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ABSTRACT: 2,3-Disubstituted benzofurans were synthesized from acrolein dimer and 

1,3-dicarbonyl compounds by using N-bromosuccinimide as an oxidizing agent. The method was 

used to synthesize two commercial drug molecules, benzbromarone and amiodarone. The 

proposed mechanism of the reaction involves an NBS-assisted auto-tandem catalysis with Lewis 

acid catalyst. To proof the proposed mechanism, an intermediate was isolated successfully, which 

can be converted to 4,5,6,7-tetrahydrobenzofurans.

Introduction

Benzofuran is an important naturally occurring O-benzoheterocycle. Many benzofuran derivatives 

were used in the pharmaceutical and pesticide industries because of their promising biological 

activities.1 Therefore, developing a synthetic protocol of benzofuran has been a priority in 

synthetic chemistry. In general, the present synthetic methods can be divided into two approaches. 

In the first approach, benzofuran skeletons are constructed from pre-functionalized 
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phenyl-containing building blocks, such as phenol,2 salicylaldehyde,3 and 2-methoxybenzoic 

acid.4 In the second approach, benzofuran skeletons are constructed through a 4+2 benzannulation 

of furan derivatives and suitable reagents, such as 2,5-dimethoxyltetrahydrofuran,5 

2-alkoxy-3,4-dihydrofuran,6 and α-bromochalcones or α-bromocinnamates.7 All synthetic 

methodologies were established based on the use of aromatic precursors. However, the synthesis 

of benzofurans with these approaches suffers from some drawbacks, such as pre-functionalization 

of starting materials, inefficient reaction with electron deficient substrates, or the use of harsh 

conditions. The construction of benzofuran skeletons from nonaromatic precursors could be an 

alternative route to access these privileged heterocycles.8 However, this strategy is rarely used 

because of the lack of a suitable substrate to construct the two fused aromatic rings 

simultaneously. A tandem Michael addition and intramolecular cyclization reaction of 

benzoquinone and ketones or their activated congeners is probably the most simple one, to the best 

our knowledge, of synthesizing benzofurans from nonaromatic substrates.9 Unfortunately, the 

applicability of this reaction is limited, and it works only for the synthesis of 

5-hydroxybenzofurans, which have been infrequently used in organic synthesis.

Recently, we have found that N-bromosuccinimide (NBS) can act as an oxidizing reagent to 

cooperate with a Lewis acid catalyst, and the established combined Lewis acid/NBS system can 

construct five- and six-membered aromatic rings.10 In this article, we report a facile way to 

construct a six-and-five two-aromatic-ring fused heterocycle, namely benzofuran, by using easily 

available chemicals, acrolein dimer and 1,3-dicarbonyl compounds, as precursors. This reaction 

involves the use of Lewis acid as a catalyst and NBS as an oxidizing agent. This approach not 
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only provides an easy way to synthesize 2,3-disubstituted benzofurans but also enables synthesis 

of benzofuran-based drug molecules.

Results and Discussion 

Initially, acrolein dimer 1a was treated with methyl acetoacetate 2a at 80 °C. We expect a 

benzofuran derivative 3a can be formed. No reaction was observed in the absence of catalyst 

(Table 1, entry 1). When AlCl3 was employed as a catalyst, the selectivity to 3a was rather poor in 

nitromethane (Table 1, entry 2). Surprisingly, 3a could be obtained in 88% yield when 1.0 

equivalent of NBS was added into the reaction system (entry 3). NBS cannot catalyze this reaction 

(entry 4). Several Lewis and Brønsted acids were then examined as catalysts in the presence of 

NBS. FeCl3
.6H2O and CuBr2 afforded only 23% and 18% yields, respectively (entries 5 and 6). 

