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Abstract 

A systematic study for esterification procedures to the synthesis of BINOL diesters is 

described. Reaction conditions with TFAA and 85% H3PO4 were selected as the best 

procedure to prepare enantiomerically pure (S)-BINOL diesters VIII to XI with almost 

quantitative yields and very low reaction times. 

 

[Supplementary materials are available for this article. Go to the publisher’s online 

edition of Synthetic Communications® for the following free supplemental resource(s): 

Full experimental and spectral details.] 

 

 

KEYWORDS: diols, esterification, phase-transfer catalysis, diesters, BINOL, C2 

symmetry. 
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INTRODUCTION 

Since 1990, the enantiomeric atropoisomers of 1,1´-binaphthyl-2,2´-diol (BINOL, I) have 

become one of the most widely used ligands for both stoichiometric and catalytic 

asymmetric reactions.[1] The preparation of racemic BINOL and its resolution has been 

widely studied, and some well-established methods are reported.[2]Stereoselectivity 

control is based in the utilization of molecules from the Cn or Dn groups of symmetry that 

allow the prediction of enantioselectivity due to the existence of only one reactive 

species. Under this supposition, chiral atropoisomers become very interesting, especially 

those corresponding to binaphtyl systems. The potential of I as a ligand for metal-

mediated catalysis was first recognized in 1979 by Noyori in the reduction of aromatic 

ketones and aldehydes.[1g] BINOL itself, however, does not always give satisfactory 

results in asymmetric catalysis, and since Noyori’s discovery there has been an ongoing 

interest in modified BINOL ligands. The rigid structure, thermal stability and the C2 

symmetry of the chiral binaphthyl molecules play an important rol in assymetric 

induction. In the last few years, BINOL derivatives have become attractive 

moleculeswith applications in chiral supramolecular recognition, crystal engineering, 

electro optical materials and polymers, among others.[3-6]These type of binaphtyl 

compounds are often synthetized using enantiomerically pure BINOLas the starting 

material easily transforming the 2,2´-hydroxy groups into other functional groups.[7] 

 

RESULTS AND DISCUSSIONS 

Several diastereoselective synthesis of macrocycles have been developed using chiral 

auxiliary groups and rigid organic templates.[8a–d]As part of our research work on the 
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behavior of diesters derived from diols with C2 symmetry and as precursors of new 

macrodiolides,[8e]we now report a systematic study of some efficient and optimized 

synthetic routes to saturated and unsaturated (±)-BINOL diestersthrough five different 

procedures, with the aim of determining the best reaction conditions,easy to handle, with 

high efficiency and minimum environmental impact, comparing the direct acylation using 

carboxylic acids with those mediated by acid derivatives (Scheme 1). Once the best 

selected procedure was chosen, it was applied for the synthesis ofenantiomerically pure 

(S)-BINOL diestersVIII – XI starting from (S)-BINOL.[9]Among some uses, these 

compounds have great application in odontology, [10] and are a source of chiral 

dendrimers for use in asymmetriccatalysis.[11] 

 

Direct acylation of alcohols with carboxylic acids is preferred over acylation with 

anhydrides (poor atom economy) or acid chlorides (moisture sensitive). The main 

disadvantage of direct acylation is the unfavorable chemical equilibrium that can be 

overcome by a large excess of one of the reagents, or removing water by Dean-Stark 

distillation. Besides, phenols or naphthols are usually too unreactive to give useful yields 

by this procedure. Unlike –OH group of alcohols (pka values between 16–18), -OH 

group of phenols is more acidic(pka values between 8–10) being less reactive 

towards esterification and therefore requires activation of the corresponding carboxylic 

acid used. This can be achieved either via conversion of carboxylic acid to more reactive 

functional groupsor in situ activation in the presence of coupling reagents.[12] It is 

important to remark, however, that some of these methods present some disadvantages 
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related to the use of volatile and environmentally harmful organic solvents and reagents, 

low or moderate yields and long reaction times. 

