

Supporting Information for DOI: 10.1055/s-0032-1316821 © Georg Thieme Verlag KG Stuttgart · New York 2012

An Efficient Synthesis of 2-Aminothiophenes via the Gewald Reaction Catalyzed by an N-methylpiperazine Functionalized Polyacrylonitrile Fiber

Lichao Ma, Liwei Yuan, Changzhu Xu, Guowei Li, Minli Tao, Wenqin Zhang*

Department of Chemistry, School of Sciences, Tianjin University, No.92 Weijin Road, Tianjin 300072, China.

Fax +86(22)27403475; E-mail: zhangwenqin@tju.edu.cn

Phone +86(22)27890922.

Table of Contents

General experimental information	
Acid exchange capacity of the fiber catalyst	S3
Synthesis of the activated nitriles	S4
References	S9
NMR Spectra	S11
HRMS Spectra	S33

General experimental information

Reagents

•

Commercially available polyacrylonitrile fiber (PANF) with a length of 10 cm and diameter of $30\pm0.5 \ \mu\text{m}$ (from the Fushun Petrochemical Corporation of China) was used. Water was deionized. All reagents were analytical grade. Acetonitrile was dried by CaH₂. Toluene was refluxed by sodium before use. Ethyl cyanoacetate, malononitrile, 2,5-dihydroxy-1,4-dithiane, *N*-methylpiperazine and the other reagents were used without further purification. Column chromatography was performed on silica gel 200-300 mesh, and the eluent was a mixture of petroleum ether (PE, bp 60-90 °C) and ethyl acetate (EA).

Acid exchange capacity of the fiber catalyst:

The acid exchange capacity was calculated according to the amount of acid consumed by P-PANF. Dried P-PANF (0.250 g) was immersed in 20.00 mL of HCl solution (0.100 M) for 6 h. Then the treated fiber was filtered out and washed with water. The concentration of the remaining HCl solution was titrated by 0.100 M NaOH.

Entry	Weight of P-PANF	The consumed NaOH	Average	Acid exchange capacity
	g	mL	mL	mmol g ⁻¹
1	0.250	14.25		
2	0.250	14.20	14.21	2.32
3	0.250	14.20		

The amount of acid consumed by P-PANF = 20.00 mL \times 0.100 M – 14.21 mL \times 0.100 M = 0.579 mmol

The acid exchange capacity of P-PANF = $0.579 \text{ mmol} \div 0.250 \text{ g} = 2.32 \text{ mmol} \text{ g}^{-1}$

The determined acid exchange capacity of P-PANF was 2.32 mmol g^{-1} , indicating that 1.000 g P-PANF contains 1.16 mmol 3-(*N*-methylpiperazinyl)propyl groups (each group has two basic N atoms).

Unmodified PANF is composed by three parts: acrylonitrile (93.0%), methyl acrylate (6.5%) and sodium styrene sulfonate (0.5%).

Each CN group in PANF reacted with an *N*-methyl-*N*'-(3-aminopropyl)piperazine molecule and gets a Δ MW of 158.24 during the amination process. Each ester group reacted with an amine molecule and gets a Δ MW of 125.21. If each CN group have the same reaction opportunity as the ester group, we can give an average Δ MW = [158.24 × 0.930 + 125.21 × 0.065] ÷ (0.930+0.065) = 156.08.

 $2.32 \div 2 \times 156.08 = 0.181$ g

0.181/(1.000 - 0.181) = 22.1%

The calculated weight gain of 22.1% is in accord with the measured weight gain of 23.0%.