When Sc(OTf)3 was used as a catalyst, although 3a could be isolated in 80% yield, some 

inseparable by-products were formed simultaneously (entry 7). p-Toluenesulfonic acid (p-TsOH) 

was not applicable in this reaction because only 8% of yield was obtained (entry 8). Some other 

halogenation reagents were also examined. With bromine and N-chlorosuccinimide (NCS), only a 

trace amount of 3a was formed (entries 9 and 10). When 1,3-dibromo-5,5-dimethylhydantoin 

(DDH) was used, 3a can be isolated in 73% yield (entry 11). Some commonly used oxidant, 

MnO2, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and AgCO3, were proven unable to 

initiate this transformation (entries 12–14). Further investigation revealed that decrease of the 

amount of NBS or AlCl3 led to dramatic yield drop (entries 15–17). Reaction temperature also 

played an important role in ensuring the completion of the reaction. Only 38% yield was obtained 

at 50 °C (entry 18). The effect of solvent was then investigated. Among all the solvents tested, 

nitromethane clearly stood out, with acetonitrile and 1,2-dichloroethane in the second place 
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(entries 19 and 20). Toluene and ethanol were proven inappropriate (entries 21 and 22). Therefore, 

the optimal conditions were identified as follows: 5 mol% AlCl3 catalyst, 1.0 equivalent of NBS, 

nitromethane solvent, 80 °C, and 6 h. The reaction can be scaled up to 10 mmol without 

significant loss in the reaction yield (entry 23).

Table 1: Condition optimization for the model reaction.a

+
O

OMe

O

1a 2a 3a

Catal. (5 mol%)
Additive (1.0 equiv.)

CH3NO2, 80 oC, 6 hO CHO O

O
OMe

Entry Catalyst Additive Yield (%)

1 ― ― NR

2 AlCl3 ― Trace

3 AlCl3 NBS 88

4 ― NBS NR

5 FeCl3·6H2O NBS 23

6 CuBr2 NBS 18

7 Sc(OTf)3 NBS 80

8 p-TsOH NBS 8

9 AlCl3 Br2 Trace

10b AlCl3 NCS Trace

11c AlCl3 DDH 73

12 AlCl3 MnO2 Trace

13 AlCl3 DDQ Trace

14 AlCl3 AgCO3 Trace

15 AlCl3 NBS (0.3 equiv.) 26

16 AlCl3 NBS (0.6 equiv.) 45

17d AlCl3 NBS 49

18e AlCl3 NBS 38

19f AlCl3 NBS 71

20g AlCl3 NBS 60

21h AlCl3 NBS NR

22i AlCl3 NBS Trace

23j AlCl3 NBS 80
a: 1a: 0.6 mmol, 2a: 0.5 mmol, nitromethane: 1 mL, catalyst: 0.025 mmol, 80 °C, 6 h. b: NCS is 

N-chlorosuccinimide. c: DDH is 1,3-dibromo-5,5-dimethylhydantoin. d: AlCl3: 2 mol%. e: 50 °C. f: solvent: 

acetonitrile. g: solvent: 1,2-dichloroethane. h: solvent: toluene. i: solvent: EtOH.  j: reaction scale: 10 mmol.
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We probed substrate toleration with respect to 1,3-dicarbonyl component, and the results are 

shown in Figure 1. Acetylacetone reacted smoothly with 1a to form 3b in 80% yield. 

1,3-Dicarbonyl compounds bearing ester and ether groups participated in this reaction readily, 

affording the desired benzofurans in good to excellent yield (3b–3g). The double and triple bonds 

in 1,3-dicarbonyl compounds can be delivered uneventfully into the product skeletons without 

modification (3e and 3f). Our attempt to use an acrylate-functionalized 1,3-dicarbonyl compound 

was also successful, and the desired product 3h was obtained in 75% yield. The acetyl of 2a can 

be replaced by some bulky acyl groups, such as n-propanoyl, n-butanoyl, isobutanoyl, and 

pivaloyl, without affecting significantly the synthesis efficiency (3i–3l). Diethyl 

1,3-acetonedicarboxylate also participated smoothly in this reaction, and the expected products 

3m were obtained in 60% yield. However, the yields obtained with 1,3-dicarbonyl compounds 

having an aroyl group, such as benzoyl and thiophen-2-oyl, were slightly inferior to those obtained 

with 2a (3n and 3p). This finding may result from the electron-withdrawing properties of these 

groups. In addition, replacing benzoyl with an electron-donating group-substituted congener, 

