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Catalytic asymmetric nitroaldol (Henry) reactions1 of ketones
lead to synthetically versatile chiral tertiary nitroaldols. Enantiose-
lective nitroaldol reactions ofR-keto esters have been achieved
using chiral Cu2a-d and Mg complexes2e and cinchona alkaloids;2f

however, there are no reports on the asymmetric synthesis of tertiary
nitroaldols derived from simple ketones.3 Even for a racemic
version, only a few methodologies with limited substrate scope are
available.4 The difficulty arises from the attenuated reactivity of
ketones and the strong tendency toward a retro-nitroaldol reaction
under basic conditions. Therefore, the synthesis of tertiary nitroal-
dols with chirality control is in high demand. Herein, we describe
a kinetic resolution approach using BINOL1a-H2/biphenol1b-
H2 mixed La-Li heterobimetallic complexes (Figure 1). Tertiary
nitroaldols were obtained in 80-97% ee.

Initial trials revealed that (R)-LLB 2a (Figure 1)5 promoted a
reaction of3a with 10 equiv of nitromethane at-40 °C to afford
(S)-4a in 95% ee, albeit in poor yield (2%), after 5 days (eq 1).
Excess nitromethane was essential to obtain product4a. Further
trials to improve the yield failed, however, possibly because the
nitroaldol reaction of3a is thermodynamically unfavorable.6,7 Good
conversion is difficult to achieve in the absence of stoichiometric
amounts of trapping reagents, such as silylating reagent, to make
the reaction irreversible or stoichiometric amounts of chelating
metals to stabilize the product.

The nitroaldol reaction is reversible under basic conditions;
therefore, we planned to use (R)-LLB 2a for a kinetic resolution
of racemic tertiary nitroaldols via a retro-nitroaldol reaction.8,9 On
the basis of the high enantioselectivity achieved (eq 1), we
hypothesized that (R)-LLB 2a would preferentially convert the
matched enantiomer (S)-4a into 3a and nitromethane, while the
mismatched enantiomer (R)-4a would remain unchanged and be
recovered in an enantiomerically enriched form. Kinetic resolution
of (()-4a using 5 mol % of (R)-LLB 2a proceeded at-40 °C. As
expected,4a was recovered in 76% yield and 30% ee [(R)-4a
major]10 after 24 h, together with ketone3a and nitromethane. To
enhance the reaction rate, the reaction was performed at-20 °C,
giving good enantioselectivity (86% ee) in 48% recovery yield of
(R)-4a (Table 1, entry 1, 24 h, selectivity factor:s ) 23.8).11 To
further improve selectivity, we investigated various chiral ligands,
such as BINOL derivatives and biphenol derivatives. Inspired by
recent reports of a mixed-ligand chiral catalyst screening strategy,12

we also examined the mixture of two chiral ligands. The best
selectivity was obtained when using (R)-LLB 2a and (R)-LLB*
2b (Figure 1)13 in a ratio of 2:1 (entry 2, 90% ee, 50% yield,s )
58.4). Neither2a/2b ) 1:2 ratio nor2b alone had satisfactory

selectivity (entries 3 and 4). Other chiral ligands gave less
satisfactory results.

The substrate scopes and limitations of the present kinetic
resolution are summarized in Table 2.14 Retro-nitroaldol reactions
of methyl ketone-derived substrates4a-ewith aliphatic substituents
proceeded smoothly to afford chiral4a-e with good enantiose-
lectivity (entries 1-6). For each substrate, the reaction time was
optimized to achieve both a good recovery yield of4 and high
enantiomeric excess. With4b, catalyst loading was successfully
reduced to 2.5 mol % (2a: 1.67 mol %,2b: 0.83 mol %), still
affording good selectivity (entry 3, 90% ee and 40% yield). In the
case of acetophenone-derived substrate4f and ethyl ketone-derived
substrate4g, higher conversion (entry 7, 69% conversion, 30%
recovery yield of4f; entry 8, 65% conversion, 33% recovery yield
of 4g) was required to achieve good enantioselectivity (4f, 88%
ee;4g, 88% ee).

In the present reaction, a combination of (R)-LLB 2a and (R)-
LLB* 2b in a ratio of 2:1 gave the best results (Table 1). We
speculate that ligand exchange between2a and2b would occur to
generate a mixed-ligand La-Li3-(1a)2/(1b) complex in equilibri-
um,15 which would be the most enantioselective and reactive
catalyst. ESI-MS supported the ligand exchange in situ. Analysis
of the2a/2b ) 2:1 mixture revealed major peaks corresponding to
La-Li3-(1a)2/(1b) and La-Li3-(1a)/(1b)2 complexes and minor
peaks corresponding to2aand2b (Figure 2).16 Further investigation
to unequivocally determine the structure of the active species is
ongoing.

Figure 1. Structures of (R)-BINOL 1a-H2, biphenol (R)-1b-H2, and La-
Li heterobimetallic complexes LLB2a and LLB* 2b.

Table 1. Effects of LLB 2a/LLB* 2b Ratio on Kinetic Resolution of
Tertiary Nitroaldol (()-4a

a Determined by1H NMR analysis using mesitylene as an internal
standard.b Determined by chiral HPLC analysis.
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Scheme 1 illustrates the synthetic utility of tertiary nitroaldols
as chiral building blocks. Hydrogenation of4a, followed by
acetylation, gaveN-Ac amine5a in 86% yield. Silylated adduct6e
was successfully converted into isoxazole7e(84%) andR-hydroxy
carboxylic acid8e (99%).17

In summary, we achieved a kinetic resolution of tertiary
nitroaldols (()-4 derived from simple ketones. Mixed La-Li
heterobimetallic complexes had the best selectivity (80-97% ee
with 30-47% recovery yield). Further investigation of the structure
of the active species and application of the present mixed hetero-
bimetallic catalyst system to other asymmetric reactions are in
progress.
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Table 2. Kinetic Resolution of tert-Nitroaldols 4a-ga

a Reaction was performed in THF (0.4 M) at-20 °C using 3.33 mol %
of (R)-LLB 2a and 1.67 mol % of (R)-LLB* 2b unless otherwise noted.
b Determined by1H NMR analysis using mesitylene as an internal standard.
c Isolated yields after column chromatography. The theoretical maximum
is (100%- conversion)%.d Determined by chiral HPLC analysis.e (R)-
LLB 2a (1.67 mol %) and (R)-LLB* 2b (0.83 mol %) were used.f (R)-
LLB 2a (6.67 mol %) and (R)-LLB* 2b (3.33 mol %) were used.g Reaction
was run at-40 °C.

Figure 2. ESI-MS chart of LLB2a/LLB* 2b ) 2:1 mixture [m/z 840-
1060].15

Scheme 1. Transformations of tert-Nitroaldolsa

a Reagents and conditions: (a) cat. Pd-C, H2 (1 atm), MeOH, rt; Ac2O,
Et3N, CH2Cl2, 86% (2 steps); (b) cat. B(C6F5)3, Et3SiH, CH2Cl2, rt, 90%;
(c) Ph-acetylene, PhNCO, cat. Et3N, benzene, reflux, 84%; (d) NaNO2,
AcOH, DMSO, rt to 40°C, 99%.
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