Cite This: Org. Lett. XXXX, XXX, XXX-XXX # Photocontrolled Single-/Dual-Site Alternative Fluorescence Probes Distinguishing Detection of H₂S/SO₂ in Vivo Weijie Zhang,[†] Fangjun Huo,[‡] and Caixia Yin*^{,†}® [†]Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China Supporting Information ABSTRACT: Herein, a novel fluorescent probe by integrating 4-azide-1,8-naphthalic anhydride and spiropyran was obtained. NT-N3-SP was capable of specifically monitoring H₂S by azide reduced. Upon irradiation by alternate ultraviolet and visible light, both the structure and emission of spiropyran moiety in NT-N₃-SP can be reversibly tuned. Importantly, the alternation will be interrupted in the presence of SO₂. Additionally, NT-N₃-SP was successfully used for detection of H₂S/SO₂ in cells and mice. Reactive sulfur species (RSS) are a class of sulfur-containing compounds that play vital roles in human physiology. 1–3 Among these RSS, hydrogen sulfide (H2S) and sulfur dioxide (SO₂) seem to be the most attractive sulfur compounds due to their physiological role as the endogenous gasotransmitters following nitric oxide (NO) and carbonic oxide (CO).⁴⁻⁹ From a chemistry perspective, H₂S and SO₂ are redox partners; therefore, they could coexist in biological systems. In fact, it is evident that SO₂ and H₂S are generated from the same metabolism of sulfur-containing amino acids, and sometimes the two gasotransmitters share the same signal pathway, even the same target residue. 10-13 In addition, increasing studies suggested that H₂S and SO₂ exhibit similar anti-inflammatory activities against ROS, especially in cardiovascular systems.¹⁴ Obviously, there is a significant correlation between H₂S and SO₂ in the living systems. Because of these similar properties, researchers cannot distinguish one specific from another in the complicated physiological environment of the cells. In fact, some biological mechanisms that were originally attributed to H₂S may actually be mediated by SO₂ and vice versa. In order to better understand the physiological roles of SO₂ and H2S, several methods, such as electrochemistry, chromatography, and capillary electrophoresis, have been reported for SO_2^{15-18} and $H_2S^{19,20}$ detection. However, these methods cannot be directly applied to living cells due to their destructive nature.²¹ Fluorescence probes, which can display rapid, noninvasive, and sensitive detection of target analytes, have become powerful tools for in vivo imaging. ²²⁻²⁵ Although a few fluorescent probes for the detection of SO₂ or H₂S have been reported in recent years, most still suffer from drawbacks in terms of the selectivity. The design of a single fluorescent probe which displays a highly selective and distinctive response for H₂S and SO₂ simultaneously is highly desirable but even more challenging. Studies suggest that the aryl azide group shows high selectivity with hydrogen sulfide. 26,27 Therefore, we speculate that azide derivative seems to be an ideal probe for H₂S detection. Spiropyran, as a typical photoswitchable molecule, 28-30 was a latent fluorophore that can be reversibly tuned to merocyanine, which shows high selectivity for SO2 detection. 