3,4-dimethoxybenzoyl, increased the yield from 59% to 73% (3n and 3o). β-Ketoamide can also 

be used in this reaction, with which a benzofuran derivative having an amide moiety 3q could be 

obtained in 62% yield. A similar compound was reported to exhibit promising biological 

activities.11 The reactions of 1a with cyclic diketones, such as 1,3-cyclohexadione and dimedone, 

encountered a reactivity problem. Fortunately, this problem can be solved by changing the catalyst 

from AlCl3 to Sc(OTf)3 (3r and 3s). When benzoylacetone was used in this reaction, two products 

should be formed theoretically. However, this reaction was exclusively regioselective, and only 3u 

was isolated. 
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Figure 1. Substrate scope of benzofuran synthesis.
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Ethyl 3,3-diethoxypropanoate also able to react smoothly with 1a in the presence of AlCl3 

catalyst, affording ethyl benzofuran-3-carboxylate 3v in 40% yield (Scheme 1). It should be noted 

that the 3v-type benzofurans are core substances for the synthesis of drug molecules with 

antifungal anti-mycobacterial and antifungal activity.12 Previous methods were generally 

established by multi-step synthesis, which involved either the use of noble metal-based catalysts, 

Pd and Rh complexes,13 or a precursor that is not commercially available.13(c) Reaction in Scheme 

1 offered thus a straightforward way to access these valuable benzofuran derivatives starting from 

easily available starting materials.

Scheme 1. Synthesis of 3v.
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Control experiments were carried out to gain insights into this reaction. Compound 1a was 

treated with 2a in the presence of catalytic amount of AlCl3 and in the absence of NBS (Scheme 

2). A furanyl-containing butyraldehyde 4a was formed rapidly at room temperature. NBS was 

inactive for the synthesis of 4a. In the absence of NBS, 4a can be converted into 4b in 82% yield 

at room temperature with the aid of AlCl3 catalyst. In the presence of 1.0 equivalent of NBS, 4a 

can be converted directly to 3a (Scheme 2).

Scheme 2. Control experiments.
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Basing on all these results, we speculate that 4a is a key intermediate of this reaction. A 

possible mechanism was proposed in Figure 2. Initially, Knoevenagel condensation of 1a and 2a 

occurred, thereby leading to the formation of an intermediate I, which is equilibrium to its 

corresponding enol isomer. Intermediate II was generated through an intramolecular oxa-Michael 

addition of the enol form of intermediate I. Subsequently, it can be converted to 4a through a 
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ring-opening rearrangement reaction with the aid of a Lewis acid catalyst. The simultaneous 

existence of an electrophilic aldehyde-carbonyl and a nucleophilic furanyl group in the molecular 

skeleton of 4a enabled an intramolecular nucleophilic addition of the furanyl to the aldehyde 

group. Therefore, 4b can be formed. Then, 4b underwent a dehydration to give intermediate III. 

Finally, 3a was formed through dehydrobromination of intermediate III. On the basis of this 

mechanism, the model reaction can also be considered as a new example of auto-tandem 

catalysis,14 in which the product was formed through a domino acid-acid-catalyzed reaction. 

Interestingly, the use of NBS as an additive played a key role in rendering the reaction as well as 

the auto-tandem catalysis to be possible.

Figure 2. Proposed mechanism

OMe
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We also attempted to synthesize benzofuran directly using acrolein and 1,3-dicarbonyl as 

starting materials. However, a complex inseparable mixture was obtained. We suspected that 

acrolein may be extremely reactive under these conditions, and as a result, the reaction with 

1,3-dicarbonyl proceeded non-selectively. As an alternative, a one-pot two-step strategy was 

developed. As shown in Scheme 3, acrolein was initially heated at 150 °C in a sealed tube in the 
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presence of hydroquinone for 4 h. Then, the mixture was subjected to vacuum conditions (20 

mmHg) for removing the unreacted acrolein. The residual organic phase was mixed subsequently 

with 2a, AlCl3 and solvent. The mixture was then treated at 80 °C for 6 h. With this method, 3a 

can be obtained in 45% yield. Although the yield was not very high, because it omitted the 

isolation step of 1a, this protocol provided a convenient way to synthesize benzofuran derivative.

