal, derived from methyl 2-methylpropanoate with an aldimine derived from benzaldehyde. Although the parent phosphoric acid **3a** gave the corresponding β -amino ester **4a** as a racemate, the use of **3b**, bearing phenyl groups on the 3,3'-positions improved the enantioselectivity to 27% ee. The highest enantioselectivity was observed using phosphoric acid **3c** bearing 4-nitrophenyl groups at the 3,3'-positions.

The results for the phosphoric acid **3c** catalyzed Mannichtype reaction are shown in Table 1. 1-Ethoxy-1-(trimethylsiloxy)prop-1-ene, a ketene silyl acetal derived from ethyl propanoate, proved to be an excellent nucleophile. The corresponding α -methyl- β -amino esters **4** were ob-

Figure 1 Chiral Brønsted acids

tained with good to high diastereoselectivity in favor of the *syn* isomer and the enantioselectivity of the *syn* isomer reached 96% ee. Not only aldimines derived from aromatic aldehydes but also those derived from heteroaromatic aldehydes and α , β -unsaturated aldehydes exhibited high to excellent enantioselectivity.

 Table 1
 Chiral Phosphoric Acid 3c Catalyzed Enantioselective

 Mannich-Type Reactions
 Phosphore Acid 3c Catalyzed Enantioselective

Product ^a 4		Yield ^b (%)	Ratio syn/anti	ee (%)
4 a	Ph OMe	100	_	89
4b	4-MeC _e H ₄	100	-	89
4c	ArNH O PhOEt Me	100	87:13	96
4d	4-MeOC ₆ H ₄ Me	100	92:8	88
4e	4-MeC ₆ H ₄ Me	100	94:6	81
4f	2-thienyl	81	94:6	88
4g	Ph ArNH OEt Me	91	95:5	90
4h	ArNH O Ph OEt	100	93:7	91
4i	Ph Ph Ph Ph	65	95:5	90
4j		79	100:0	91

^a Ar = 2-hydroxyphenyl.

^b Yield of isolated product.

Synthesis 2008, No. 8, 1319–1322 © Thieme Stuttgart · New York

1-Methoxy-1-(trimethylsiloxy)-2-(triphenylsiloxy)ethene, a ketene silyl acetal derived from methyl 2-(triphenylsiloxy)acetate, also exhibited excellent diastereoselectivity and high enantioselectivity in the formation of **4**j.

Although aldimines derived from aromatic aldehydes and α , β -unsaturated aldehydes proved to be excellent substrates for the phosphoric acid catalyzed Mannich-type reactions, aldimines derived from aliphatic aldehydes did not give the corresponding β -amino esters.

The use of aldimines derived from 2-aminophenol is essential for attaining excellent enantioselectivity. The 2-hydroxyphenyl group on nitrogen showed remarkably superior enantioselectivity in comparison with the 4-hydroxy group. It is clear that hydrogen bonding of the 2-hydroxyphenyl group on the *N*-aryl group plays an important role in combination with phosphoric acid activation.^{9b}

In summary, the phosphoric acid **3c**, derived from (*R*)-BINOL, is an effective catalyst for the Mannich-type reaction; the corresponding β -amino esters **4** were obtained with high to excellent enantioselectivity.

All reactions were carried out under N₂ in oven-dried glassware with magnetic stirring. Toluene was distilled over CaH₂ and stored over MS 4Å. (*R*)-3,3'-Bis(4-nitrophenyl)-1,1'-binaphthyl-2,2'-diyl phosphate (**3c**) is commercially available from Wako Pure Chemical Industries, Ltd. (Osaka, Japan).¹⁴ All products have been previously synthesized in the literature and characterized.^{9b}

Methyl (*S*)-3-[(2-Hydroxyphenyl)amino]-2,2-dimethyl-3-phenylpropanoate (4a); Typical Procedure^{3d}

