(S)-6-Bromo-BINOL-Based Phosphoramidite Ligand with C_1 Symmetry for Enantioselective Hydrogenation and Allylic Substitution

KONSTANTIN N. GAVRILOV,¹* EDUARD B. BENETSKY,² VLADIMIR E. BOYKO,¹ EUGENIE A. RASTORGUEV,¹ VADIM A. DAVANKOV,² BENJAMIN SCHÄFFNER,³ AND ARMIN BÖRNER³

¹Department of Chemistry, Ryazan State University, Ryazan, Russian Federation

²Laboratory of Stereochemistry of Sorption Processes, Institute of Organoelement Compounds, Russian Academy of Sciences,

Moscow, Russian Federation

³Leibniz-Institut für Katalyse an der Universität Rostock e.V., Rostock, Germany

ABSTRACT (*S*)-6-Br-BINOL-derived phosphoramidite, a simple monodentate ligand with a stereogenic center at the phosphorus atom, was synthesized for the first time. This stereoselector generated a high level of enantioselectivity (80–95% *ee*) in the rho-dium-catalyzed hydrogenation of α -dehydrocarboxylic acid esters and was also successfully employed in the asymmetric palladium-catalyzed allylic substitution of (*E*)-1,3-diphenylallyl acetate. The optical yield also showed significant dependence with reaction type: up to 70% *ee* for allylic amination, up to 75% *ee* for allylic sulfonylation, and up to 90% *ee* for allylic alkylation. *Chirality* 22:844–848, 2010. © 2010 Wiley-Liss, Inc.

KEY WORDS: asymmetric reactions; phosphorus ligands; hydrogenation; allylation

INTRODUCTION

The preparation of new enantiopure ligands, which offer chiral environment to coordinated metal atoms, is one of the most straightforward challenges for organic chemists.¹ Main families of successful phosphorus-containing stereoselectors belong to C_2 -symmetric chelates (usually chiral diphosphine) or C_2 -symmetric monodentate ligands (notably, chiral phosphites and phosphoramidites).²⁻⁴ However, to date, there has not been a substantial reason why a C_2 -symmetric ligand should necessarily be superior to a nonsymmetric counterpart. In contrast, good arguments have recently surfaced suggesting that nonsymmetrical ligands provide a more effective enantiocontrol than $C_{2^{-}}$ symmetric ligands for certain reactions.⁵ Also noteworthy, the idea that C_1 -symmetric phosphite-type compounds with P^* -stereocenters still remain as relatively rare class of chiral inductors.^{6–13} This is rather surprising, as phosphites and phosphoramidites are easy to prepare from readily available starting materials and are also less sensitive to air than phosphines. Hence, this creates a challenge to develop a new protocol for the whole process, including the ligand synthesis, which does not necessitate the use of a glove box. In addition, phosphites are characterized by pronounced π acidity and low-cost. As a whole, phosphites provide broad opportunities for fine tuning of their donor-acceptor and steric properties by incorporating oxygen and nitrogen into the first coordination sphere of phosphorus and varying the O- and/or N-containing building blocks.14-23

It is important to note that all nonsymmetrical phosphitetype ligands are obtained on the basis of optically active amino alcohols, diamines or diols with C_1 symmetry.

To the best of our knowledge, there are only few examples of P^* -chiral phosphites and phosphoramidites, based © 2010 Wiley-Liss, Inc.

on C_1 -symmetric BINOL derivatives.²⁴ In particular, phosphoramidites L_A and L_B (Fig. 1) showed excellent activities and enantioselectivities in Rh-catalyzed olefin hydrogenation.

Herein, we describe an independent approach to the synthesis of new C_1 -symmetric phosphoramidite from readily available monosubstituted BINOL as a convenient optically active auxiliary and its application in catalytic asymmetric transformations.