Synthesis of the activated nitriles

General procedure for synthesis of methyl carboxylate

A carboxylic acid (150 mmol) was dissolved in 150 mL of methanol. Then 7.5 mL of concentrated sulfuric acid was added and the mixture was heated at reflux for 5 h. After cooling to room temperature the reaction mixture was evaporated under vacuum. Then 100 mL of water was added and the residue was neutralized with NaHCO₃. The mixture was extracted by 200 mL of CH₂Cl₂. The organic layer was washed with H₂O, 5% aqueous NaHCO₃, and saturated NaCl solution and dried over Na₂SO₄. Evaporate the solvent to afford the desired product.^{1,2}

(a) Methyl 2-methylbenzoate

Yield: 15.8 g, 70%; colorless oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.94 (d, *J* = 7.4 Hz, 1H), 7.44 - 7.38 (m, 1H), 7.30 - 7.22 (m, 2H), 3.91 (s, 3H), 2.63 (s, 3H).^{3a}

(b) Methyl 4-methylbenzoate

Yield: 21.2 g, 94%; white crystals; mp 30-32 °C (Lit.^{3b} mp 35-36 °C); ¹H NMR (400 MHz, CDCl₃): δ = 7.93 (d, *J* = 8.1 Hz, 2H), 7.23 (d, *J* = 8.1 Hz, 2H), 3.90 (s, 3H), 2.40 (s, 3H).^{3b}

(c) Methyl 4-chlorobenzoate

Yield: 24.6 g, 96%; white crystals; mp 42-44 °C (Lit.² mp 42-44 °C); ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, *J* = 8.5 Hz, 2H), 7.41 (d, *J* = 8.5 Hz, 2H), 3.91 (s, 3H).²

(d) Methyl 2-thiophenecarboxylate

Yield: 19.2 g, 90%; colorless oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.81 - 7.77$ (m, 1H), 7.55 - 7.51 (m, 1H), 7.10 - 7.06 (m, 1H), 3.87 (s, 3H).^{3c}

(e) Methyl 2-naphthoate

Yield: 27.4 g, 98%; white solid; mp 74-75 °C (Lit.^{4a} mp 75-77 °C); ¹H NMR (400 MHz, DMSO): $\delta = 8.63$ (s, 1H), 8.13 (d, J = 8.0 Hz, 1H), 8.05 – 7.97 (m, 3H), 7.70 – 7.58 (m, 2H), 3.92 (s, 3H).^{4b}

Synthesis of methyl 4-methoxybenzoate⁵

Methyl 4-hydroxybenzoate (15.2 g, 100 mmol) was dissolved in 200 mL of dry DMF. K₂CO₃ (49.8 g, 360 mmol) was added and the suspension was stirred for 30 min. Methyliodide (14.4 g, 100 mmol) was then added dropwise. After stirring for 20 h, 200 mL of water was added. The precipitate was then filtered and washed with 100 mL of cold water to afford the target product as a white solid (yield: 13.0 g, 78%). Mp 46-47 °C, (Lit.⁵ mp 51-52 °C). ¹H NMR (400 MHz, CDCl₃): δ = 7.99 (d, *J* = 8.8 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 3.88 (s, 3H), 3.85 (s, 3H).⁵

Synthesis of 2-cyano-N-phenylacetamide⁶

Aniline (9.3 g, 100 mmol) was dissolved in 100 mL of DMF. Then ethyl cyanoacetate (11.3 g, 100 mmol) was added and the mixture was heated at reflux for 6 h. And then 150 mL of water was added slowly. The precipitate was filtered and washed with cold water, then recrystallized from ethanol to give the aimed product as a white solid (yield: 11.5 g, 72%). Mp. 195-196 °C (Lit.^{6b} 193 °C). ¹H NMR (400 MHz, DMSO): $\delta = 10.28$ (s, 1H), 7.54 (d, J = 7.8 Hz, 2H), 7.37 – 7.29 (m, 2H), 7.09 (t, J = 7.4 Hz, 1H), 3.89 (s, 2H).^{6c}

Synthesis of 2-cyanoacetamide⁷

Ethyl cyanoacetate (5.7 g, 50 mmol) was dropped into 49 mL of aqueous ammonia (25%). The mixture was stirred for 1 h; then warms up a little. The flask was allowed to stand 2 h in an ice-salt mixture. The precipitate was filtered and washed with cold ethanol, then recrystallized from 95% ethanol to give the 2-cyanoacetamide as a white solid (yield: 1.6 g, 38%). Mp 113 °C (Lit.^{7a} mp 119-120 °C). ¹H NMR (400 MHz, DMSO): δ = 7.63 (s, 1H), 7.32 (s, 1H), 3.57 (s, 2H).^{7b}