To a soln of N-benzylidene-2-hydroxyaniline (1.06 g, 5.38 mmol) and phosphoric acid 3c (328.2 mg, 0.56 mmol) in toluene (20 mL) at -78 °C was added dropwise a soln of 1-methoxy-2-methyl-1-(trimethylsiloxy)prop-1-ene (1.43 g, 8.22 mmol) in toluene (12 mL) over 32 min. The mixture was stirred at this temperature for 22 h and then the mixture was quenched, at -78 °C, by the addition of sat. NaHCO₃. After filtration through Celite, the filtrate was extracted with EtOAc. The combined organic layers were concentrated and the crude mixture was treated with THF (40 mL) and 10% HCl (10 mL) at 0 °C for 20 min. The mixture was extracted with EtOAc and the combined organic layers were successively washed with 10% HCl, brine, dried (anhyd Na₂SO₄), and concentrated to dryness. The remaining solid was purified by column chromatography (silica gel, hexane–EtOAc, 5:1) to give β -amino ester **4a** (1.61 g, 100%); R_f = 0.4 (hexane-EtOAc, 3:1); 89% ee [HPLC (Daicel Chiralpak AD-H, hexane-i-PrOH, 5:1, flow rate: 0.5 mL/min, UV = 244 nm): $t_{\rm R} = 11.1$ (minor isomer, 3*R*), 16.3 min (major isomer, 3*S*)].

 $[\alpha]_{D}^{25}$ +0.2 (*c* 1.03, CHCl₃).

¹H NMR (400 MHz, CDCl₃): δ = 7.29–7.19 (m, 5 H), 6.69 (dd, *J* = 7.7, 1.5 Hz, 1 H), 6.61 (ddd, *J* = 7.7, 7.7, 1.5 Hz, 1 H), 6.53 (ddd, *J* = 7.7, 7.7, 1.5 Hz, 1 H), 6.38 (dd, *J* = 7.7, 1.5 Hz, 1 H), 5.80 (br s, 1 H), 4.55 (br s, 1 H), 4.55 (s, 1 H), 3.69 (s, 3 H), 1.24 (s, 3 H), 1.22 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 177.7, 144.3, 139.0, 135.5, 128.3, 127.9, 127.41, 121.0, 117.9, 114.4, 113.9, 64.6, 52.2, 47.4, 24.4, 20.0.

Ethyl (2*R*,3*R*)-3-[(2-Hydroxyphenyl)amino]-2-methyl-3-phenylpropanoate (4c); Typical Procedure^{9b}

To a soln of *N*-benzylidene-2-hydroxyaniline (32.0 mg, 0.162 mmol) and phosphoric acid **3c** (9.5 mg, 0.0161 mmol) in toluene (1

mL) at -78 °C was added dropwise a soln of 1-ethoxy-1-(trimethylsiloxy)prop-1-ene (*E/Z*, 87:13; 50 μL, 0.246 mmol) over 3 min. The mixture was stirred at this temperature for 17 h and then quenched by the addition of sat. NaHCO₃ and sat. KF soln at -78 °C. After filtration through Celite, the filtrate was extracted with EtOAc. The combined organic layers were washed successively with 10% HCl and brine, dried (anhyd Na₂SO₄), and concentrated to dryness. The crude solid was purified by TLC (silica gel, hexane–EtOAc 3:1) to give β-amino ester **4c** (45.6 mg, 100%); $R_f = 0.2$ (hexane– EtOAc, 3:1); ratio *synlanti* 87:13; 96% ee [HPLC (Daicel Chiralpak AS-H, hexane–*i*-PrOH, 30:1, flow rate: 0.55 mL/min, UV = 244 nm): $t_R = 48.3$ (major isomer, 2*R*,3*R*), 56.7 min (minor isomer, 2*S*,3*S*)].

IR (CHCl₃): 3603, 3342, 3028, 2986, 1724, 1611, 1514, 1497, 1454, 1267, 1202, 1184 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 7.35–7.20 (m, 5 H), 6.76–6.53 (m, 3 H), 6.42 (dd, *J* = 7.9, 1.5 Hz, 1 H, *syn*), 6.33 (dd, *J* = 7.8, 1.5 Hz, 1 H, *anti*), 6.00 (br s, 1 H, *anti*), 5.46 (br s, 1 H, *syn*), 4.76 (br s, 1 H, *syn*), 4.72 (d, *J* = 4.8 Hz, 1 H, *syn*), 4.34 (br s, 1 H, *anti*), 4.33 (d, *J* = 8.8 Hz, 1 H, *anti*), 4.17 (q, *J* = 7.1 Hz, 2 H, *anti*), 4.06 (q, *J* = 7.1 Hz, 2 H, *syn*), 2.96 (dq, *J* = 4.8 Hz, 7.1 Hz, 1 H, *syn*), 2.89 (dq, *J* = 8.8 Hz, 7.1 Hz, 1 H, *anti*), 1.24 (t, *J* = 7.1 Hz, 3 H, *anti*), 1.21 (d, *J* = 7.1 Hz, 3 H, *syn*), 1.14 (t, *J* = 7.1 Hz, 3 H, *syn*), 1.09 (d, *J* = 7.1 Hz, 3 H, *anti*).