 

With the aim of finding esterification procedures with high efficiency and minimum 

environmental impact, we report here the results obtained in the synthesis of diestersII to 

VIIcomparing the direct acylation of BINOL (I) using carboxylic acids with the reaction 

mediated by acid derivatives (Scheme 1) . This initial studies were conducted using 

racemic I, but the procedures were equally valid for the enantiomerically pure BINOL 

diestersVIII – XI synthetized later. 

 

First, racemic (±)-BINOL (I) was prepared according to well known procedures.[2a] (S)-

BINOL was purchased from Aldrich, although there are established methods to resolve 

(±)-BINOL.[2d]The esterification of I was achieved following five different reaction 

conditions (Methods A-E) and the results obtained are summarized in Table 1.[13]The 

progress of the reactions was monitored by TLC of silica gel and, after completion, 

quantified by GC-MS through a standard curve generated from isolated pure product.  

 

The first method is one of the most versatile procedures of direct esterification that uses 

dicyclohexylcarbodiimide (DCC) and dimethyl-aminopyridine (DMAP).[14]The reaction 

probed to be insensitive to steric hindrance in the carboxylic acid and proceeded at room 

temperature with reaction times between 1–4 h.In this case, the reaction was carried out 

in a toluene/p-toluensulfonic acid media instead of the classical (and non 

recommendable)benzene commonly used in this esterification method (Method A, Table 
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1, entries 1, 6, 11, 16, 21 and 26). The yields observed in the crude reaction products are 

high (between 81 - 98 % , determined by GC-MS analysis) but it has the disadvantage 

that N-acylurea generated as a byproduct must be carefully separated by filtration through 

celite and silica gel 60 column chromatography. This causes some  lost in the final yield 

about 10%. 

 

One particular transesterification methodology, which also uses carboxylic acids and 

phenols mixtures as substrates, is trifluoracetic acid anhydride (TFAA) /H3PO4-mediated 

direct O-acylation, that has obtained a new impulse recently.[15] Here, we extended the 

method to the synthesis of BINOL diesters through this single-step and metal-free 

process (Method B, Table 1, entries 2, 7, 12, 17, 22 and 27). The reactions were 

performed at room temperature or with gentle warming (50ºC) depending on the 

carboxylic acid used, under air atmosphere. To our pleasure, all the reactions tested were 

ready between 15 to 45 minutes with almost quantitative yields of the racemic BINOL 

diestersII – VII and no formation of the monoester was observed. A simple extraction 

and washing with diluted NaOH solution provides the target diesters almost pure. In the 

case of compounds VI and VII,yields are relatively minor probably due to some steric 

hindrance in the carboxylic acid that also delayed the esterification reaction.[16] 

 

On the other hand, it is well known that there are some advantages in the use of acyl 

chlorides or acid anhydrides instead of the Fisher esterification. Some of them are 

increased speed, performance, milder conditions and lack of reversibility. The main 

disadvantagesare that not always the desired acid chloride is available and its preparation 
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involves some special care due to its moisture sensitivity. Taking into account that 

alkoxide ion treatment with acid halides and other derivatives is a common way to access 

esters in some cases, NaHcan be used as a base and is very easy to handle (air 

manipulation). Thus, the course of the racemic BINOL (I) esterification reaction was 

analyzed using the corresponding acyl chloride, NaH and THF at room temperature 

(Method C, Table 1, entries 3, 8, 13, 18, 23 and 28). Unfortunately, diestersIV, V, VI and 

VII (entries 13, 18, 23 and 28, Table 1) could not be obtained and only unreacted (±)-

BINOL and the corresponding monoester was observed. This suggests the possibility 

that, in these cases, the lack of reactivity is due to a strong intramolecular coordination of 

the sodium cation with the alcoxide anion and the carboxylic group when the first 

esterification reaction is completed and could hinder diesterification. According to 

previous studies referred to etherification reactions, [17- 18] crown ethers can prevent this 

undesired association by solvation of the sodium cation and increasing the nucleophilicity 

of the anion.So, we decided to study the same reaction conditions (NaH / THF / r.t.) but 

now adding 18-crown-6 (Scheme 2).  

