

Accepted Article

Title: Regiospecific Bi-Catalysed Domino C-N/C-S Bonds Formation: Synthesis of 1,4-Thiazines/1,4-Thiomorpholines

Authors: Tharmalingam Punniyamurthy, Murugan Vijay, Vanaparthi Satheesh, and Sundaravel Vivek Kumar

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Adv. Synth. Catal. 10.1002/adsc.201800511

Link to VoR: http://dx.doi.org/10.1002/adsc.201800511

COMMUNICATION

Regiospecific Bi-Catalysed Domino C-N/C-S Bonds Formation: Synthesis of 1,4-Thiazines/1,4-Thiomorpholines

Murugan Vijay, Vanaparthi Satheesh, Sundaravel Vivek Kumar and Tharmalingam Punniyamurthy *

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India. E-mail: tpunni@iitg.ernet.in.

Received: ((will be filled in by the editorial staff))

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201#######.

Abstract. A domino Bi-catalysed C-N/C-S bond formation of *N*-sulfonylaziridines is developed with 1,4-dithiane-2,5diol to give 3,4-dihydro-1,4-thiazines at room temperature. The use of $Bi(OTf)_3$ as a catalyst, atom economy and regioselectivity are the important practical features.

Keywords: 1,4-thiazine; 1,4-thiomorpholine; domino; Bi-catalysis; regioselectivity

N,S-Heterocycles are privileged structural scaffolds due to their interesting medicinal and agrochemical properties.^[1] Among them, the structural frameworks bearing 3,4-dihydro-1,4-thiazine motifs are attractive, because of their important antibacterial,^[2] antibiotic,^[3] 5-lipoxygenase inhibitor^[4] properties, and the use in flavor (Figure 1).^[5] In addition, the compounds having 1,4-thiomorpholine structural units show antiinflammatory,^[6] antimycobacterial,^[7] hypolipidemic^[8] and DPP-IV inhibitor properties.^[9] Development of effective synthetic routes for their construction is thus important in synthetic chemistry.^[10-11] Recently, Wan and co-workers demonstrated a Cu-catalysed coupling of enaminones with β -aminoethanethiol to produce 1,4-thiazines (Scheme 1a),^[10k] while Cossy and co-workers reported a Fe-catalysed cyclization of sulfonamides to give 1,4-thiomorpholines (Scheme 1b).^[11] Aziridines are versatile building blocks and several excellent examples are available for the selective nucleophilic ring opening.^[12,13] Similarly, 1.4-dithiane-2.5-diol is a versatile synthon for the synthesis of S-containing heterocycle motifs.^[14] Herein we report a Bi-catalysed^[15] domino^[16] C-N/C-S bonds formation of N-sulfonylaziridines with 1,4dithiane-2,5-diol to provide 3,4-dihydro-1,4-thiazines at room temperature (Scheme 1c). At 0 °C produces 1,4-thiomorpolin-3-ol, which leads to dehydration to yield 3,4-dihydro-1,4-thiazines that can be oxidized to 1,4-thiazine-1,1-dioxides.

First, we commenced the optimization using 2-(p-toluyl)aziridine **1j** as a model substrate with 1,4dithiane-2,5-diol **2** in the presence of different Lewis acids (Table 1). Gratifyingly, the reaction occurred to give 2-phenyl-4-tosyl-3,4-dihydro-2H-1,4-thiazine **3j** in 68% yield when **1j** and **2** were stirred employing 10 mol% Bi(OTf)₃ in CH₂Cl₂ at room temperature (entry 1). In a set of Lewis acids screened, Bi(OTf)₃, Sc(OTf)₃, Yb(OTf)₃, Cu(OTf)₂, Zn(OTf)₂ and AgOTf, the former furnished the best result (entries 1-6). CH_2Cl_2 was found to be the solvent of choice, whereas toluene, $(CH_2Cl)_2$ and THF produced **3j** in <62% yield (entries 7-9). At 0 °C, 1,4-thiomorpholin-3-ol **4a** was formed in 45% yield (entry 10), which led to dehydration to give **3j** at room temperature. Control experiment confirmed that **3j** was not formed in the absence of the Lewis acid.