Scheme 3. Synthesis of 3a from acrolein.

CHO
O CHO150 oC

2a
AlCl3 (5 mol%)

NBS (1.0 equiv.)

CH3NO2, 80 oC, 6 h O

O
OMe

5a 1a
unisolated

3a 45%

Benzbromarone is a urate-lowering drug that acts directly on the renal tubule, increasing uric 

acid renal excretion by inhibiting urate reabsorption through one or more transporter proteins.15 

Although many methods have been developed for its synthesis, a convenient and efficient pathway 

is still in demand. Existing synthetic methods often suffer from some drawbacks, such as tedious 

procedure, harsh reaction conditions, and low reaction yield, this compound was synthesized with 

a 53.1% yield starting from phenol and formaldehyde through a seven–step synthesis.16 With the 

present methodology, the key benzbromarone intermediate 3w can be prepared in one step in 87% 

yield from two commercially available compounds (1a and 2b). Benzbromarone was obtained via 

a known procedure, including demethylation and bromination reactions. With this three-step 

approach, benzbromarone can be synthesized in 72.4% total yield from the starting materials 1a 

and 2b (Scheme 4).

Scheme 4. Synthesis of benzbromarone.
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The synthetic protocol of benzofurans also allowed us to establish a four-step method to 

synthesize amiodarone, which is able to block myocardial potassium channels and inhibit 

adrenergic receptors.17 In the first step, the benzofuran derivative 3x was prepared from 1a and 

1,3-dicarbonyl compound 2c in 85% yield (Scheme 5). Similar to the protocol of accessing 

benzbromarone, 3x can be converted to 9a through a demethylation and iodate process. Finally, 

the desired product 10a was obtained through an O-alkylation reaction. The total yield of this 

method reached 46.2% from the starting materials 1a and 2c. Compared with the reported method, 

this protocol features easy operation reaction procedure and avoids the usage of harsh reaction 

conditions.18 The reactions in Scheme 4 and Scheme 5 demonstrated that the methodology 

developed here is indeed useful.19 

Compound 4a possesses both nucleophilic and electrophilic sites. Therefore, it can be used as a 

bifunctional reagent to construct a 4,5,6,7-tetrahydrobenzofuran scaffold. As shown in Scheme 6, 

two indol-3-yl-substituted 4,5,6,7-tetrahydrobenzofuran derivatives, 11a and 11b, were obtained 

in good yield by treating 4a with N-H indole and N-methylindole in the presence of 10 mol% of 

CuBr2 (Scheme 6). Other commonly available nucleophiles, such as 1,2,4-trimethoxybenzene and 

1,1-diphenylethylene, can also react with 4a, producing the tetrahydrobenzofuran derivatives, 12a 
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and 13a, in 75% and 52% yields, respectively. These reactions further extended the product 

diversity of this synthetic methodology.

Scheme 5. Synthesis of amidarone.
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Conclusion 

In summary, a facile method to synthesize benzofurans was developed starting from acrolein 

dimer and 1,3-dicarbonyl compounds by using NBS as an oxidizing agent. With this method, two 

drug molecules, benzbromarone and amiodarone, were synthesized. The reaction was established 

by two reaction sequences, which were all driven by a single acid catalyst. 

4,5,6,7-Tetrahydrobenzofurans can also be synthesized from a furanyl-containing butyraldehyde 

that was confirmed to be an intermediate of forming the benzofuran product. 