31 To this end, we coupled the spiropyran derivative to the weakly fluorescent molecule 4-azide-1,8-naphthalic anhydride with ethylenediamine as a tether. The full working strategy is described in Scheme 1. In order to confirm our hypothesis for SO₂ and H₂S detection, first we tested the absorbance and fluorescence responses of NT-N₃-SP with UV irradiation. As expected, upon irradiation of UV light (365 nm, 12W), a gradual fluorescence emission at 630 nm Scheme 1. Molecular Structure and Proposed Sensing Mechanism of NT-N₃-SP for H₂S and SO₂ Received: May 31, 2019 [‡]Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China Organic Letters Letter was observed (Figure 1a), which fully proved the formation of MR isomer. In addition, with the photoconversion of the SP **Figure 1.** (a) Fluorescence spectra and (b) absorption spectra of probe NT-N₃-SP ($10 \,\mu\text{M}$) upon irradiation with a UV lamp. (c) Fluorescence emission and (d) UV-vis absorbance photoswitching of NT-N₃-SP with UV/vis cycle. Test medium: PBS/C₂H₅OH solution (v/v = 1/1, pH 7.4). moiety, the azide group was also reduced, and the absorption peaks at 440 and 535 nm are enhanced during the UV irradiation (Figure 1b). The light-controlled reversible SP/MR switch could be realized for several cycles without obvious degradation in intensity (Figure 1c,d). Then UV-vis and fluorescence measurements were carried out. As described in Figure 2a, upon addition of Na₂S (0-200 **Figure 2.** (a) Absorption spectra and fluorescence spectra changes of probe NT-N₃-SP ($10\,\mu\mathrm{M}$) with increasing Na₂S ($0-200\,\mu\mathrm{M}$), λ_ex = 440 nm. (c) Fluorescence emission and (d) UV—vis absorbance of activated NT-NH₂-MR ($10\,\mu\mathrm{M}$) in the presence of Na₂SO₃ ($60\,\mu\mathrm{M}$), λ_ex = 535 nm. μ M), the maximal absorption at 370 nm decreased and a new red-shifted absorbance peak at 440 nm was centered. Meanwhile, the fluorescence intensity was significantly enhanced at 540 nm (Figure 2b), and the detection limit of NT-N₃-SP for Na₂S was calculated to be 0.101 μ M (Figure S1a) based on IUPAC (CDL = $3S_b/m$). 32,33 Probe NT-N₃-SP is essentially nonfluorescent at around 630 nm due to the ring-closed spiropyran moiety. In addition, the presence of Na₂SO₃ caused almost no changes in the absorption and fluorescence spectra, suggesting that the caged compound is stable and it will not transform into the fluorescence form without UV irradiation. In contrast, upon 150 s UV irradiation, a huge enhancement of NT-NH₂-MR in both the absorption and fluorescence spectra was observed as shown in Figure S2a,b. Then the UV light-controlled recognition of NT-NH₂-SP for SO_2 was performed in solution. The decrease of the maximum absorption band around 535 nm confirmed the disruption of the double bond in the merocyanine moiety (Figure 2c). Simultaneously, the fluorescent emission at 630 nm decreased gradually with the addition of Na_2SO_3 (Figure 2d), suggesting formation of the Michael adduct between Na_2SO_3 e and MR-stat. The detection limit of NT-NH₂-MR toward the SO_2 derivative was calculated to be 0.121 μ M (Figure S3). We then tested the selectivity of $NT-N_3-SP$ for H_2S and SO_2 . It was found that only the addition of Na₂S induced significant fluorescence enhancement at 540 nm (Figure S4a). Next, we recorded the spectra change of NT-N₃-MR with other analytes. As shown in Figure S4b, other interfering species hardly caused any fluorescence change at 630 nm except Na₂SO₃. Then the real-time fluorescence responses of NT-N3-SP