Figure 1. Examples of biologically important 3,4-dihydro-1,4-thiazine derivatives.

Having optimized the reaction, the substrate scope was studied (Scheme 2). 2-Phenylaziridine **1a** reacted to give 3,4-dihydro-1,4-thiazine **3a** in 62% yield. The reaction of aziridines bearing at the 2-position of the aryl ring with chloro **1b** and fluoro **1c** groups gave **3b** and **3c** in 54 and 56% yield, respectively. Aziridines containing substitution at the 3-position of the aryl ring with bromo **1d**, methyl **1e** and nitro **1f** functional groups provided **3d-f** in 64-68% yields. The reaction of aziridines having substitution at the 4-position with bromo **1g**, chloro **1h**, fluoro **1i**, chloromethyl **1k** and acetate **1l** groups afforded thiazines **3g-l** in 56-64% yields. Similar result observed with aziridine **1m** having 2,4,6-trimethyl group, producing **3m** in 57% yield. In addition, 2-naphthylaziridine can be reacted to give **3n** in 55% yield.

Scheme 1. Recent approaches for the syntheses of 3,4-dihydro-1,4-thiazines and 1,4-thiomorpholines.

Table 1. Optimization of the reaction conditions^{a,b}

$R = p-Me-C_eH_4$					
, 1j	2		Зј	4a	
Entry	Catalyst	Solvent	Time	Yield (%) ^b	
				3j	4a
1	Bi(OTf) ₃	CH_2Cl_2	0.5	68	n.d
2	Sc(OTf) ₃	CH_2Cl_2	3	30	n.d
3	Yb(OTf) ₃	CH_2Cl_2	3	n.d	n.d
4	Cu(OTf) ₂	CH_2Cl_2	3	60	n.d
5	Zn(OTf) ₂	CH_2Cl_2	3	10	trace
6	AgOTf	CH_2Cl_2	3	n.d	n.d
7	Bi(OTf) ₃	PhCH ₃	3	20	n.d
8	Bi(OTf) ₃	$(CH_2Cl)_2$	0.5	62	n.d
9	Bi(OTf) ₃	THF	3	32	n.d
10 ^c	Bi(OTf) ₃	CH_2Cl_2	3	trace	45

^[a] Aziridine **1j** (0.5 mmol), 1,4-dithiane-2,5-diol **2** (0.3 mmol), catalyst (10 mol %), solvent (1 mL). ^[b]Isolated yield. ^[c] Reaction temperature 0 °C. n.d = Not detected.

The utility of the protocol was extended to the coupling of aziridines with different *N*-substituents (Scheme 3). 1-(Phenylsulfonyl)aziridine **10** underwent reaction to furnish **30** in 66% yield. Similar result observed with **1p** having 1-(4-nitrophenyl)sulfonyl group, affording **3p** in 58% yield, whereas **1q** with 1-(4-tert-butylphenyl)sulfonyl substituent afforded **3q** in 64% yield. In contrast, 1-alkylaziridine **1r** was an unsuccessful substrate and the starting material was recovered intact. The

reaction was further studied for the coupling of *N*-acetyl and *N*-Boc aziridines. The reaction of *N*-acetyl aziridine produced an inseparable complex mixture, while *N*-Boc aziridine **1s** underwent reaction to give oxazolidinone **4** in 74% yield (Scheme 4).^[17]

Scheme 2. Reaction of different 2-arylaziridines with 2. ^{a, b} ^[a] Aziridine 1a-l, 1k-n (0.5 mmol), 2 (0.3 mmol), Bi(OTf)₃, (10 mol %), CH₂Cl₂ (1 mL), rt. ^[b]Isolated yield. ^[L] Reaction time 1 h.