MATERIALS AND METHODS General

NMR spectra of ³¹P, ¹³C, and ¹H were recorded with a Bruker AMX 400 instrument (162.0 MHz for ³¹P, 100.6 MHz for ¹³C, and 400.13 MHz for ¹H). Complete assignment of all the resonances in ¹³C NMR spectra was achieved by the use of distortionless enhancement by polarization transfer (DEPT) techniques. Chemical shifts (usually expressed in ppm) are given relative to Me₄Si (¹H and ¹³C) and 85% H₃PO₄ (³¹P NMR). Mass spectra electron ionization (EI) were recorded with a Varian MAT 311 spectrometer. Optical rotations were measured on a Perkin-Elmer 341 polarimeter. Elemental analyses were

DOI: 10.1002/chir.20845 Published online 21 April 2010 in Wiley InterScience

Contract grant sponsor: INTAS Open Call 2005-2006, Russian Science Support Foundation; Contract grant number: INTAS Ref. No. 05-1000008-8064; Contract grant sponsor: RFBR; Contract grant number: 08-03-00416-a

^{*}Correspondence to: Konstantin N. Gavrilov, Department of chemistry, Ryazan State University, 46 Svoboda street, 390000 Ryazan, Russian Federation. E-mail: k.gavrilov@rsu.edu.ru

Received for publication 17 March 2009; Accepted 6 January 2010

⁽www.interscience.wiley.com).

Fig. 1. Examples of BINOL-derived P^* -chiral monodentate phosphoramidites.

performed at the Laboratory of Microanalysis (Institute of Organoelement Compounds, Moscow).

All reactions were carried out under a dry argon atmosphere in freshly dried and distilled solvents; benzylamine, pyrrolidine, and dipropylamine. Distillation was done successively over KOH and then over a small amount of use. (S)-6-Bromo-2,2'-dihydroxy-1,1'before $LiAlH_4$ binaphthyl [(S)-Br-BINOL 4] was synthesized using literature procedures,²⁵ except for the modified technique for the preparation of intermediate product **3**. $[Rh(cod)_2]BF_4^{26}$ and $[Pd(allyl)Cl]_2^{27}$ were prepared as described earlier. Rh-catalyzed hydrogenation of α-dehydrocarboxylic acid esters 6a-d was performed in accordance to known procedures.^{28,29} Furthermore, the Pd-catalyzed allylic substitution: amination of substrate 8 with benzylamine, dipropylamine, and pyrrolidine; sulfonylation with sodium paratoluene sulfinate and alkylation with dimethyl malonate were all carried out using the appropriate procedures.^{8,30-32}

The starting substrates **6b** and **8** were synthesized as published.^{27,33} (*S*)-2,2'-Dihydroxy-1,1'-binaphthyl [(*S*)-BINOL **1**], P(NEt₂)₃, Pd(CF₃CO₂)₂, dimethyl itaconate, methyl 2-acetamidoacrylate, ethyl 2-acetoxyacrylate, dimethyl malonate, BSA [N,O-bis(trimethylsilyl) acetamide], and sodium *para*-toluene sulfinate were purchased from Aldrich and Acros Organics and used without further purification.

(S)-6-Bromo-2-Hydroxy-2'-Pivaloyloxy-1,1'-Binaphthyl (3)

A solution of bromine (1.96 ml, 38.3 mmol) in 1,4-dioxane (20 ml) was slowly added to a solution of (*S*)-2hydroxy-2'-pivaloyloxy-1,1'-binaphthyl **2** (3.55 g, 9.6 mmol) in 1,4-dioxane (170 ml) at 0°C. The reaction mixture was then stirred at 20°C for 2 h and quenched with aqueous Na₂SO₃. After addition of 200 ml of CH₂Cl₂, the organic phase was washed with saturated aqueous NaHCO₃ and brine, and dried over MgSO₄. After removal of the solvent, **3** (4.31 g, 100%) was obtained as a white solid. Optical rotation and all spectroscopic data pertaining to compound **3** are consistent with published data.²⁵

(S)-6´-Bromo-2-(Diethylamino)-Dinaphtho[2´,1´-d:1″,2″f][1,3,2]Dioxaphosphepine (5)

A mixture of (S)-6-bromo-2,2'-dihydroxy-1,1'-binaphthyl 4 (1.83 g, 5 mmol) and $P(NEt_2)_3$ (1.37 ml, 5 mmol) was