General procedure for synthesis of benzoylacetonitriles and other activated nitriles

Method A. An ester (100 mmol) and acetonitrile (12.5 mL, 300 mmol) were dissolved in 100 mL of toluene, then sodium hydride (80%, 9.0 g, 300 mmol) was added and the reaction mixture was heated to reflux for 24 h. After cooling to room temperature, it was filtered and washed with 30 mL of CH_2Cl_2 . The solid material was dissolved in 100 mL of water and cooling ice/salt mixture. Then HCl 15% was added until pH = 2-3 and in a manner that its temperature shall not exceed 5 °C. The precipitate was filtered and washed with water until neutral, then recrystallized from ethanol to give the desired product.⁸

Method B. An ester (100 mmol) was dissolved in 200 mL of dry acetonitrile. Sodium methoxide (10.8 g, 200 mmol) was added and the reaction mixture was heated at reflux under the protection of nitrogen for 6 h. After cooling to room temperature, 200 mL of H₂O was added and the reaction mixture was washed with CH₂Cl₂ (3×150 mL). The aqueous layer was adjusted to pH = 7 using 10% aq citric acid and the product precipitated upon standing. The precipitate was filtered and then recrystallized from ethanol to give the target product.²

R = Me, OMe, Cl

(a) Benzoylacetonitrile (Method A)

Yield: 9.6 g, 66%; light yellow crystals; mp 75-76 °C (Lit.^{8b} mp 81 °C). ¹H NMR (400 MHz, CDCl₃): δ = 7.91 (d, *J* = 7.6 Hz, 2H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.56 – 7.49 (m, 2H), 4.14 (s, 2H).⁹

(b) 2-Methylbenzoylacetonitrile (Method A)

Yield: 10.7 g, 67%; light yellow crystals; mp 78-79 °C (Lit.⁹ mp 86-88 °C). ¹H NMR (400 MHz, CDCl₃): δ = 7.63 (d, *J* = 7.6 Hz, 1H), 7.51 – 7.45 (m, 1H), 7.36 – 7.29 (m, 2H), 4.07 (s, 2H), 2.57 (s, 3H).⁹

(c) 4-Chlorobenzoylacetonitrile (Method B)

Yield: 12.6 g, 70%; light yellow crystals; mp 125-126 °C (Lit.² mp 126-128 °C). ¹H NMR (400 MHz, CDCl₃): δ = 7.87 (d, *J* = 8.6 Hz, 2H), 7.51 (d, *J* = 8.6 Hz, 2H), 4.09 (s, 2H).²

(d) 4-Methylbenzoylacetonitrile (Method B)

Yield: 9.7 g, 61%; white crystals; mp 100-101 °C (Lit.^{8c} mp 94-96 °C). ¹H NMR (400 MHz, CDCl₃): δ = 7.82 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 4.06 (s, 2H), 2.44 (s, 3H).⁹

(e) 4-Methoxybenzoylacetonitrile (Method B)

Yield: 8.8 g, 50%; white crystals; mp 128-129 °C (Lit.⁹ mp 123-126 °C). ¹H NMR (400 MHz, CDCl₃): δ = 7.90 (d, *J* = 8.9 Hz, 2H), 6.98 (d, *J* = 8.9 Hz, 2H), 4.03 (s, 2H), 3.90 (s, 3H).⁹

(f) 2-Thiophenoylacetonitrile (Method A)

Yield: 8.5 g, 56%; light yellow crystals; mp 123-126 °C; (Lit.¹⁰ mp 124-126 °C). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.79 - 7.70$ (m, 2H), 7.19 - 7.11 (m, 1H), 4.02 (s, 2H).¹⁰ (g) **2-Furoylacetonitrile** (Method A)