Scheme 4. Reaction of aziridine 1s with 2.

Next, we explored the scope of the reaction with 2alkylaziridines (Scheme 5). 2-Benzylaziridine 1t underwent reaction to give 3t in 72% yield. The reaction of 1u-v bearing 2-hexyl and 2-heptyl groups afforded 3u and 3v in 75 and 80% yields, respectively. Similar result observed with 2-(cycloxhexylmethyl)-aziridine 1w giving 3w in 75% yield. Further, *meso*-cyclohexylaziridine 1x reacted to afford 3x in 61% yield.

Scheme 5. Reaction of different 2-alkyl-*N*-tosylaziridines with **2**.^{a,b} ^[a] Aziridine **1t-x** (0.5 mmol), **2** (0.3 mmol), Bi(OTf)₃ (10 mol %), CH₂Cl₂ (1 mL), rt. ^[b]Isolated yield.

Scheme 6. Reaction of aziridine 1y with 2.

Finally, the reaction of 2-methyl-3-phenylaziridine 1y was studied (Scheme 6). The reaction occurred to produce 3y in 80% yield as a 13:1 (syn:anti) mixture of diastereomers. Syn isomer was crystallized in ethyl acetate and hexane mixture whose structure was determined using a single crystal X-ray analysis (see SI). The reaction is temperature dependant. At 0 °C, the reaction can be stopped to give 1,4thiomorpholin-3-ol (Scheme 7). For examples, the reaction of 2-(4-bromophenyl)aziridine gave 4b in 53% vield. Similar result observed with 2-(4flurophenyl)aziridine to give thiomorpholin-3-ol 4c in 56% yield. In addition, 2-phenylaziridine bearing arylsulfonyl with electron withdrawing 4-nitro group underwent reaction to give 4d in 58% yield, whereas **1e** containing *N*-(4-methylpyridinyl)-2-sulfonyl group furnished 4e in 60% yield. Recrystallization of 4d in CDCl₃ afforded single crystals whose structure was determined using X-ray analysis (See SI). The reaction conditions was further investigated for the coupling of aziridine 1a with 2,5-dimethyl-1,4dithiane-2,5-diol in place of 1,4-dithiane-2,5-diol. However, the substrate was failed to react and no annulation product was observed.

Scheme 7. Reaction of aziridines with 2 at 0 °C. ^{a,b} ^[a] Aziridine (0.5 mmol), 2 (0.3 mmol), Bi(OTf)₃ (10 mol %), CH₂Cl₂ (1 mL), rt. ^[b]Isolated yield.

Scheme 8. Reaction of chiral aziridine (S)-1a with 2.

Scheme 9. Proposed catalytic cycle.

To get into the reaction pathway, the reaction of enantiopure aziridine (*S*)-**1a** (99% ee) was studied (Scheme 8). The annulation occurred to furnish **3a** in 64% yield with 52:48 er, which suggests that the reaction involves a S_N^1 pathway. Thus, chelation of Bi(OTf)₃ with 2-arylaziridine can lead to ring opening to give the benzyl carbocation **A**, which can react with **2** to yield **B**. Intramolecular cyclization of

B can furnish **C** that can provide 1,4-thiomorpholin-3-ol by aqueous workup ($\hat{0}$ °C). Alternatively, C can undergo dehydration at room temperature to furnish 3,4-dihydro-1,4-thiazines **3** to complete the catalytic cycle. The formation of a single diastereomer of 4 suggests that a chair like transition state **B** is favoured, in which, the carbonyl and sulfonyl groups are *trans* to each other due to steric and electronic repulsion (pl see the crystal structure of 4d), whereas the transition state **B'** is disfavoured due to unfavourable interaction between the -C=O and -SO₂ groups (Scheme 9). These results suggest that the ring opening takes place in 2-arylaziridines at the benzylic carbon due to an electronic effect, while steric effect favours in 2-alkylaziridines to occur the ring opening at the less hindered CH₂ carbon.^[18]

The product can be oxidized using oxone in THFwater (Scheme 10).^[11] For examples, the oxidation of 3b, 3o, 3t and 3x was performed as the representative examples. The reaction took place to produce 6a-d in quantitative yields.