stirred at 110°C for 45 min. Then the mixture was stirred in vacuum (10 Torr, 90°C) for 30 min to remove HNEt₂ and cooled down to 20°C. The residue was washed with hexane (7 ml) and dried in vacuum (1 Torr) for 1 h to yield **5** as yellowish amorphous solid in analytically pure form (2.22 g, 95%). $[\alpha]_D^{20} = -366.7$ (*c* 1.0, CH₂Cl₂); ¹³C NMR (CDCl₃): δ 14.7 (d, J = 7.3 Hz, 2x CH₃), 38.3 (d, J =21.2 Hz, 2x CH₂), 120.9 (Cq), 121.9 (CH), 122.9 (Cq), 123.3 (d, J = 1.3 Hz, CH), 124.4 (d, J = 5.1 Hz, Cq), 124.8 (CH), 126.3 (CH), 126.7 (CH), 128.4 (CH), 128.7 (CH), 129.2 (CH), 130.1 (CH), 130.3 (CH), 130.5 (CH), 130.7 (Cq), 131.4 (Cq), 131.8 (Cq), 132.5 (Cq), 149.8 (Cq), 150.4 (d, J = 5.1 Hz, Cq); MS (EI), m/z (1%): 466 (52) [M]⁺, 452 (74) [M-Me+H]⁺, 395 (100) [M-NEt₂+H]⁺; Anal. Calcd for C₂₄H₂₁BrNO₂P: C, 61.82; H, 4.54; N, 3.00; Found: C, 61.98; H, 4.72; N, 2.95.

RESULTS AND DISCUSSION

The synthetic route for (*S*)-6-Br-BINOL **4**, the precursor of structurally unusual phosphoramidite **5**, is outlined in Scheme 1 (as patterned from a modified literature method²⁵).

According to this procedure, the commercial (S)-BINOL 1 was treated with pivaloyl chloride in the presence of triethylamine in acetonitrile at 0°C to give monoester 2 as the single product with a 94% yield. Compound 2 was treated with 4 equivalent of bromine in 1,4-dioxane at 20°C for 2 h. After quenching with aqueous Na₂SO₃, the analytically pure substance 3 was obtained by simple extraction with CH₂Cl₂ in quantitative yield without further purification. In contrast to the literature²⁵ the monobromination step to obtain 3 was only successful with using of acetonitrile instead of 1,4-dioxane. Deprotection of the OH group by saponification of 3 with potassium hydroxide in a mixture of THF/H₂O at 25°C gave the resulting 4 in quantitative yield. It is rather important, that this synthesis of 4 is much easier than the preparation of precursors of ligands LA and LB, which involved more steps, including ortho-metallation by butyllithium.²⁴

(S)-6-Br-BINOL 4 was used as the starting material for the nonsymmetrical phosphoramidite 5. Reaction of 4 with hexaethylphosphorous triamide P(NEt₂)₃ (Scheme 1) in solvent-free conditions followed by simple washing of the residue with hexane gave analytically pure 5 in 95% yield without further chromatographic purification or recrystallization. It should be noted that this convenient method does not require additional base and that the volatile HNEt₂ is formed only as a by-product. The newly synthesized monodentate ligand is stable on prolonged storage and can be obtained on a gram scale. Moreover, the monosubstitution at the 6-position of the 1,1'-binaphthyl skeleton not only reduced C_2 to C_1 symmetry, but also led to the creation of a stereogenic center at the phosphorus atom. The phosphorylation of 4 proceeded with complete diastereoselectivity. Thus, the ³¹P NMR spectrum of 5 (in CDCl₃) shows a narrow singlet δ 150.1. We did not establish configuration of the P^* -stereo center in the structure of ligand 5. Nevertheless, on the basis of data presented Chirality DOI 10.1002/chir

Scheme 1. Synthesis of Br-substituted phosphoramidite ligand.

in article,²⁴ it is possible to assume, that we deal with (S_{a}, S_{P}) -epimer of **5**.

The products of catalytic hydrogenation of olefins substituted by both an amido and a carboxylic acid (or ester) group are important chiral building-blocks for the industrial synthesis of peptides and for numerous biomedical and medicinal applications.⁴ Accordingly, we describe here results of the Rh-catalyzed hydrogenation of α -dehydrocarboxylic acid esters, as well-known benchmark substrates, with ligand **5** (Table 1).

The reactions were performed in propylene carbonate or CH_2Cl_2 at room temperature (with $[Rh(cod)_2]BF_4$, L/ Rh = 2). In the transformation of dimethyl itaconate **6a** to succinate 7a, phosphoramidite 5 has shown good enantioselectivity (80-81% ee), irrespective of the nature of the solvent (Table 1, entries 1, 2). A very good optical yield (93%, Table 1, entry 3) has been obtained in the hydrogenation of substrate 6b, but only in propylene carbonate; in CH₂Cl₂, product **7b** was formed with a slightly smaller optical purity (85%). With its high polarity propylene carbonate offers great possibilities to recycle catalysts successfully. ³⁴ In the Rh-catalyzed hydrogenation of esters 6c,d excellent enantioselectivities were achieved in both solvents (up to 93 and 95% ee, respectively, Table 1, entries 5-8). Interestingly, the Rh-catalyzed hydrogenation of substrates 6a,d phosphoramidites LA and LB caused a considerable dispersion of the asymmetric induction (0-97% ee for **6a** and 34–99% ee for **6d**).²⁴ Thus, being much easier available, ligand 5 reliably provides enantioselectivities that are rather close to the best results for L_A and L_B.