Experimental Sections

Unless otherwise noted, all reagents were purchased from commercial suppliers and used without 

further purification. The reactions were monitored by TLC with Haiyang GF-254 silica gel plates 

(Qingdao Haiyang chemical industry Co. Ltd, Qingdao, China) using UV light or KMnO4 as 

visualizing agents as needed. Flash column chromatography was performed using 200-300 mesh 

silica gel at increased pressure. 1H NMR spectra and 13C NMR spectra were respectively recorded 

on Brüker AV-400 spectrometers. Chemical shifts (δ) were expressed in ppm with TMS as the 

internal standard, and coupling constants (J) were reported in Hz. High-resolution mass spectra 

(HRMS) were obtained on Brüker Compass Data Analysis 4.0.

Typical procedure for the synthesis of benzofuran derivative. The reactions were conducted in 

a 10 mL of V-type flask equipped with triangle magnetic stirring. In a typical reaction, 1a (0.6 

mmol) was mixed with 2a (0.5 mmol), NBS (0.5 mmol) and AlCl3 (5 mol%) in nitromethane (1.0 

mL). The mixture was then stirred at 80 oC for 6 h. After reaction, the product was obtained by 

isolation with silica column chromatography (eluting solution: petroleum ether / ethyl acetate = 

20/1 (v/v)). Tests for substrate scope were all performed with an analogous procedure. In the large 
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scale synthesis of 3a, the product was isolated by silica column chromatography (eluting solution: 

petroleum ether / ethyl acetate = 20/1 (v/v)). 

Confirmation of the regioselectivity of the synthetic reaction of 3u.20 Sodium borohydride (0.6 

mmol) was added to a methanol solution of the reaction product coming from benzoylacetone and 

acrolein dimer (0.3 mmol, 1 mL methanol). And the mixture was stirred at room temperature for 

0.5 h. Then it was poured into an aqueous solution of HCl (1 wt%, 5 mL). Then, the mixture was 

extracted with dichloromethane (20 mL × 3). The product was obtained by isolation with silica 

column chromatography (eluting solution: petroleum ether / ethyl acetate = 2/1 (v/v)) in 90 % 

(64.2 mg) yield.

Procedure for the synthesis of 4a. The reactions were conducted in a 10 mL of V-type flask 

equipped with triangle magnetic stirring. Compound 1a (0.6 mmol) was mixed with 2a (0.5 

mmol) and AlCl3 (5 mol%) in nitromethane (1.0 mL). The mixture was then stirred at room 

temperature for 4 h. After reaction, the product 4a was obtained by isolation with silica column 

chromatography (eluting solution: petroleum ether / ethyl acetate = 5/1 (v/v)) in 88% yield (92.4 

mg).

Procedure for the synthesis of 3a from acrolein.21 Acrolein (0.5 mol) and hydroquinone (2.5 

mmol) was placed in a teflon vessel, the teflon vessel was sealed and placed in a stainless steel 

autoclave. The autoclave was heated at 150 °C for 4 h. After the autoclave was cooled to room 

temperature, the rest of acrolein and other volatile components were removed under reduced 

pressure to gain the crude product 1a (yellow oil). Then, 1a (0.6 mmol) was mixed with 2a (0.5 

mmol), NBS (0.5 mmol) and AlCl3 (5 mol %) in nitromethane (1mL) in a 10 mL of V-type flask 

equipped with triangle magnetic stirring. The mixture was then stirred at 80 oC for 6 h. After 
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reaction, the product 3a was obtained by isolation with silica column chromatography (eluting 

solution: petroleum ether / ethyl acetate = 30/1 (v/v)) in 45% (42.8 mg) yield. 

Procedure for the synthesis of 2b and 2c.22 Methyl propionate (25 mmol) was mixed with 

1-(4-methoxyphenyl)ethanone (3.0 g, 20 mmol) and sodium hydride (30.0 mmol, 60% suspension 

in mineral oil) in THF (100 mL). Then the mixture was heated to reflux for overnight. After that, 

it was quenched with water (100 mL) and acidified with 1 N HCl. The solvent was removed under 

reduced pressure. The residue was extracted with ethyl acetate (100 mL × 3). The combined 

organic phase was washed with brine (25 mL) and dried over anhydrous Na2SO4. After removing 

volatile components, the organic residue was subjected to an isolation with silica column 

chromatography (eluting solution: petroleum ether / ethyl acetate = 10/1 (v/v)). 2b was obtained in 

82 % yield. Synthesis of 2c was performed with an analogous procedure.