Yield: 8.1 g, 60%; light yellow crystals; mp 66-68 °C (Lit.¹⁰ mp 66-68 °C). ¹H NMR (400 MHz, CDCl₃): δ = 7.67 (s, 1H), 7.39 (d, *J* = 3.3 Hz, 1H), 6.65 (dd, *J* = 1.7, 1.6 Hz, 1H), 3.98 (s, 2H).¹⁰

(h) **2-Naphthoylacetonitrile** (Method A)

Yield: 9.8 g, 50%; yellow crystals; mp 122-123 °C (Lit.¹¹ mp 124 °C). ¹H NMR (400 MHz, DMSO): $\delta = 8.66$ (s, 1H), 8.15 - 7.93 (m, 4H), 7.74 - 7.63 (m, 2H), 4.91 (s, 2H).¹¹

Synthesis of tosylacetonitrile¹²

A mixture of sodium 4-methylbenzenesulfinate (8.9 g, 50 mmol) and 2-chloroacetonitrile (5.7 g, 75 mmol) was stirred at 60 °C for 2 h in 20 mL of PEG-400. The reaction mixture was poured into 300 mL of water. The precipitate was filtered and washed with cold ethanol, then recrystallized from ethanol to give the desired product as a light yellow solid (yield: 8.7 g, 89%). Mp: 144-146 °C (Lit.^{12a} 147-148 °C). ¹H NMR (400 MHz, CDCl₃): δ = 7.91 (d, *J* = 8.1 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 4.05 (s, 2H), 2.50 (s, 3H).^{12b}

References

- (1) Anzalone, L.; Hirsch, J. A. J. Org. Chem. 1985, 50, 2128.
- (2) Moe, S. T.; Thompson, A. B.; Smith, G. M.; Fredenburg, R. A.; Stein, R. L.; Jacobson, A. R. *Bioorg. Med. Chem.* **2009**, *17*, 3072.
- (3) (a) Heller, S. T.; Sarpong, R.; Org. Lett. 2010, 12, 4572. (b)Tank, R.; Pathak, U.; Vimal, M.; Bhattacharyya, S.; Pandey, L. K. Green Chem. 2011, 13, 3350. (c) Sarkar, S. D.; Grimme, S.; Studer, A. J. AM. CHEM. SOC. 2010, 132, 1190.
- (4) (a) Yamamoto, Y. *Adv. Synth. Catal.* 2010, *352*, 478. (b) Avila, C. M.; Lopes, A. B.; Gonçalves, A. S.; Silva, L. L.; Nelilma C. Romeiro, N. C.; Miranda, A. L. P.; Sant' Anna, C. M. R.; Barreiro, E. J.; Fraga, C. A. M. *Eur. J. Med. Chem.* 2011, *46*, 1245.
- (5) Andrews, P. C.; Beck, T.; Fraser, B. H.; Junk, P. C.; Massi, M.; Moubaraki, B.; Murray, K. S.; Silberstein, M. *Polyhedron* **2009**, *28*, 2123.

- (6) (a) Adhikari, R.; Jones, D. A.; Liepa, A. J.; Nearn, R. H. Aust. J. Chem. 2005, 58, 882. (b) Poradosu, E.; Gazit, A.; Reuveni, H.; Levitzki, A. Bioorg. Med. Chem. 1999, 7, 1727. (c) Guo, D.; Chen, T.; Ye, D.;Xu, J.; Jiang, H; Chen, K.; Wang, H.; Liu, H. Org. Lett. 2011, 13, 2884.
- (7) (a) Corson, B. B.; Scott, R. W.; Vose, C. E. Organic Syntheses, Coll. 1941, 1, 179; 1929, 9, 36. (b) Exner, J. H.; Burk, G. A.; Kyriacou, D. J. Agric. Food Chem. 1973,21,838.
- (8) (a) Yu, W. Q.; Du, Y. F.; Zhao, K. Org. Lett, 2009, 11, 2417. (b) Ji, Y. H.; Trenkle, W. C.; Vowles, J. V. Org. Lett., 2006, 8, 1161. (c) Burgaz, E. V.; Yılmaz, M.; Pekela, A. T.; Öktemera, A. Tetrahedron 2007, 63, 7229.
- (9) Park, A.; Lee, S. Org. Lett, **2012**, 14, 1118.
- (10) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Wang, M. J. Org. Chem. 2003, 68, 4932.
- (11) Baraldi, P. G.; Romagnoli, R.; Pavani, M. G.; Nuñez, M. C.; Tabrizi, M. A.; Shryock, J. C.; Leung, E.; Moorman, A. R.; Uluoglu, C.; Iannotta, V.; Merighi, S.; Borea, P. A. J. Med. Chem. 2003, 46, 794.
- (12) (a) Sukata. K. *Bull. Chem. Soc. Jpn.* **1984**, 57, 613. (b) Bram, G.; Loupy, A.; Roux-Schmitt, M. C.; Sansoulet, J.; Strzalko, T.; Seyden-Penne, J. *Synthesis* **1987**, 56.