Metal-catalyzed enantioselective allylation led to the formation of C—H, —C, —O, —N, —S, and other bonds with very high levels of asymmetric induction and tolerates a broad range of functional groups. This method, therefore, has been applied successfully to the synthesis of many natural products and new chiral compounds.³⁵ In this connection, we turned our attention to the application of **5** in the Pd-catalyzed allylic substitution of (*E*)-1,3-diphenylallyl acetate **8** as a widely used model substrate with N-, S- and C-containing nucleophiles (Table 2). *Chirality* DOI 10.1002/chir The reactions were performed in THF, propylene carbonate, or CH_2Cl_2 at room temperature (with [Pd(al-lyl)Cl]₂ or Pd(CF₃CO₂)₂, L/Pd = 1 or 2). In the allylic amination of **8** with benzylamine, dipropylamine, and pyrroli-

TABLE 1. Rh-catalysed hydrogenation of α -dehydrocarboxylic acid esters (25°C, 1 bar H₂)^a

 $\begin{array}{l} R_1 = H, \, R_2 = CH_2CO_2Me, \, R_3 = Me, \, \textbf{6a} \text{ and } \textbf{7a} \\ R_1 = Ph, \, R_2 = NHAc, \, R_3 = Me, \, \textbf{6b} \text{ and } \textbf{7b} \\ R_1 = H, \, R_2 = OAc, \, R_3 = Et, \, \textbf{6c} \text{ and } \textbf{7c} \\ R_1 = H, \, R_2 = NHAc, \, R_3 = Me, \, \textbf{6d} \text{ and } \textbf{7d} \end{array}$

Entry	Substrate	Solvent	Time (min)	ee (%) ^{c,d,e,f}
1	6a	PC^{b}	200	80 (S)
2	6a	CH_2Cl_2	60	81 (<i>S</i>)
3	6b	PC	1470	93 (R)
4	6b	CH_2Cl_2	1440	85 (R)
5	6c	PC	540	93 (<i>R</i>)
6	6c	CH_2Cl_2	500	90 (R)
7	6d	PC	120	95 (R)
8	6d	CH_2Cl_2	90	95 (<i>R</i>)

^a100% conversion in all cases.

^bPropylene carbonate.

°The conversion of substrate **6a** and enantiomeric excess of **7a** were determined by GC (Lipodex E, 25 m × 0.25 mm, 80°C, 1 ml/min) or HPLC (Daicel Chiralcel OD-H, C_6H_{14}/i -PrOH = 98/2, 0.8 ml/min, 220 nm, t(R) = 9.1 min, t(S) = 16.1 min).

^tThe conversion of substrate **6d** and enantiomeric excess of **7d** were determined by GC (XE-valin (*tert*-butylamide) 4×0.25 mm, 85°C, 1 ml/min).

^dThe conversion of the substrate **6b** and enantiomeric excess of **7b** were determined by GC (Lipodex E, $25m \times 0.25$ mm, 145° C, 1 ml/min).

^eThe conversion of substrate 6c and enantiomeric excess of 7c were determined by GC (50m Chiraldex ß-pm; Astec).

TABLE 2. Pd-catalysed allylic substitution of (*E*)-1,3-diphenylallyl acetate 8 (20°C)

Nu = N(Pr)₂, X = H, 9b Nu = N(CH₂)₄, X = H, 9c Nu = SO₂pTol, X = Na, 9d Nu = CH(CO₂Me)₂ X = H, 9e