Scheme 10. Synthesis of 1,4-thiazine 1,1-dioxides. ^{a,b} [a] 3 (0.2 mmol), oxone (0.6 mmol), THF/H₂O (1:1) (1 mL), rt. ^[b] Isolated yield.

In summary, we have developed the ring expansion of N-sulfonylaziridines with 1,4-dithiane-2,5-diol using a Bi-catalysis to give 3,4-dihydro-1,4-thiazines and 1,4-thiomorpholines. The products can be readily oxidized to 1,1-dioxides in quantitative yields. The regioselectivity and mild reaction condition are the important practical features.

Experimental Section

General Procedure for the Synthesis of 3,4-Dihydro-1,4-Thiazines.

Aziridine (0.5 mmol), 1,4-dithiane-2,5-diol (0.3 mmol) and $Bi(OTf)_3$ (10 mol%) were stirred in CH_2Cl_2 (1 mL) at room temperature. The progress of the reaction was monitored by TLC using ethyl acetate and hexane as an eluent. After completion, the solvent was evaporated and the residue was purified on a silica gel column chromatography using ethyl acetate and hexane (1:9) as eluent.

General Procedure for the Synthesis of Thiomorpholin-3-ol.

Aziridine (0.5 mmol), 1,4-dithiane-2,5-diol (0.3 mmol) and Bi(OTf)₃ (10 mol%) were stirred in CH₂Cl₂ (1 mL) at 0 °C. The progress of the reaction was monitored by TLC using ethyl acetate and hexane as an eluent. After completion,

the reaction mixture was quenched with water and the aqueous layer was extracted using CH₂Cl₂ (3 x 10 mL). Drying (Na_2SO_4) and evaporation of the solvent gave a residue, which was purified on a silica gel column chromatography using ethyl acetate and hexane (4:6) as an eluent.

General Procedure for the Synthesis of 3,4-Dihydro-1,4-Thiazine-1,1-dioxide.

1,4-Thiazines (0.2 mmol) and oxone (0.6 mmol) were stirred in THF and H₂O (1:1, 1 mL) at room temperature. The progress of the reaction was monitored by TLC using ethyl acetate and hexane as an eluent. After completion, the solvent was evaporated and aqueous layer was extracted with CH_2Cl_2 (3 x 10 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue, which was purified on a silica gel column chromatography using ethyl acetate and hexane as eluent.

Acknowledgements

We thank Science and Engineering Research Board (SERB (EMR/2015/43) and Council of Scientific and Industrial Research (CSIR) (02(0255)/16/EMR-II) for the financial support. M. V and V.S thanks MHRD and CSIR respectively for SRF Fellowship. S.V.K. thanks SERB for National Postdoctoral Fellowship (PDF/2016/001460). We also thank Central Instrumental Facility, IIT Guwahati for the NMR and Single Crystal XRD facilities.