toward SO2 and H₂S were examined by recording the fluorescence intensity of the two emission wavelengths at 540 or 630 nm, respectively. As illustrated in Figure S5a, the fluorescence intensity at 540 nm notably enhanced and finally leveled off at around 25 min after treatment with 200 µM Na₂S. The fluorescence signals of NT-NH₂-MR at 630 nm leveled off within 5 min upon addition of Na_2SO_3 (200 μ M), suggesting that the MR state is highly reactive with SO₂. However, one may wonder if hydrogen sulfide may also show high reactivity toward such a conjugated system. To address this issue, we further investigated the timedependent fluorescence response of NT-NH2-MR at 630 nm with hydrogen sulfide. Upon addition of Na₂S, the fluorescence signals at 630 nm decreased more slowly than those of SO₂, and the detection process was still ongoing until 60 min (Figure S5c). As a result, the azido group seems to be more sensitive toward H₂S compared with the MR state in NT-NH₂-MR. The pH effect of NT-N3-SP toward SO2 and H2S was subsequently investigated. Probe NT-N3-SP is stable in a broad pH range (3.0-8.0), and an obvious enhancement of intensity at 540 nm was found after it was treated with Na2S within the normal physiological ranges from 5.0 to 7.4 (Figure S6a). NT-NH₂-MR was also steady in a broad pH range (3.0-8.0) after UV irradiation, and the addition of Na₂SO₃ displayed the best fluorescence response within the pH range from 5.0 to 8.0 (Figure S6b). For the mechanistic study of probe NT-N₃-SP for H₂S and SO₂, the mass spectrometry analysis was carried out here. ESI-MS in Figure S7a shows a main peak at m/z 644.22525 [M – H]⁺, which corresponds to NT-N₃-SP. The mass peak appearing at m/z 618.23474 corresponded to the product of NT-N₃-SP with Na₂S (Figure S7b). Then the mixture of NT-N₃-SP with Na₂S was exposed to UV light. As expected, MS analysis gave the expected mass shift at m/z 618.23444 of deserved product NT-NH₂-MR, and the dominant peaks at 640.21674 were attributed to the complex of NT-NH₂-MR + Na (Figure S7c). Additionally, it is worth pointing out no signal appeared at 651.2152 in the mass spectrometry, which should belong to NT-NH₂-MR + Na₂S (Figure S7d). However, a noticeable signal peak was observed at m/z 698.1931 with the mixture of NT-NH₂-SP + Na₂SO₃ (Figure S7e). All these results were consistent with our hypothesis. Next, fluorescence imaging in living cells was carried out. First, the cytotoxicity of NT-N₃-SP was evaluated by MTT assay (Figure S8), and the result showed that NT-N₃-SP was well suited for bioimaging applications. We then carried out fluorescence imaging of exogenous H₂S and endogenous H₂S (induced by SNP: sodium nitroprusside). As shown in Figure 3 Organic Letters Letter Figure 3. Confocal microscopy images of living HepG 2 cells. (a1–a3) Fluorescence imaging probe NT-N₃-SP (10 μ M). (b1–b3) Fluorescence imaging probe NT-N₃-SP (10 μ M) with endogenous H₂S (induced by SNP). (c1–c3) Fluorescence imaging probe NT-N₃-SP (10 μ M) with exogenous H₂S (Na₂S: 50 μ M). Green channel $\lambda_{\rm em}$ = 530 \pm 20 nm ($\lambda_{\rm ex}$ = 458 nm). (b1), after pretreatment with SNP (500 μ M) for 60 min, the cells incubated with NT-N₃-SP showed an enhancement in fluorescence in green channel. Similarly, a remarkable enhancement of the green fluorescence signal was observed when NT-N₃-SP