 

As can be seen from Table 1, (Method D, entries 4, 9, 14, 19, 24 and 29, Table 1) better 

performance was found compared with Method C in almost every case (75–95% except 

entry 24).Besides, this procedure is very suitable for its simplicity: the mixture was 

stirred at room temperature and when the reaction finished,the crude product was 

quenched with KBr saturated solution. Column chromatography purification on silica gel 

60 provided the desired diestersII – VIIin good yields. 
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Finally, the esterification procedure of (±) BINOL (I)was studied with acyl chlorides in a 

phase transfer catalytic (PTC) media (Method E, Table 1, entries 5, 10, 15, 20, 25 and 

30). The biphasic system wasdichloromethaneand aqueous NaOH in the presence of a 

quaternary ammonium salt such as Bu4N+Cl- (Scheme 3).[19]NaOH is critical for good 

performance, but its concentration cannot exceed 30% since it can result in the hydrolysis 

of the resulting ester.[20]The optimum conditions for this esterification include the use of 

0.03 equivalents of catalyst, dichloromethane as solvent and low temperature (0°C to r.t.). 

The observed yields for this procedure ranged between good to very good (53–95%) in 

moderate reaction times (12–24 h). The diestersII – VIIwere isolated by simple phase 

separation, washed with aqueous sodium bicarbonate, dried and purified on silica gel 60 

column chromatography. 

 

Once the optimum conditions for the synthesis of BINOL diesterswere fixed (Method B, 

TFAA/H3PO4, r.t. or 50° C, air atm.), this procedure was applied to obtain the desired 

enantiomerically pure (S)-BINOL diesters VIII – XI.  As expected, the products were 

obtained with excellent to quantitative yields and all the reaction times were between 15 

to 45 min (Scheme 4).  

 

In summary, we present here a comparative study of different procedures modifications 

leading to optimize synthetic routes to saturated and unsaturated BINOL diesters, racemic 

or enantiomerically pure, with excellent yields. Some of these methods demonstrated to 

be excellent and very efficient as in the case of Method B, which proved to be smooth 

and free from special care on the preparation and/or preconditioning of an acyl chloride. 
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In the case of Methods D and E (NaH / crown ether and NaOH / PTC respectively), both 

are very appropriate not only because of the good yields observed but also for the 

simplicity and mild reaction conditions. We have synthesized six racemic diesters and 

four enantiomerically pure diesters (VIII–XI) which are, to our knowledge, absolutely 

new. All the new compounds are characterized by a thorough analysis of their 1H, 13C-

NMR, GC-MS and IR spectra. This promising preliminar results encouraged us for future 

studies with substituted BINOLs.  

 

EXPERIMENTAL 

Unless otherwise noted, all reagents were purchased from commercial suppliers and used 

without purification. Tetrahydrofuran (THF) and toluene (PhCH3) were distilled from 

sodium benzophenoneketyl under nitrogen. NaH was purchased from Fluka as 80% 

dispersion in mineral oil and must be rinsed with dry THF before use under inert 

atmosphere. Dry CH2Cl2 was achieved by simple storage of the solvent over activated 3 

A˚ molecular sieves. Thin layer chromatography was performed on Merck precoated 

silica gel 60 F254 plates and visualization was accomplished with UV light and/or 5% 

ethanol solution of phosphomolibdic acid. Silica gel (Merck, 230–400 mesh) was used 

for column chromatography. Melting points were recorded on a Büchi Melting Point B-

545 instrument and are uncorrected. NMR spectra were recorded in CDCl3 on a 300 MHz 

spectrometer (300.1 MHz for 1H and 75.5 MHz for 13C) at 23º C. Chemical shifts (δ) are 

given in ppm downfield relative to TMS (1H and 13C) and coupling constants (J) are in 