References

- [1] For examples, see: a) H. Li, G. Dyrhurst, J. Neurochem. 1997, 69, 1530-1541; b) N. G. De Kimpe, M. T. Rocchetti, J. Agric. Food. Chem. 1998, 46, 2278-2281; c) R. Fringuelli, L. Milanese F. Schiaffella Mini Rev. Med. Chem. 2005, 5, 1061-1073; d) P. R. Reddy, G. M. Reddy, A. Padmaja, V. Padmavathi, P. Kondaiah, N. S. Krishna, Arch. Pharm. Chem. Life Sci. 2014, 347, 221-228; e) X. Li, X. Liang, T. Song, P. Su , Z. Zhang, Bioorg. Med. Chem. 2014, 22, 5738-5746; f) S. A. Hessein, S. A. Fouad, R. R. Raslan, N. A. Shemiss, Der Pharma Chemica 2016, 8, 170-181; g) K. Battula, S. Narsimha, V. Nagavelli, P. Bollepelli, M. S. Rao. J. Ser. Chem. Soc. 2016, 81, 233-242; h) P.-C. Diao, Q. Li, M.-J. Hu, Y.-F. Ma, W.-W. You, K. H. Hong, P.-L. Zhao, Eur. J. Med. Chem. 2017, 134, 110-118.
- [2] A. R. Renslo, G. W. Luehr, S. Lam, N. E. Westlund, M. Gómez, C. J. Hackbarth, D. V. Patela, M. F. Gordeev, Bioorg. Med. Chem. Lett. 2006, 16, 3475-3478.
- [3] R. Thomas, D. J. Williams, J. Antibiotics 1981, 252-254.
- [4] P. M. Weintraub, M. T. Skoog, J. S. Nichols, J. S. Wiseman, E. W. Huber, L. E. Baugh, A. M. Farrell, J. Pharm. Sci. 1989, 78, 937-943.
- [5] a) N. G. De Kimpe, M. T. Rocchetti, J. Agri. Food. Chem. 1998, 46, 2278-2281; b) J. Deblander, S. V. Aeken, A. Adams, N. D. Kimpe, K. A. Tehrani, Food Chem. 2015, 168, 327-331.
- [6] P. Theodossi-Nobelos, M. Kourti, A. Gavalas, E. A. Rekka, Bioorg. Med. Chem. Lett. 2016, 26, 910-913.
- M. Bivara, G. C. Porretta, D. Deidda, R. Pompei, A. Tafi, F. Manetti, Bioorg. Med. Chem. 2003, 11, 515-520.

- [8] K.-K. Tooulia, P. Theodosis-Nobelos, E. A. Rekka, Arch. Pharm. 2015, 348, 629-634.
- [9] B. Han, J. L. Liu, Y. Huan, P. Li, Q. Wu, Z. Y. Lin, Z.
 F. Shen, D. L. Yin, H. H. Huang, *Chin. Chem. Lett.* 2012, 23, 297-300.
- [10] For examples, see: a) F. Asinger, F. J. Schmitz, S. Reichel, Liebigs Ann. Chem. 1962, 652, 50-67; b) F. Asinger, H. Diem, W. Schäfer, Monatsh. Chem. 1964, 95, 1335-1354; c) M. Iwakawa, B. M. Pinto, W. A. Szarek, Can. J. Chem. 1978, 56, 326-335; d) F. Chioccara, L. Oliva, G. Prota, E. Novellino, Synthesis, 1978, 744-746; e) H. D. Mah, W. S. Lee, J. Heterocycl. Chem. 1989, 26, 1447-1451; f) W. Verboom, R. S. Sukhai, J. Meijer, Synthesis 1979, 47-48; g) W. Keim, H. Offermanns, Angew. Chem. Int. Ed. 2007, 46, 6010-6013; h) S. A. Siry, V. M. Ogurok, Y. G. Shermolovich, J. Flourine Chem. 2014, 168, 137-143; i) T. Javorskis, G. Bagdžiūnas, E. Orentas, Chem. Commun. 2016, 52, 4325-4328; j) X.-L. Lu, Y.-T. Liu, Q.-X. Wang, M.-H. Shen, H.-D. Xu, Org. Chem. Front. 2016, 3, 725-729; k) G. Mari, G. Favi, L. De Crescentini, S. Santusanio, O. A. Attanasi, F. Mantellini, Asian J. Org. Chem. 2016, 5, 705-709; 1) Y. Gao, C. Hu, C. Wen, J.-P. Wan, ACS Omega 2017, 2,7784-7789.
- [11] C. Bosset, G. Lefebvre, P. Angibaud, I. Stansfield, L. Meerpoel, D. Berthelot, A. Guérinot, J. Cossy, J. Org. Chem. 2017, 82, 4020-4036.
- [12] For review, see: A. L. Cardoso, T. M. V. D. Pinho e Melo, Eur. J. Org. Chem. 2012, 6479-6501.
- [13] For examples, see: a) S. Peruncheralathan, H. Teller, C. Schneider, Angew. Chem. Int. Ed. 2009, 48, 4849-4852; b) D. J. C. Prasad, G. Sekar, Org. Biomol. Chem. 2009, 5091-5097; c) H. Schramm, W. Saak, C. Hoenke, J. Christoffers, Eur. J. Org. Chem. 2010, 1745-1753; d) K. D. Park, J. P. Stables, R. Liu, H. Kohn, Org. Biomol. Chem. 2010, 8, 2803-2813; e) M. Sengoden, T. Punniyamurthy, Angew. Chem. Int. Ed. 2013, 52, 572-575; f) V. Bailey, S. M. Wales, A. C. Willis, P. A. Keller, Org. Lett. 2014, 16, 4344-4347; g) J. Li, Y. Liao, Y. Zhang, X. Liu, L. Lin, F. Feng, Chem. Commun. 2014, 50, 6672-6674; h) R. A. Craig

