STEREOSELECTIVE 7α -HYDROXYLATION OF 3β -ACETOXY- Δ^5 -STEROIDS BY Fe(PA) $_3/H_2O_2/MeCN$ Eiichi KOTANI, Tetsuya TAKEYA, Hirotaka EGAWA, and Seisho TOBINAGA* Showa College of Pharmaceutical Sciences, Machida, Tokyo 194, Japan Stereoselective 7α -hydroxylation reaction of Δ^5 -steroids by a Fe(PA; picolinate)₃/H₂O₂/MeCN system is presented. The 7α -hydroxylation reactions were achieved in 33-40% yields by addition of 30%-H₂O₂ to a solution of 3 β -acetoxy- Δ^5 -steroids 1a-1d and a crystalline of Fe(PA)₃ in MeCN. **KEY WORDS** oxygenation; 7α -hydroxylation; Fe(PA)₃/H₂O₃/MeCN; Δ ⁵-steroid; Gif system Stereoselective 7α -hydroxylation of 3β -acetoxy- Δ^5 -steroids is interesting in terms of the syntheses of recently discovered cytotoxic 3β , 7α -dihydroxy- Δ^5 -steroids $^{1)}$ and the metabolism of cholesterol by the cytochrome P-450 species 7α -hydroxylase in the livers of most mammalians. Many investigations on oxygenation reactions using simple, readily available reagent systems mimicking mono-oxygenase enzymes have been carried out. Of those, a study on iron(II) or iron(III) picolinate (PA) complexes as a catalyst of oxygenation reactions raised challenging problems. It was also noted that the oxidation reaction with H_2O_2 catalyzed by iron picolinate complexes varied depending on the solvents used. Although many studies on iron picolinate complex $/H_2O_2/s$ olvent systems have been reported by the Sawyer group²⁾ and Barton group, there has been no report to date on the oxidation reaction by the $Fe^{III}(PA)_3/H_2O_2/MeCN$ system. We report that the modified system $Fe(PA)_3/H_2O_2/MeCN$ as an alternative to the Gif system reagent is effective in stereoselective 7α -hydroxylation of 3β -acetoxy- Δ^5 steroids 1a-1d. The oxygenation reactions with this system of 3β -acetoxy- Δ^5 -steroids, cholesterol acetate (1a), stigmasterol acetate (1b), pregnenolone acetate (1c), and dehydroisoandrosterone acetate (1d) were carried out according to the procedure shown in Table 1. The above reaction gave 7α -hydroxy derivatives 2 (33-40%yields) along with a trace amount of 7β -hydroxy derivatives 3, 7-oxo derivatives 4 (16-23% yields), α and β epoxides mixtures 5 and 6 (3-13% yields), and recovered materials in all cases (Chart 1). The structural identification of 2 and 3 was done by comparing the physical data of the corresponding dihydroxy compounds prepared by hydrolysis with those of the respective authentic samples, $^{4a,b,c)}$ respectively. The structure of 4, 5, and 6 was identified by comparison of the physical data with those of the respective authentic samples. In this investigation, we found that the most efficient and stereoselective 7α -hydroxylation reaction was obtained in all cases using a molar ratio of substrate 1 : Fe(PA)₃ : 30% H₂O₂ = 1 : 0.5 : 3. The reaction mechanism with substrates 1a-1d using the present reagent system can be postulated as shown in Chart 2, and the complexes circulate in the order of $(B) \rightarrow (C) \rightarrow (D) \rightarrow (E)$ or $(F) \rightarrow \rightarrow (B)$. Preferential 7-hydroxylation compared to 7-ketonization may be due to the greater formation of (E) relative to (F) as a result of the sufficient H_2O contained in 30% H_2O_2 . $$R^{1}$$ R^{2} R^{1} R^{2} R^{1} R^{2} R^{2} R^{1} R^{2} R^{2 Table 1. Oxygenation of Δ^5 -Steroids 1a-1d with Fe(PA)₃/H₂O₂ /MeCN ^{a,b)} | Run | Substrate | Product (yield, %) c) | | | | | Recovery (%) | Mass | |-----|-----------|------------------------------|-----------------------------|-------------------|-------------------|---------------------|--------------|----------------| | | | $\frac{2}{7\alpha}$ -Hydroxy | $\frac{3}{7\beta}$ -Hydroxy | 4
7-Oxo | 5α -Epoxy | 6
β-Εροχу | 1 | balance