NMR Spectra

N-methyl-*N*'-(3-aminopropyl)piperazine

The ¹H NMR spectrum of *N*-methyl-*N*'-(3-aminopropyl)piperazine

The ¹³C NMR spectrum of *N*-methyl-*N*²-(3-aminopropyl)piperazine

2-Cyano-N-phenylacetamide

The ¹H NMR spectrum of 2-Cyano-N-phenylacetamide

2-Cyanoacetamide

Benzoylacetonitrile

The ¹H NMR spectrum of benzoylacetonitrile

The ¹H NMR spectrum of 2-methylbenzoylacetonitrile

4-Chlorobenzoylacetonitrile

The ¹H NMR spectrum of 4-chlorobenzoylacetonitrile

4-Methylbenzoylacetonitrile

The ¹H NMR spectrum of 4-methylbenzoylacetonitrile

4-Methoxybenzoylacetonitrile

The ¹H NMR spectrum of 4-methoxybenzoylacetonitrile

2-Thiophenoylacetonitrile

The ¹H NMR spectrum of 2-thiophenoylacetonitrile

2-Furoylacetonitrile

The ¹H NMR spectrum of 2-furoylacetonitrile

2-Naphthoylacetonitrile

The ¹H NMR spectrum of 2-naphthoylacetonitrile

Tosylacetonitrile

The ¹H NMR spectrum of tosylacetonitrile

Ethyl 2-aminothiophene-3-carboxylate (5a, Table 5, Entry 1)

The ¹H NMR spectrum of ethyl 2-aminothiophene-3-carboxylate

The ¹³C NMR spectrum of ethyl 2-aminothiophene-3-carboxylate

2-Aminothiophene-3-carbonitrile (5b, Table 5, Entry 2)

The ¹H NMR spectrum of 2-aminothiophene-3-carbonitrile

The ¹³C NMR spectrum of 2-aminothiophene-3-carbonitrile

2-Aminothiophene-3-carboxamide (5c, Table 5, Entry 3)

The ¹H NMR spectrum of 2-aminothiophene-3-carboxamide

The ¹³C NMR spectrum of 2-aminothiophene-3-carboxamide

2-Amino-N-phenylthiophene-3-carboxamide (5d, Table 5, Entry 4)

The ¹H NMR spectrum of 2-amino-N-phenylthiophene-3-carboxamide

The ¹³C NMR spectrum of 2-amino-N-phenylthiophene-3-carboxamide

2-Amino-3-benzoylthiophene (5e, Table 5, Entry 5)

The ¹H NMR spectrum of 2-amino-3-benzoylthiophene

The ¹³C NMR spectrum of 2-amino-3-benzoylthiophene

2-Amino-3-(2-methylbenzoyl)thiophene (5f, Table 5, Entry 6)

The ¹³C NMR spectrum of 2-amino-3-(2-methylbenzoyl)thiophene

2-Amino-3-(4-methylbenzoyl)thiophene (5g, Table 5, Entry 7)

The ¹H NMR spectrum of 2-amino-3-(4-methylbenzoyl)thiophene

The ¹³C NMR spectrum of 2-amino-3-(4-methylbenzoyl)thiophene

2-Amino-3-(4-methoxybenzoyl)thiophene (5h, Table 5, Entry 8)