pretreated cells were further incubated with Na₂S for 20 min, which indicates that NT-N₃-SP was capable of monitoring both exogenous and endogenous H₂S in living cells. Then $NT-N_3$ -SP-loaded HepG 2 cells were treated with UV light for conversion to the MR state. It is also known that UV causes photobleaching of azide-containing dyes. As a result of the Förster resonance energy transfer (FRET) from naphthalimide donor to the MR acceptor, it was found that HepG 2 cells showed negligible fluorescence in the green channel but a strong fluorescence in the red channel after 3 min of UV irradiation (Figure 4b). To our delight, after the visible-light **Figure 4.** Photochromism of probe NT-N₃-SP in living cells. (a1, a2) HepG 2 cells were first incubated with probe NT-N₃-SP (10 μM). (b1, b2): Cells were further treated with Na₂S (100 μM). (c1–f1, c2–f2): UV/vis cycling of the two imaging channels of NT-NH₂-MR and NT-NH₂-SP. Red channel $\lambda_{\rm em} = 630 \pm 20$ nm ($\lambda_{\rm ex} = 561$ nm), green channel $\lambda_{\rm em} = 535 \pm 20$ nm ($\lambda_{\rm ex} = 458$ nm). irradiation (10 min), the fluorescence was recovered due to the reversible isomerization from the MR state back to the initial SP state (Figure 4c). Furthermore, we obtained satisfactory intracellular photochromic actions with alternate UV/vis irradiation (Figure 4d,e). As a whole, these results clearly validate the smart light-control of NT-N₃-SP by alternate UV/vis irradiation in living cells. Eventually, the UV light-controlled conversion of $NT-N_3-SP$ from the SP state to the activated MR state for SO_2 detection was carried out in HepG 2 cells. Probe $NT-N_3-SP$ was first internalized by HepG 2 cells and then treatment with UV light irradiation for 3 min (a1). Subsequently, we tested the ability of NT-NH₂-MR for imaging endogenous SO₂ induced by lipopolysaccharide (LPS: $1 \mu g/mL$). As shown in Figure 5 (b1), **Figure 5.** Confocal microscopy images of Na₂SO₃ in living HepG2 cells. (a1–a3) Cells were pretreated with probe NT-N₃-SP (10 μ M) and then treated with UV irradiation. (b1–b3) Fluorescence imaging of UV-activated probe NT-N₃-SP (10 μ M) with endogenous SO₂ (induced by LPS). (c1–c3) Fluorescence imaging of UV-activated probe NT-N₃-SP (10 μ M) with exogenous SO₂ (Na₂SO₃: 50 μ M). Red channel $\lambda_{em}=630\pm20$ nm ($\lambda_{ex}=561$ nm). upon pretreatment with LPS for 60 min, the fluorescence signal of NT-NH₂-MR-loaded HepG 2 cells decreased in the red channel. Also, upon incubation with Na₂SO₃ for 20 min, the fluorescence intensity in the red channel decreased Figure 5 (c1). Hence, we speculate that NT-NH₂-MR was potentially suitable for response of exogenous and endogenous SO₂ in living cells. In order to further expand the biological applications of the NT-N₃-SP, we next examined its capability for visualization of H_2S and SO_2 in a mouse model. As shown in Figure 6a1, no fluorescence signals were observed in mice before injection of the NT-N₃-SP and NT-NH₂-MR. Then the solutions of NT-N₃-SP (100 μ M) with or without UV irradiation were separately injected into two groups of tested mice. As shown in Figure 6a2, distinctive fluorescence signal appeared in the mice after injection of NT-NH₂-MR in group 1. However, another group **Figure 6.