¹³C NMR (100 MHz, CDCl₃): δ = 176.1 (*anti*), 174.6 (*syn*), 145.8 (*anti*), 143.9 (*syn*), 140.8 (*syn*), 135.8 (*syn*), 134.8 (*anti*), 128.5, 128.4, 128.1, 127.5, 127.3, 127.0, 126.9, 121.1 (*syn*), 120.6 (*anti*), 119.6 (*anti*), 117.7 (*syn*), 116.1 (*anti*), 114.6 (*anti*), 114.3 (*anti*), 113.4 (*syn*), 62.1 (*anti*), 61.0 (*anti*), 60.9 (*syn*), 60.0 (*syn*), 46.8 (*anti*), 46.4 (*anti*), 15.3 (*anti*), 14.1 (*anti*), 13.9 (*syn*), 12.0 (*syn*).

MS (DI): *m*/*z* (%) = 299 (M⁺, 6), 198 (100), 135 (7), 120 (14), 117 (9), 115 (6), 105 (10), 91 (24), 77 (17), 65 (14).

Anal. Calcd for $C_{18}H_{21}NO_3$: C, 72.22; H, 7.07; N, 4.68. Found: C, 72.37; H, 7.29; N, 4.56.

Acknowledgment

This work was partially supported by a Grant-in Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture, and Technology, Japan. J.I. thanks the JSPS Research Fellowships for Young Scientists.

References

- For reviews on Mannich and Mannich-type reactions, see:

 (a) Kleinman, E. F. In *Comprehensive Organic Synthesis*, Vol. 2; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, **1991**, 893. (b) Arend, M.; Westermann, B.; Risch, N. *Angew. Chem. Int. Ed.* **1998**, *37*, 1044.
- (2) For reviews on catalytic asymmetric Mannich-type reactions, see: (a) Kobayashi, S.; Ueno, M. In *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer: Berlin, **2003**, Suppl. 1; Chap. 29.5, 143. (b) Friestad, G. K.; Mathiesa, A. K. *Tetrahedron* **2007**, *63*, 2541.
- (3) For selected examples (a) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 1997, 119, 7153.
 (b) Hagiwara, E.; Fujii, A.; Sodeoka, M. J. Am. Chem. Soc. 1998, 120, 2474. (c) Fujii, A.; Hagiwara, E.; Sodeoka, M. J. Am. Chem. Soc. 1999, 121, 5450. (d) Xue, S.; Yu, S.; Deng, Y.; Wulff, W. D. Angew. Chem. Int. Ed. 2001, 40, 2271.
 (e) Trost, B. M.; Terrell, L. R. J. Am. Chem. Soc. 2003, 125, 338. (f) Juhl, K.; Gathergood, N.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2001, 40, 2995. (g) Ferraris, D.; Young, B.;

Dudding, T.; Lectka, T. J. Am. Chem. Soc. 1998, 120, 4548.
(h) Ferraris, D.; Dudding, T.; Young, B.; Drury, W. J. III;
Lectka, T. J. Org. Chem. 1999, 64, 2168. (i) Taggi, A. E.;
Hafez, A. M.; Lectka, T. Acc. Chem. Res. 2003, 36, 10.
(j) Matsunaga, S.; Kumagai, N.; Harada, S.; Shibasaki, M. J.
Am. Chem. Soc. 2003, 125, 4712. (k) Marques, M. M. B.
Angew. Chem. Int. Ed. 2006, 45, 348. (l) Josephsohn, N. S.;
Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 3734.