The ¹H NMR spectrum of 2-amino-3-(4-methoxybenzoyl)thiophene

The ¹³C NMR spectrum of 2-amino-3-(4-methoxybenzoyl)thiophene

2-Amino-3-(4-chlorobenzoyl)thiophene (5i, Table 5, Entry 9)

The ¹H NMR spectrum of 2-amino-3-(4-chlorobenzoyl)thiophene

The ¹³C NMR spectrum of 2-amino-3-(4-chlorobenzoyl)thiophene

2-Amino-3-(2,2-dimethylpropanoyl)thiophene (5j, Table 5, Entry 10)

The ¹H NMR spectrum of 2-amino-3-(2,2-dimethylpropanoyl)thiophene

The ¹³C NMR spectrum of 2-amino-3-(2,2-dimethylpropanoyl)thiophene

2-Amino-3-(2-thiophenoyl)thiophene (5k, Table 5, Entry 11)

The ¹H NMR spectrum of 2-amino-3-(2-thiophenoyl)thiophene

The ¹³C NMR spectrum of 2-amino-3-(2-thiophenoyl)thiophene

2-Amino-3-(2-furoyl)thiophene (5l, Table 5, Entry 12)

The ¹³C NMR spectrum of 2-amino-3-(2-furoyl)thiophene

2-Amino-3-(2-naphthoyl)thiophene (5m, Table 5, Entry 13)

The ¹H NMR spectrum of 2-amino-3-(2-naphthoyl)thiophene

The ¹³C NMR spectrum of 2-amino-3-(2-naphthoyl)thiophene

2-Amino-3-tosylthiophene (5n, Table 5, Entry 14)

The ¹³C NMR spectrum of 2-amino-3-tosylthiophene

HRMS Spectra

HRMS of 2-amino-3-(2-methylbenzoyl)thiophene (5f)

HRMS of 2-amino-3-(4-methylbenzoyl)thiophene (5g)

HRMS of 2-amino-3-(4-methoxybenzoyl)thiophene (5h)

HRMS of 2-amino-3-(2-thiophenoyl)thiophene (5k)

HRMS of 2-amino-3-(2-furoyl)thiophene (51)

HRMS of 2-amino-3-(2-naphthoyl)thiophene (5m)

Acid exchange capacity of the fiber catalyst:

The acid exchange capacity was calculated according to the amount of acid consumed by P-PANF. Dried P-PANF (0.250 g) was immersed in 20.00 mL of HCl solution (0.100 M) for 6 h. Then the treated fiber was filtered out and washed with water. The concentration of the remaining HCl solution was titrated by 0.100 M NaOH.

Entry	Weight of P-PANF	The consumed NaOH	Average	Acid exchange capacity
	g	mL	mL	mmol g ⁻¹
1	0.250	14.25		
2	0.250	14.20	14.21	2.32
3	0.250	14.20		

The amount of acid consumed by P-PANF = 20.00 mL \times 0.100 M – 14.21 mL \times 0.100 M = 0.579 mmol

The acid exchange capacity of P-PANF = $0.579 \text{ mmol} \div 0.250 \text{ g} = 2.32 \text{ mmol} \text{ g}^{-1}$

The determined acid exchange capacity of P-PANF was 2.32 mmol g⁻¹, indicating that 1.000 g P-PANF contains 1.16 mmol 3-(*N*-methylpiperazinyl)propyl groups (each group has two basic N atoms). Each CN group in PANF reacted with an *N*-methyl-*N*'-(3-aminopropyl)piperazine molecule and get a Δ MW of 158.24 during the amination process.

 $1 \text{ g} \times 2.32 \text{ mmol g}^{-1} \div 2 \times 158.24 \text{ g mmol}^{-1} = 0.184 \text{ g}$

 $0.184 \text{ g} \div (1.000 \text{ g} - 0.184 \text{ g}) = 22.5 \%$

This data is in accord with the acid exchange capacity (2.32 mmol g^{-1}).