Entry	Precatalyst	L/Pd	Solvent	Time (h)	Conv. (%) ^a	ee (%)			
Allylic amination with benzylamine ^b									
1	$[Pd(allyl)Cl]_2$	1/1	PC	12	91	60 (R)			
2	[Pd(allyl)Cl] ₂	1/1	CH_2Cl_2	12	99	60 (<i>R</i>)			
Allylic amination with dipropylamine ^c									
3	[Pd(allyl)Cl] ₂	1/1	CH_2Cl_2	48	97	60 (-)			
4	[Pd(allyl)Cl] ₂	2/1	CH_2Cl_2	48	100	65 (-)			
5	[Pd(allyl)Cl] ₂	1/1	THF	48	15	60 (-)			
6	$Pd(allyl)Cl]_2$	2/1	THF	48	19	64 (-)			
Allylic amination with pyrrolidine ^d									
7	[Pd(allyl)Cl] ₂	1/1	CH_2Cl_2	48	100	70 (S)			
8	[Pd(allyl)Cl] ₂	2/1	CH_2Cl_2	48	100	60 (S)			
9	[Pd(allyl)Cl] ₂	1/1	THF	48	41	57 (S)			
10	[Pd(allyl)Cl] ₂	2/1	THF	48	52	53 (S)			
Allylic sulfonylation with sodium <i>para</i> -toluene sulfinate ^e									
11	[Pd(allyl)Cl] ₂	1/1	THF	48	69	75 (<i>R</i>)			
12	[Pd(allyl)Cl] ₂	2/1	THF	48	61	72 (R)			
Allylic alkylation with dimethyl malonate (BSA, KOAc) ^f									
13	$Pd(CF_3CO_2)_2$	1/1	PC	14	80	54 (R)			
14	$Pd(CF_3CO_2)_2$	1/1	CH_2Cl_2	14	99	65 (R)			
15	[Pd(allyl)Cl] ₂	1/1	CH_2Cl_2	48	99	88 (R)			
16	[Pd(allyl)Cl] ₂	2/1	CH_2Cl_2	48	100	80 (R)			
17	[Pd(allyl)Cl] ₂	1/1	THF	48	94	90 (<i>R</i>)			
18	$[Pd(allyl)Cl]_2$	2/1	THF	48	85	87 (R)			

^aIsolated yield of **9d** in allylic sulfonylation.

^bThe conversion of substrate **8** and enantiomeric excess of **9a** were determined by HPLC (Daicel Chiralcel OJ, C_6H_{14}/i -PrOH = 80/20, 0,5 ml/min, 254 nm).

^cThe conversion of the substrate **8** and enantiomeric excess of **9b** were determined by HPLC (Daicel Chiralcel OD-H, C_6H_{14}/i -PrOH/HN(Et)₂ = 1000/1/1, 0.4 ml/min, 254 nm, t(+) = 8.2 min, t(-) = 9.1 min).

^dThe conversion of the substrate **8** and enantiomeric excess of **9c** were determined by HPLC (Daicel Chiralcel OD-H, OD-H, C_6H_{14}/i -PrOH/HN(Et)₂ = 200/1/0,1 0.9 ml/min, 254 nm).

^eEnantiomeric excess of **9d** were determined by HPLC ((Daicel Chiralcel OJ, C_6H_{14}/i -PrOH = 4/1, 0.5 ml/min, 254 nm).

⁶The conversion of substrate **8** and enantiomeric excess of **9e** were determined by HPLC (Daicel Chiralcel OD-H, C_6H_{14}/i -PrOH = 99/1, 0.6 ml/min, 254 nm).

dine, the use of phosphoramidite **5** resulted in moderate enantioselectivities (53–70%) in all cases. Propylene carbonate and CH₂Cl₂ provided much better conversion, than THF. In the allylic sulfonylation of **8** with NaSO₂*p*Tol as the *S*-nucleophile, ligand **5** showed a slightly higher enantioselectivity (up to 75%, Table 2, entries 11, 12). Similar to the case of allylic amination, L/Pd molar ratio has basically shown no effect on the optical yields. The best asymmetric induction (up to 90% *ee*) with the participation of phosphoramidite **5** was achieved in the allylic alkylation of **8** with dimethyl malonate as the *C*-nucleophile (Table 2, entries 13–18). Interestingly, the precatalyst $Pd(CF_3CO_2)_2$ provides a comparable conversion but considerably smaller asymmetric induction in comparison with $[Pd(allyl)Cl]_2$. At the same time, with the participation of $[Pd(allyl)Cl]_2$, fairly good levels of conversion (85–100%) and enantiose-lectivity (80–90%) were achieved, almost irrespective of both the L/Pd molar ratio and the nature of the solvent.