Procedure for the synthesis of benzbromarone 7a. Compound 1a (6.0 mmol) was mixed with 

2b (5.0 mmol), NBS (5.0 mmol), AlCl3 (5 mol%) and nitromethane (30 mL) in a 100 mL of round 

bottomed flask equipped with magnetic stirring. The mixture was then stirred at 80 oC for 6 h. 

After completion of the reaction, brine (50 mL) was added. And then, the aqueous phase was 

extracted by ethyl acetate (40 mL × 3). The acquired organic phase was dried by anhydrous 

Na2SO4. After removing volatile components, the organic residue was subjected to an isolation 

with silica column chromatography (eluting solution: petroleum ether / ethyl acetate = 20/1 (v/v)). 

Compound 3w was obtained in 87 % (1.22 g) yield. Then, 3w (1.22 g) was dissolved in 

dichloromethane (20 mL), and cooled to -10 °C. A dichlromethane solution of boron tribromide 

(4.8 mmol, in 10 mL CH2Cl2) was added carefully to the stirred solution of 3w. The reaction 

mixture was allowed to stir at room temperature for 5 h. Then, a dichloromethane solution of 

Page 14 of 35

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



boron tribromide (4.8 mmol, in 10 mL CH2Cl2) was added again and the solution was stirred for 

another 5 h. The reaction mixture was quenched then by ice-water (50 mL) and stirred for 15 min. 

The organic phase was separated and extracted with saturated sodium bicarbonate solution (30 mL 

× 3). The alkaline extract was washed with dichloromethane (30 mL × 3). The acquired organic 

phase was dried by anhydrous Na2SO4. After removing volatile components, the organic residue 

was subjected to an isolation with silica column chromatography (eluting solution: petroleum 

ether / ethyl acetate = 5/1 (v/v)). Compound 6a was obtained in 85 % yield (981.5 mg).23 6a 

(981.5 mg) was dissolved in an aqueous solution acetic acid (20 mL, 75wt%). An aqueous acetic 

acid solution of bromine (2.0 equiv, in 20 mL 75wt% solvent) was added into the previous solution 

slowly at room temperature. Then the mixture was stirred for 2 h at room temperature. Water (50 

mL) was added to the reaction mixture. And the aqueous phase was extracted by ethyl acetate (30 

mL × 3). The combined organic phase was washed by saturated aqueous solution of NaHCO3 and 

brine. Then it was dried over anhydrous Na2SO4. After removing the volatile components under 

reduced pressure, the product 7a was purified by silica column chromatography (eluting solution: 

petroleum ether / ethyl acetate = 3/1 (v/v)) in 98% (1.52 g) yield.16(a)

Procedure for the synthesis of amiodarone 10a.18(a) Compound 1a (6.0 mmol) was mixed with 

2c (5.0 mmol), NBS (5.0 mmol), AlCl3 (5 mol %) and nitromethane (30.0 mL) in a 100mL of 

round bottomed flask equipped with magnetic stirring. The mixture was stirred at 80 oC for 6 h. 

After completion of the reaction, brine (50 mL) was added. And then, the aqueous phase was 

extracted by ethyl acetate (40 mL × 3). The acquired organic phase was dried over anhydrous 

Na2SO4. After removing the volatile components, the organic residue was subjected to an isolation 

with silica column chromatography (eluting solution: petroleum ether / ethyl acetate = 20/1 (v/v)). 
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Compound 3x was obtained in 85 % yield (1.3 g). 3x (1.3 g) was dissolved in dichloromethane (30 

mL), and cooled to -10 °C. A dicloromethane solution of boron tribromide (1.1 equiv in 15 mL 