** Visual imaging of Na₂SO₃ and Na₂S in mice model. (a1, b1) Fluorescence imaging of the control group. Fluorescent signals of NT-NH₂-MR 100 μ M (a2) and NT-N₃-SP 100 μ M (b2) in living mice. Fluorescent signals of NT-NH₂-MR 100 μ M (a2) and NT-N₃-SP 100 μ M (b2) upon injection of Na₂SO₃ 200 μ M (a3, a4) and Na₂S 200 μ M (b3, b4) at 5 and 20 min, respectively. Group 1: red channel $\lambda_{\rm em}$ = 600 \pm 20 nm ($\lambda_{\rm ex}$ = 530 nm). Group 2: green channel $\lambda_{\rm em}$ = 540 \pm 20 nm ($\lambda_{\rm ex}$ = 450 nm). Organic Letters Letter of mice per treatment with $NT-N_3$ -SP exhibited a weak fluorescent signal. After 15 min, we injected Na_2SO_3 and Na_2S to the two groups of mice and then anesthetized them for fluorescence imaging. As time went by, the fluorescence intensity in the mice gradually decreased with the injection of Na_2SO_3 , and remarkable enhancement of fluorescence signals appeared in the other group which was treated with Na_2S . Therefore, we envision that $NT-N_3$ -SP was suitable for screening the increased concentration of H_2S and SO_2 in living mice models. To conclusion, inspired by the light-controlled recognition strategy, for the first time we have successfully engineered a novel fluorescent probe NT-N₃-SP based on 4-azide-1,8-naphthalic anhydride and spiropyran derivative. The azide group in NT-N₃-SP could be reduced in the presence of H₂S, and the activated spiropyran moiety could serve as a new SO₂ recognition site upon UV radiation. Importantly, the "smart" sensor NT-N₃-SP exhibits high selectivity and sensitivity for SO₂ and H₂S, and it was also successfully applied to in vivo imaging in living cells and mice. Relying on these merits, we believe that this work provides a powerful tool for better understanding the contributions of SO₂ and H₂S in physiological and pathological processes. ### ASSOCIATED CONTENT #### Supporting Information The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.9b01879. Experimental procedures, additional UV-vis and fluorescence spectra, and analytical and spectral data for all compounds (PDF) # AUTHOR INFORMATION # **Corresponding Author** *E-mail: yincx@sxu.edu.cn. ORCID ® Caixia Yin: 0000-0001-5548-6333 Notes The authors declare no competing financial interest. # ACKNOWLEDGMENTS We thank the National Natural Science Foundation of China (Nos. 21775096, 21672131, and 21705102), One hundred people plan of Shanxi Province, Shanxi Province "1331 project" key innovation team construction plan cultivation team (2018-CT-1), Shanxi Province Foundation for Returness (2017-026), the Shanxi Province Science Foundation for Youths (No. 201701D221061), Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes, China Institute for Radiation Production and Scientific Instrument Center of Shanxi University (201512). We also thank Dr. J. J. Wang of Shanxi University for her assistance with confocal laser scanning microscopy imaging. ### REFERENCES - (1) Jiao, X. Y.; Li, Y.; Niu, J. Y.; Xie, X. L.; Wang, X.; Tang, B. Anal. Chem. **2018**, *90*, 533–555. - (2) Liu, C. R.; Chen, N. W.; Shi, W.; Peng, B.; Zhao, Y.; Ma, H. M.; Xian, M. J. Am. Chem. Soc. **2014**, 136, 7257—7260. (3) Fukuto, J. M.; Ignarro, L. J.; Nagy, P.; Wink, D. A.; Kevil, C. G.; Feelisch, M.; Cortese-Krott, M. M.; Bianco, C. L.; Kumagai, Y.; Hobbs, A. J.; Lin, J.; Ida, T.; Akaike, T. *FEBS Lett.