II, N. R. O'Connor, A. F. G. Goldberg, B. M. Stolz, *Chem. Eur. J.* 2014, 20, 4806-4813; i) M. K. Ghorai,
M. Sayyad, Y. Nanaji, S. Jana, *Chem. Asian J.* 2015, 10, 1480-1489; j) E. Rossi, G. Abbiati, M; Dell'Acqua,
M. Negrato, A. Paganoni, V. Pirovano, *Org. Biomol. Chem.* 2016, 14, 6095-6110.

- [14] For examples, see: a) C. J. O' Connor, M. D. Roydhouse, A. M. Przybył, M. D. Wall, J. M. Southern, J. Org. Chem. 75, 8, 2534-2538; b) J. Ling, S. Yu, H. Zhu, G. Wang, P. Xu, Org. Lett. 2012, 14, 1090-1093; c) L. Hu, Y. Ren, O. Ramström, J. Org. Chem. 2015, 80, 8478-8481; d) C. Ni, M. Wang, X. Tong, Org. Lett. 2016, 18, 2240-2243; e) M. Duan, Y. Liu, J. Ao, L. Xue, S. Luo, Y. Tan, W. Qin, C. E. Song, H. Yan, Org. Lett. 2017, 19, 2298-2301.
- [15] For examples, see: a) J. E. Christensen, M. G. Huddle, J. R. Lacey, M. J. Spafford, R. S. Mohan, *Aust. J. Chem.* 2008, *61*, 419-421; b) J. M. Bothwell, S. W. Krabbe, R. S. Mohan, *Chem. Soc. Rev.* 2011,40 4649-4707; c) S. W. Krabbe, R. S. Mohan, *Top. Curr. Chem.* 2012, *311*, 45-68.
- [16] L.F. Tietze, Chem. Rev. 1996, 96, 115-136.
- [17] C. Tomasini, and A. Vecchione, Org. Lett. 1999, 1, 2153-2156.
- [18] J. Xu, in:, *Topic in Heterocyclic Chemistry* (Eds.: M. D'hooghe, H. J. Ha), Springer, **2015**, pp. 311-361.

COMMUNICATION

Regiospecific Bi-Catalyzed Domino C-N/C-S Bonds Formation: Synthesis of 3,4-Dihydro-1,4-Thiazines/Thiomorpholines

Adv. Synth. Catal. Year, Volume, Page – Page

Murugan Vijay, Vanaparthi Satheesh, Sundaravel Vivek Kumar and Tharmalingam Punniyamurthy *