CH2CH2) was added carefully to the stirred solution. The mixture was allowed to stir at room 

temperature for overnight. Then, a dichloromethane solution of boron tribromide (1.1 equiv in 15 

mL CH2CH2) was added again and the solution was stirred for another 5 h. The reaction was then 

quenched by ice-water (50 mL) and stirred for 15 min. The organic phase was separated and 

extracted with a saturated aqueous solution of sodium bicarbonate (30 mL × 3). Then, the alkaline 

extract was washed with dichloromethane (50 mL × 3). The acquired organic phase was dried over 

anhydrous Na2SO4. After removing the volatile components, the organic residue was subjected to 

an isolation with silica column chromatography (eluting solution: petroleum ether / ethyl acetate = 

5/1 (v/v)). Compound 8a was obtained in 83 % yield (1.04 g). Compound 8a (1.04 g) and sodium 

hydroxide (2.0 equiv) was added in MeOH (20 mL). Iodine (2.0 equiv) was added then at 0 oC. 

After 3 h of stirring at room temperature, the reaction was quenched with an aqueous solution of 

HCl (1N, 40 mL), and then extracted with ethyl acetate. The combined organic extracts were 

washed with a saturated aqueous solution of Na2S2O3. The acquired organic phase was dried over 

anhydrous Na2SO4, and then concentrated under reduced pressure. The residue was subjected then 

to an isolation with silica column chromatography (eluting solution: petroleum ether / ethyl 

acetate = 3/1 (v/v)). Compound 9a was obtained in 72 % yield (1.38 g). To a DMF solution of 9a 

(1.38 g, 20 mL solvent), K2CO3 (4.0 equiv), 2-diethylaminoethylchloride hydrochloride (1.0 

equiv), and NaI (0.1 equiv) were added. The mixture was stirred at room temperature for 

overnight. The reaction was quenched with water and extracted with ethyl acetate. The organic 

phase was washed with brine, dried over Na2SO4, and finally concentrated under reduced pressure. 
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The product 10a was obtained by isolation with silica column chromatography (eluting solution: 

petroleum ether / ethyl acetate = 2/1 (v/v)) in 91% yield (1.48 g).

Characterization data of compounds

Methyl 2-methylbenzofuran-3-carboxylate (3a):24 brown oil, 88% yield (83.6 mg); 1H NMR (400 

MHz, CDCl3, TMS, 25 oC) δ = 7.98–7.90 (m, 1H), 7.45–7.37 (m, 1H), 7.26 (ddd, J = 7.2, 4.8, 2.0 

Hz, 2H), 3.93 (s, 3H), 2.75 ppm (s, 3H). 13C{1H} NMR (100 MHz, CDCl3, 25 oC) δ = 165.0, 

163.8, 153.7, 126.2, 124.4, 123.8, 121.8, 110.8, 109.0, 51.5, 14.5 ppm

1-(2-Methylbenzofuran-3-yl)ethanone (3b):24 yellow oil, 80% yield (69.6 mg); 1H NMR (400 

MHz, CDCl3, TMS, 25 oC) δ = 8.01–7.88 (m, 1H), 7.45 (dd, J = 6.5, 2.5 Hz, 1H), 7.37–7.28 (m, 

2H), 2.78 (s,3H), 2.64 ppm (s, 3H). 13C{1H} NMR (100 MHz, CDCl3, 25 oC) δ = 194.4, 163.0, 

153.7, 126.2, 124.5, 124.1, 121.5, 117.7, 111.2, 31.3, 15.53 ppm

Ethyl 2-methylbenzofuran-3-carboxylate (3c):24 light brown oil, 78% yield (79.6 mg); 1H NMR 

(400 MHz, CDCl3, TMS, 25 oC) δ = 7.92–7.83 (m, 1H), 7.38–7.31 (m, 1H), 7.24–7.17 (m, 2H), 

4.33 (q, J = 7.1Hz, 2H), 2.69 (s, 3H), 1.37 ppm (t, J = 7.1Hz, 3H). 13C{1H} NMR (100 MHz, 

DMSO-d6, 25 oC) δ = 163.5, 163.4, 153.0, 125.6, 124.6, 124.0, 121.2, 111.0, 108.3, 60.1, 14.2, 

14.1 ppm.