Hz. Mass spectra were obtained with a GC/MS instrument (HP5-MS capillary column, 30 

m / 0.25 mm / 0.25 mm) equipped with 5972 mass selective detector operating at 70 eV 
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(EI).High resolution mass spectra (HRMS) were recorded on a Finnigan Mat 900 (HR-

EI-MS).Compounds described in the literature were characterized by comparison of their 

1H, and/or 13C NMR spectra to the previously reported data. Infrared spectra were 

recorded with a Nicolet Nexus 470 FT spectrometer. Optical rotations were measured on 

a Polar L-�P, IBZ Messtechnikpolarimeter at 589 nm. Elemental analyses (C, H) were 

performed in an EXETER CE-440 instrument at UMYMFOR (Argentina).  

 

General Procedure For The Esterification Reactions Of (±)-BINOL (I) 

A solution of (±)-BINOL (I), solvent, esterification agent and the corresponding 

carboxylic acid or acyl chloride were combined according to Methods A to E, resumed in 

Table 1 (see Supporting Information for complete details). The reactions were monitored 

by thin-layer chromatography (TLC). 

 

Selected Data 

Esterification reactions of (S)-BINOL. General Procedure for the Synthesis of 

enantiomerically pure (S)-1,1′-binaphthyl-2-2′-diyl dimetacrylate (IX). Method B 

(TFAA, H3PO4, r.t. or 50°C). A mixture of methacrylic acid (0.228 mL, 2.6mmol), (S)-

BINOL (0.342 g, 1.2mmol) and 85% orthophosphoric acid (H3PO4, 0.012 mL, 

0.24mmol) was stirred under air atmosphere. To this solution, trifluoroacetic anhydride 

(TFAA, 1.41 mL, 10.0mmol) was added dropwise and the resulting mixture was allowed 

to stir at room temperature (see Table 1). The progress of the reaction was monitored by 

TLC. The reaction mixture was added to a little crushed ice, extracted with diethyl ether 

(3 x 8 mL), washed with 10% NaOH solution (2 x 8 ml) followed by water (2 x 8 mL), 
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dried over anhydrous sodium sulphate and concentrated to afford the desired 

diesterIX(0.507 g, quantitative yield) as a white solid, purified by recrystallization in 

ethanol, mp54-56°C. [α]D
25 -56.1 (c 1.6, CHCl3); 1H NMR (300 MHz, CDCl3) δ 1.48 

(6H, d, J= 1.1 Hz CH3), 5.19 (2H, dd, J= 2.4, 1.2 Hz, CH2), 5.54 (2H, dd, J= 2.4, 1.2 Hz, 

CH2), 7.19 – 7.27 (4H, m, Ar-H), 7.31 – 7.48 (4H, m, Ar-H), 7.78 – 7.96 (4H, m, Ar-H); 

13C NMR (75.4 MHz, CDCl3) δ 16.8, 120.7, 122.6, 124.6, 125.0, 125.6, 125.7, 126.9, 

128.3, 130.4, 132.4, 134.4, 145.9, 164.3; MS (EI): m/z (relative intensity) 422.1 (M+, 

100), 284.1 (1.8), 282.1(13), 268.1 (40), 255.1 (15), 239.0 (19), 228.1 (8), 226.0 (37), 

69.0 (87); Anal. Calcd for C28H22O4: C, 79.60; H , 5.25. Found: C, 79.57; H, 5.20. 

 

(S)-1,1′-binaphthyl-2-2′-diyl diacrylate (VIII):  [α]D
25 -25.6 (c 1.00, CHCl3); mp 71-

73°C. 

 

(S)-1,1′-binaphthyl-2-2′-diyl-(Z)-2-methyl-3-phenyl-2-propenoate (X): [α]D
25 -34.9 (c 

0.95, CHCl3), mp 100-102°C. 