CONCLUSION

In summary, we have prepared and characterized an original (S)-6-Br-BINOL-derived C_1 -symmetric phosphoramidite ligand that exposes a phosphorus stereocenter. It is a very efficient ligand in the Rh-catalyzed hydrogenation and Pd-catalyzed allylic alkylation. Moreover, the concept of ligands design presented above looks very promising. Indeed, there exist convenient approaches to the synthesis of a whole set of 6-monofunctionalized 2,2/-dihydroxy-1,1/binaphthyl compounds (including those with ionic fragments), starting from (S)- or (R)-6-Br-BINOL.³⁶ Accordingly, the new route opens access to variable and highly prospective P^* -chiral phosphite-type stereoselectors for transition metal-catalyzed asymmetric reactions.

LITERATURE CITED

- Mellah M, Voituriez A, Schulz E. Chiral sulfur ligands for asymmetric catalysis. Chem Rev 2007;107:5133–5209.
- Ojima I. Catalytic asymmetric synthesis, 2nd ed. New York: Wiley-VCH; 2000.
- Beller M, Bolm C. Transition metals for organic synthesis: building blocks and fine chemicals, 2nd ed. Weinheim: Wiley-VCH; 2004.
- 4. Eberhardt L, Armspach D, Harrowfield J, Dominique DM. BINOLderived phosphoramidites in asymmetric hydrogenation: can the presence of a functionality in the amino group influence the catalytic outcome? Chem Soc Rev 2008;37:839–864.
- 5. Pavlov VA. C_2 and C_1 symmetry of chiral auxiliaries in catalytic reactions on metal complexes. Tetrahedron 2008;64:1147–1179.
- Arzoumanian H, Buono G, Choukrad M, Petrignani J-F. Asymmetric carbonylation of alpha-methylbenzyl bromide catalyzed by oxazaphospholane-palladium complexes under phase-transfer conditions. Organometallics 1988;7:59–62.
- Bartels B, Garcia-Yerba C, Helmchen G. Asymmetric Ir¹-catalysed allylic alkylation of monosubstituted allylic acetates with phosphorus amidites as ligands. Eur J Org Chem 2003;6:1097–1103.
- Tsarev VN, Lyubimov SE, Shiryaev AA, Zheglov SV, Bondarev OG, Davankov VA, Kabro AA, Moiseev SK, Kalinin VN, Gavrilov KN. P*chiral monodentate diamidophosphites - new and efficient ligands for palladium-catalysed asymmetric allylic substitution. Eur J Org Chem 2004;10:2214–2222.
- Pfretzschner T, Kleemann L, Janza B, Harms K, Schrader T. On the role of PIII ligands in the conjugate addition of diorganozinc derivatives to enones. Chem Eur J 2004;10:6048–6057.
- 10. Bondarev OG, Goddard R. Tetrahedron Lett 2006;47:9013-9015.
- Mikhel IS, Bernardinelli G, Alexakis A. Inorg Chim Acta 2006;359: 1826–1836.
- 12. Kimura M, Uozumi Y. Development of new P-chiral phosphorodiamidite ligands having a pyrrolo[1,2-c]diazaphosphol-1-one unit and their application to regio- and enantioselective iridium-catalyzed allylic etherification. J Org Chem 2007;72:707–714.
- Benetsky EB, Zheglov SV, Grishina TB, Macaev FZ, Bet LP, Davankov VA, Gavrilov KN. Various P*-chiral phosphite-type ligands: their synthesis, stereochemistry and use in Pd-catalysed allylation. Tetrahedron Lett 2007;48:8326–8330.