- (4) (a) Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2001, 40, 3726. (b) Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2004, 43, 5138. (c) Special issue on organocatalysis: Acc. Chem. Res. 2004, 37, 487–631. (d) Special issue on organocatalysis: Adv. Synth. Catal. 2004, 346, 1021–1249. (e) Berkessel, A.; Gröger, H. Asymmetric Organocatalysis; Miley-VCH: Weinheim, 2005. (f) Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719. (g) Enantioselective Organocatalysis; Dalko, P. I., Ed.; Wiley-VCH: Weinheim, 2007.
- (5) (a) List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827. (b) Notz, W.; Tanaka, F.; Carlos, F.; Barbas, I. Acc. Chem. Res. 2004, 37, 580.
 (c) Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G. Angew. Chem. Int. Ed. 2005, 44, 4079.
- (6) Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964.
- (7) (a) Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048. (b) Song, J.; Shih, H.-W.; Deng, L. Org. Lett. 2007, 9, 603.
- (8) For a review, see: Ting, A.; Schaus, S. E. *Eur. J. Org. Chem.*, in press.
- (9) (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566. (b) Yamanaka, M.; Itoh, J.; Fuchibe, K.; Akiyama, T. J. Am. Chem. Soc. 2007, 129, 6756.
- (10) (a) Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Org. Lett.
 2005, 7, 2583. (b) Akiyama, T.; Saitoh, Y.; Morita, H.; Fuchibe, K. Adv. Synth. Catal. 2005, 347, 1523.
 (c) Akiyama, T.; Tamura, Y.; Itoh, J.; Morita, H.; Fuchibe, K. Synlett 2006, 141. (d) Itoh, J.; Akiyama, T.; Fuchibe, K. Angew. Chem. Int. Ed. 2006, 45, 4796. (e) Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006, 128, 13070.
- (11) For selected examples, see: (a) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004, 126, 11804. (b) Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.; Wang, Y.; Antilla, J. J. Am. Chem. Soc. 2005, 127, 15696. (c) Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781. (d) Hoffman, S.; Seayad, A. M.; List, B. Angew. Chem. Int. Ed. 2005, 44, 7424. (e) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84. (f) Seavad, J.; Seavad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086. (g) Rueping, M.; Sugiono, E.; Azap, C. Angew. Chem. Int. Ed. 2006, 45, 2617. (h) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem. Int. Ed. 2006, 45, 3683. (i) Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626. (j) Hoffmann, S.; Nicoletti, M.; List, B. J. Am. Chem. Soc. 2006, 128, 13074. (k) Martin, N. J. A.; List, B. J. Am. Chem. Soc. 2006, 128, 13368. (l) Chen, X.-H.; Xu, X.-Y.; Liu, H.; Cun, L.-F.; Gong, L.-Z. J. Am. Chem. Soc. 2006, 128, 14802. (m) Rueping, M.; Azap, C. Angew. Chem. Int. Ed. 2006, 45, 7832. (n) Liu, H.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. Org. Lett. 2006, 8, 6023. (o) Terada, M.; Sorimachi, K. J. Am. Chem. Soc. 2007, 129, 292. (p) Kang, Q.; Zhao, Z.-A.; You, S.-L. J. Am. Chem. Soc. 2007, 129, 1484. (q) Rueping, M.; Ieawsuwan, W.; Antonchick, A. P.;

Synthesis 2008, No. 8, 1319-1322 © Thieme Stuttgart · New York

Nachtsheim, B. J. Angew. Chem. Int. Ed. **2007**, 46, 2097. (r) Li, G.; Liang, Y.; Antilla, J. C. J. Am. Chem. Soc. **2007**, 129, 5830.

- (12) For reviews, see: (a) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999. (b) Connon, S. J. Angew. Chem. Int. Ed. 2006, 45, 3909. (c) Akiyama, T. Chem. Rev. 2007, 107, 5744.
- (13) (a) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356. (b) Gridnev, I. D.; Kouchi, M.; Sorimachi, K.; Terada, M. Tetrahedron Lett. 2007, 48, 497. (c) Guo, Q.-X.; Liu, H.; Guo, C.; Luo, S.-W.; Gu, Y.; Gong, L.-Z. J. Am. Chem. Soc. 2007, 129, 3790.
- (14) For the preparation of **3c**, see ref. 9b.