* **2018**, 592, 2140–2152. - (4) Zhao, Y.; Henthorn, H. A.; Pluth, M. D. J. Am. Chem. Soc. 2017, 139, 16365–16376. - (5) Cerda, M. M.; Zhao, Y.; Pluth, M. D. J. Am. Chem. Soc. 2018, 140, 12574–12579. - (6) Du, Z. B.; Song, B.; Zhang, W. Z.; Duan, C. C.; Wang, Y. L.; Liu, C. L.; Zhang, R.; Yuan, J. L. Angew. Chem., Int. Ed. 2018, 57, 3999–4004. - (7) Pardeshi, K. A.; Ravikumar, G.; Chakrapani, H. Org. Lett. 2018, 20, 4–7. - (8) Li, J. L.; Meng, Z. Q. Nitric Oxide 2009, 20, 166-174. - (9) Xu, W.; Teoh, C. L.; Peng, J. J.; Su, D. D.; Yuan, L.; Chang, Y. T. Biomaterials 2015, 56, 1-9. - (10) Chen, S. Y.; Huang, Y. Q.; Liu, Z. W.; Yu, W.; Zhang, H.; Li, K.; Yu, X. Q.; Tang, C. S. Clin Sci. (Lond). 2017, 131, 2655–2670. - (11) Xiao, J.; Zhu, X. Y.; Kang, B.; Xu, J. B.; Wu, L. H.; Hong, J.; Zhang, Y. F.; Wang, Z. N. Cell Physiol Biochem 2015, 37, 2444-2453. - (12) Chen, Q. H.; Zhang, L. L.; Chen, S. Y.; Huang, Y. Q.; Li, K.; Yu, X. Q.; Zhang, C. Y.; Tang, C. S.; Du, J. B.; Jin, H. F. *Int. J. Cardiol* **2016**, 225, 392–401. - (13) Ji, K. X.; Xue, L.; Cheng, J. W.; Bai, Y. Brain Res. Bull. 2016, 121, 68-74. - (14) Zhang, D.; Wang, X. L.; Tian, X. Y.; Zhang, L. L.; Yang, G. S.; Tao, Y. H.; Liang, C.; Li, K.; Yu, X. Q.; Tang, X. J.; Tang, C. S.; Zhou, J. Front Immunol 2018, 9, 882–899. - (15) Jiménez, D.; Martínez-Máñez, R.; Sancenón, F.; Ros-Lis, J. V.; Benito, A.; Soto, J. J. Am. Chem. Soc. 2003, 125, 9000-9001. - (16) Searcy, D. G.; Peterson, M. A. Anal. Biochem. 2004, 324, 269-275. - (17) Radford-Knoery, J.; Cutter, G. A. Anal. Chem. 1993, 65, 976–982. - (18) de Macedo, A. N.; Jiwa, M. I. Y.; Macri, J.; Belostotsky, V.; Hill, S.; Britz-McKibbin, P. *Anal. Chem.* **2013**, *85*, 11112–11120. - (19) Jiang, G. W.; Li, M.; Wen, Y. Y.; Zeng, W. L.; Zhao, Q.; Chen, C. L.; Yuan, H.; Liu, C. R.; Liu, C. L. ACS Sens 2019, 4, 434–440. - (20) Filipovic, M. R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chem. Rev. **2018**, *118*, 1253–1337. - (21) Ong, J. X.; Lim, C. S. Q.; Le, H. V.; Ang, W. H. Angew. Chem., Int. Ed. 2019, 58, 164–167. - (22) Zhang, W. J.; Huo, F. J.; Yin, C. X. J. Mater. Chem. B 2018, 6, 6919-6929. - (23) Jiang, M.; Gu, X.; Lam, J. W. Y.; Zhang, Y.; Kwok, R. T. K.; Wong, K. S.; Tang, B. Z. *Chem. Sci.* **201**7, 8 (8), 5440–5446. - (24) Cheng, P. H.; Zhang, J. J.; Huang, J. G.; Miao, Q. Q.; Xu, C. J.; Pu, K. Y. Chem. Sci. **2018**, *9*, 6340–6347. - (25) Gao, M.; Yu, F. B.; Lv, C. J.; Choo, J. B.; Chen, L. X. Chem. Soc. Rev. 2017, 46, 2237–2271. - (26) Thorson, M. K.; Majtan, T.; Kraus, J. P.; Barrios, A. M. Angew. Chem., Int. Ed. **2013**, 52, 4641–4644. - (27) Brito da Silva, C.; Gil, E. S.; da Silveira Santos, F.; Moras, A. M.; Steffens, L.; Bruno Goncalves, P. F.; Moura, D. J.; Ludtke, D. S.; Rodembusch, F. S. J. Org. Chem. 2018, 83, 15210–15224. - (28) Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. *Chem. Rev.* **2014**, *114*, 12174–12277. - (29) Dong, M.; Babalhavaeji, A.; Samanta, S.; Beharry, A. A.; Woolley, G. A. Acc. Chem. Res. **2015**, 48, 2662–2670. - (30) Tian, Z.; Li, A. D. Q. Acc. Chem. Res. 2013, 46, 269-279. - (31) Zhang, J. J.; Fu, Y. X.; Han, H. H.; Zang, Y.; Li, J.; He, X. P.; Feringa, B. L.; Tian, H. Nat. Commun. 2017, 8 (1), 987–996. - (32) Zhang, W. J.; Liu, T.; Huo, F. J.; Ning, P.; Meng, X. M.; Yin, C. X. Anal. Chem. **2017**, 89, 8079–8083. - (33) Zhang, W. J.; Huo, F. J.; Liu, T.; Yin, C. X. J. Mater. Chem. B 2018, 6, 8085–8089.