(%) | | | | | | | | | | | | 2 | 1 b | 2 b (36.5) | 3b d) | 4b (23.1) | 5b (4.8) | 6b (6.1) | 24.7 | 95.2 | | 3 | 1 c | 2 c (33.1) | 3 c d) | 4 c (15.7) | 5 c (3.3) | 6 c (3.4) | 19.9 | 75.4 | | 4 | 1d | 2d (39.3) | 3d ^{d)} | 4d (22.0) | 5d (0.7) | 6d (1.9) | 19.8 | 83.7 | ^{a)} The iron complex $Fe(PA)_3$ (B) can be prepared conveniently by the reaction of $Fe^{III}(ClO_4)_3 \cdot 9H_2O$ (1 mol) with sodium picolinate (3 mol) in water in 93% yield, followed by recrystallization with MeOH, changing it to the hydrous form, $Fe(PA)_3(H_2O)$ (A). By exposure to moisture in air, it exists as a mixture of the hydrous and anhydrous form in wet MeCN; ^{b)} Typical reaction procedure: to a solution of substrate (1 mmol) and $Fe(PA)_3$ (0.5 mmol) in MeCN (70 ml) were added three 0.1s-ml portions of 30% aqueous H_2O_2 (0.3 ml, 3 mmol) every 30 min at room temperature and the reaction mixture was stirred for 3 h at room temperature. ^{c)} Isolated yields based on substrates (1). ^{d)} Trace amounts (<0.5%). $$Fe^{III}(PA)_{3}(H_{2}O) (A) \qquad (PA)_{2}(PAH)Fe \stackrel{OH}{\bigcirc} O-O-H \qquad H_{2}O_{2}$$ $$Fe^{III}(PA)_{3} (B) \qquad (PA)_{2}(PAH)Fe^{III}-O-O-H \qquad (PA)_{2}(PAH)Fe^{V}=O$$ $$(C) \qquad (D; active species for epoxidation)$$ $$(PA)_{2}(PAH)Fe \stackrel{OH}{\bigcirc} O+OH \qquad H_{2}O$$ $$(E; active species for hydroxylation) \qquad (PA)_{2}(PAH)Fe \stackrel{OH}{\bigcirc} O+OH \qquad H_{2}O$$ Chart 2. Proposed Active Species in Fe^{III}(PA)₃/H₂O₂/MeCN System 752 Vol. 45, No. 4 AcO $$\frac{1}{\text{PA}}$$ $\frac{1}{\text{PA}}$ $\frac{1}{\text{OH}}$ $\frac{1}{\text{OH}$ Chart 3. Proposed Mechanism for 7α -Hydroxylation of Δ^5 -Steroids The mechanism of stereoselective 7α -hydroxylation for the formation of 2 can be postulated to be as follows (Chart 3). The σ bond formation between the C- 7α -position in 1 and Fe^V atom in (E) as a hypothetically active species with nonradical pathways ³⁾ may take place stereoselectively to yield 7 under the stereoelectronic effect ⁵⁾ and steric hindrance. Further, the cleavage of the σ bond between the Fe atom and the C7-position in 7 including the rearrangement of the hydroxy group, may proceed to permit 2 to retain its configuration. On the other hand, the possibility of participation of an active species Fe^V=O (D) in 7α -hydroxylation cannot be excluded. Subsequently, we investigated the reaction of 1a with the Gif system (GoAgg^{III}; FeCl₃·6H₂O-PAH/H₂O₂/HOAcpyridine) to compare it with the reaction with this modified system. Although reaction of 1a with the above Gif reagent system gave only a 7-oxo derivative 4a in 4% yield, it did not proceed for 7-hydroxy derivatives 2a and 3a. Furthermore, it was reported that the reactions of cholesterol acetate 1a using known the allylic acetoxylation reagents, CuBr/ten-BuOOCOPh/HOAc, Pd(OAc)₂/Fe(NO₃)₃·9H₂O/O₂/HOAc, and Pb(OAc)₄/HOAc are gave 3β , 7α - and 3β , 7β -diacetoxy-5-cholestene in almost same amount as the α and β forms, with about 20% yields. These results provide a new example of oxidative 7α -hydroxylation of Δ^5 -steroids, one of the major metabolic reactions catalyzed cytochrome P-450, in this model system for mono-oxygenase. ## REFERENCES 1) Heltzel C. E, Gunatilaka A. A. L., Kingston D. G. I., *J. Nat. Prod.*, **57**, 620-628 (1994). 2) a) Sheu C., Richert S. A., Cofra P., Ross B. Jr., Sobkowiak A., Sawyer D. T., Kanofsky J. R., *J. Am. Chem. Soc.*, **112**, 1936-1942 (1990); b) Sawyer D. T., Kang C., Llobet A., Redman C., *J. Am. Chem. Soc.*, **115**, 5817-5818 (1993). 3) a) Barton D. H. R., Csuhai E., Doller D., *Tetrahedoron*, **48**, 9195-9206 (1992); b) Barton D. H. R., Hu B., Taylor D. K., Wahl R. U. R., *J. Chem. Soc.*, *Perkin Trans.* 2, **1996**, 1031-1041. 4) a) Shoppee C. W., Newman B. C., *J. Chem., Soc.*(*C*), **1968**, 981-983; b) Mahato S. B., Banerjee S., *Experientia*, **36**, 515-517 (1980); c) Crabb T. A., Dawson P. J., Willianns R. O., *J. Chem. Soc. Perkin Trans.* 1, **1980**, 2535-2541; d) Kimura M., Muto T., *Chem. Pharm. Bull.*, **27**, 109-112 (1979); e) Holland H. L., Diakow P. R., Taylor G. J., *Can. J. Chem.*, **56**, 3121-3127 (1978). 5) Deslongchamps P., "Stereoelectronic Effect in Organic Chemistry," Pergamon Press (1983). 6) Larsson E.M., Åkermark B., *Tetrahedron Lett.*, **34**, 2523-2526 (1993). 7) Stefanovic M., Jokic A., Maksimovcic Z., Mihailovic M. L., *Helv. Chim. Acta*, **53**, 1895-1902 (1970). (Received January 14, 1997; accepted February 18, 1997)