 

(S)-1,1′-binaphthyl-2-2′-diyl di-(Z)-2,3-diphenyl-2-propenoate (XI): [�]D
25 -38.2 (c 

0.90, CHCl3); mp 90-92°C. 

 

SUPPORTING INFORMATION 

Full experimental detail, 1H and 13C spectra. This material can be found via the 

“Supplemantary Content” section of this article webpage. 
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Table 1. (±)-BINOL diesters II – VII obtained in the esterification of (±)-BINOL (I) 

under different reaction conditions.  

Entr
y 

Acylating reagent Reaction Conditions a Time 
(h) b 

Product % 
Yield 

c 
1 acetic acid DCC, DMAP, PhCH3,TsOH, 

r.t.d 
1 

 

92.5 

2  TFAA, H3PO4, 50°C, air atm. e 0.25 98 
3 acetyl chloride NaH, THF, r.t. f 12 75 
4  NaH, THF, 18-crown-6, r.t.g 12 92 
5  NaOH, Bu4N+Cl-, H2O, 

CH2Cl2, r.t., air atm.h 
24 53 

6 benzoic acid DCC, DMAP, PhCH3, TsOH, 
r.t., d 

2 

 

88 

7  TFAA, H3PO4, 50°C,  air atm. e 0.25 99 
8 benzoyl chloride NaH, THF, r.t. f 12 83 
9  NaH, THF, 18-crown-6, r.t. g 8 94 
10  NaOH, Bu4N+Cl-, H2O, 

CH2Cl2, r.t., air atm. h 
12 92 

11 acrylic acid DCC, DMAP, PhCH3, TsOH, 
r.t. d 

4 

 

93 

12  TFAA, H3PO4, r.t.,  air atm. e 0.25 100 
13 acryloyl chloride NaH, THF, r.t. f -- i 
14  NaH, THF, 18-crown-6, r.t. 12 95 
15  NaOH, Bu4N+Cl-, H2O, 

CH2Cl2, r.t., air atm. h 
12 95 

16 methacrylic acid DCC, DMAP, PhCH3, TsOH, 
r.t. d 

1 

 

98 

17  TFAA, H3PO4, r.t.,  air atm. e 0.25 100 
18 methacryloyl chloride NaH, THF, r.t. f -- i 
19  NaH, THF, 18-crown-6, r.t. g 12 80 
20  NaOH, Bu4N+Cl-, H2O, 

CH2Cl2, r.t., air atm. h 
12 78 

21 (Z)-2-methyl-3-phenyl-2-
propenoic acid 

DCC, DMAP, PhCH3, TsOH, 
r.t. d 

2.5 

 

84 

22  TFAA, H3PO4, 50°C,  air atm. e 0.75 85 
23 (Z)-2-methyl-3-phenyl-2-

propenoyl chloride 
NaH, THF, r.t. f -- i

24  NaH, THF, 18-crown-6, r.t. g 14 67 
25  NaOH, Bu4N+Cl-, H2O, 

CH2Cl2, r.t., air atm. h 
12 69 

26 (Z)-2,3-diphenyl-
propenoic acid 

DCC, DMAP, PhCH3, TsOH, 
r.t. d 

3 81 
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27  TFAA, H3PO4, 50°C,  air atm. e 0.75  70 
28 ( (Z)-2,3-diphenyl-propenoyl

chloride 
NaH, THF, r.t. f -- i 

29  NaH, THF, 18-crown-6, r.t. g 12 75 
30  NaOH, Bu4N+Cl-, H2O, 

CH2Cl2, r.t., air atm. h 
12 80 

a Inert atmosphere of Ar unless otherwise is indicated. b Determined by TLC analysis. c 

Determined by CG-MS analysis of crude reaction through a standard curve generated 

from isolated pure product. d Method A.e Method B. f Method C. g Method D. h Method E. 

i Unreacted BINOL and  BINOL-monoester were observed. 
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Scheme 1. 
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Scheme 2. 
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Scheme 3. 
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Scheme 4. 
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