Chirality DOI 10.1002/chir

- Ansel J, Wills M. Enantioselective catalysis using phosphorus-donor ligands containing two or three P–N or P–O bonds. Chem Soc Rev 2002;31:259–268.
- Alexakis A, Benhaim C. Enantioselective copper-catalysed conjugate addition. Eur J Org Chem 2002;19:3221–3236.
- Molt O, Schrader T. Asymmetric synthesis with chiral cyclic phosphorus auxiliaries. Synthesis 2002;18:2633–2670.
- Reetz MT, Mehler G, Meiswinkel A, Sell T. Enantioselective hydrogenation of enamides catalyzed by chiral rhodium–monodentate phosphite complexes. Tetrahedron Lett 2002;43:7941–7943.
- Dieguez M, Pamies O, Claver C. Recent advances in Rh-catalyzed asymmetric hydroformylation using phosphite ligands. Tetrahedron: Asymmetry 2004;15:2113–2122.
- Gavrilov KN, Bondarev OG, Polosukhin AI. Chiral phosphites as ligands in asymmetric metal complex catalysis and synthesis of coordination compounds. Russ Chem Rev 2004;73:671–699.
- Jerphagnon T, Renaud J-L, Bruneau C. Chiral monodentate phosphorus ligands for rhodium-catalyzed asymmetric hydrogenation. Tetrahedron: Asymmetry 2004;15:2101–2111.
- Reetz MT, Mehler G, Bondarev O. Chiral diphosphites and diphosphoramidites as cheap and efficient ligands in Rh-catalyzed asymmetric olefin hydrogenation. Chem Comm 2006:2292–2294.
- de Vries JG, Lefort L. The combinatorial approach to asymmetric hydrogenation: phosphoramidite libraries, ruthenacycles, and artificial enzymes. Chem Eur J 2006;12:4722–4734.
- 23. Jagt RBC, Toullec PY, Geerdink D, de Vries JG, Feringa BL, Minnaard AJ. A ligand-library approach to the highly efficient rhodium/phosphor-amidite-catalyzed asymmetric arylation of N,N-dimethylsulfamoyl-protected aldimines. Angew Chem Int Ed Engl 2006;45:2789–2791.
- Reetz MT, Ma J-An, Goddard R. Binol-derived monodentate phosphites and phosphoramidites with phosphorus stereogenic centers: novel ligands for transition-metal catalysis. Angew Chem Int Ed Engl 2005;44:412–415.
- Hocke H, Uozumi Y. A simple synthetic approach to homochiral 6- and 6/substituted 1,1/-binaphthyl derivatives. Tetrahedron 2003;59:619–630.
- RajanBabu TV, Ayers TA, Halliday GA, You KK, Calabrese JC. Carbohydrate phosphinites as practical ligands in asymmetric catalysis: elec-

tronic effects and dependence of backbone chirality in Rh-catalyzed asymmetric hydrogenations. Synthesis of *R*- or *S*-amino acids using natural sugars as ligand precursors. J Org Chem 1997;62:6012–6028.

- Auburn PR, McKenzie PB, Bosnich B. Asymmetric synthesis. Asymmetric catalytic allylation using palladium chiral phosphine complexes. J Am Chem Soc 1985;107:2033–2046.
- Korostylev A, Monsees A, Fischera C, Börner A. BINOL derived monodentate acylphosphite ligands for homogeneously catalyzed enantioselective hydrogenation. Tetrahedron: Asymmetry 2004;15: 1001–1005.
- Vallianatou KA, Kostas ID, Holz J, Börner A. Me-AnilaPhos: a new chiral phosphine-phosphoramidite ligand for a highly efficient Rh-catalyzed asymmetric olefin hydrogenation. Tetrahedron Lett 2006;47: 7947–7950.
- 30. Birkholz M-N, Dubrovina NV, Shuklov IA, Holz J, Paciello R, Waloch C, Breit B, Börner A. Enantioselective Pd-catalyzed allylic amination with self-assembling and non-assembling monodentate phosphine ligands. Tetrahedron: Asymmetry 2007;18:2055–2060.
- Lyubimov SE, Davankov VA, Gavrilov KN. The use of an ionic liquid in asymmetric catalytic allylic amination. Tetrahedron Lett 2006; 47:2721–2723.
- Gavrilov KN, Lyubimov SE, Zheglov SV, Benetsky EB, Davankov VA. Enantioselective Pd-catalysed allylation with BINOL-derived monodentate phosphite and phosphoramidite ligands. J Mol Catal A 2005; 231:255–260.
- Gladiali S, Pinna L. Asymmetric hydroformylation of N-acyl 1-aminoacrylic acid derivatives by rhodium/chiral diphosphine catalysts. Tetrahedron: Asymmetry 1991;2:623–632.
- Bayardon J, Holz J, Schäffner B, Andrushko V, Verevkin S, Preetz A, Börner A. Propylene carbonate as a solvent for asymmetric hydrogenations. Angew Chem Int Ed Engl 2007;46:5971–5974.
- Lu Z, Ma S. Metal-catalyzed enantioselective allylation in asymmetric synthesis. Angew Chem Int Ed Engl 2008;47:258–297.
- Gadenne B, Hesemann P, Moreau JJE. Easily recoverable BINOL ligand with ionic tag for asymmetric catalysis. Tetrahedron: Asymmetry 2005;16:2001–2006.