Isopropyl 2-methylbenzofuran-3-carboxylate (3d):25 light yellow oil, 81% yield (88.3 mg); 1H 

NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 8.01–7.91 (m, 1H), 7.47–7.37 (m, 1H), 7.32–7.22 (m, 

2H), 5.29 (dt, J = 12.5, 6.2 Hz, 1H), 2.77 (s, 3H), 1.42 ppm (d, J = 6.3 Hz, 6H). 13C{1H} NMR 

(100 MHz, CDCl3, 25 oC) δ = 164.2, 163.6, 153.7, 126.5, 124.3, 123.8, 121.9, 110.8, 109.5, 67.9, 

22.3, 14.5 ppm.
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Allyl 2-methylbenzofuran-3-carboxylate (3e): yellow oil, 74% yield (79.9 mg); 1H NMR (400 

MHz, CDCl3, TMS, 25 oC) δ = 8.01–7.89 (m, 1H), 7.48–7.39 (m, 1H), 7.32–7.25 (m, 2H), 6.09 

(m, 1H), 5.44 (d, J = 17.2 Hz, 1H), 5.32 (d, J = 10.4 Hz, 1H), 4.87 (d, J = 5.6 Hz, 2H), 2.78 ppm 

(s, 3H). 13C{1H} NMR (100 MHz, CDCl3, 25 oC) δ = 164.3, 164.0, 153.8, 132.5, 126.3, 124.5, 

124.0, 121.9, 118.4, 110.9, 109.0, 65.1, 14.6 ppm. IR (KBr) v: 3080, 2929, 2853, 1713, 1595, 

1452, 1396, 1230, 1175, 1079, 996, 748 cm-1, HRMS (TOF, ESI): m/z calcd for C13H12NaO3, [M 

+ Na]+ 239.0684, found 239.0688.

Prop-2-yn-1-yl 2-methylbenzofuran-3-carboxylate (3f): yellow solid, mp: 45–47 oC, 82% yield 

(87.7 mg); 1H NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 7.98 (dd, J = 6.2, 2.7 Hz, 1H), 7.43 (dd, 

J = 6.3, 2.4 Hz, 1H), 7.33–7.26 (m, 2H), 4.96 (d, J = 2.4 Hz, 2H), 2.79 (s, 3H), 2.54 ppm (t, J = 

2.4 Hz, 1H). 13C{1H} NMR (100 MHz, CDCl3, 25 oC) δ = 164.6, 163.7, 153.7, 126.0, 124.6, 

124.1, 121.9, 110.9, 108.5, 77.8, 75.1, 51.9, 14.7 ppm, IR (KBr) v: 3308, 2957, 2925, 1720, 1455, 

1398, 1231, 1178, 1105, 1080, 801, 751 cm-1, HRMS (TOF, ESI): m/z calcd for C13H10NaO3, [M 

+ Na]+ 237.0528, found 237.0545.

2-Methoxyethyl 2-methylbenzofuran-3-carboxylate (3g): yellow oil, 77% yield (90.1 mg); 1H 

NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 8.03–7.93 (m, 1H), 7.49–7.37 (m, 1H), 7.33–7.22 (m, 

2H), 4.54–4.45 (m, 2H), 3.80–3.71 (m, 2H), 3.45 (s, 3H), 2.78 ppm (s, 3H). 13C{1H} NMR (100 

MHz, CDCl3, 25 oC) δ = 164.5, 164.0, 153.8, 126.3, 124.4, 124.0, 122.0, 110.9, 109.0, 70.8, 63.2, 

59.1, 14.6 ppm. IR (KBr) v: 2927, 2890, 1714, 1598, 1477, 1452, 1343, 1286, 1236, 1178, 1085, 

1006, 805, 783, 753 cm-1, HRMS (TOF, ESI): m/z calcd for C13H14NaO4, [M + Na]+ 257.0790, 

found 257.0794.
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2-(Methacryloyloxy)ethyl2-methylbenzofuran-3-carboxylate (3h): brown oil, 75% yield (108 mg); 

1H NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 7.94 (dd, J = 6.1, 3.0 Hz, 1H), 7.46–7.40 (m, 1H), 

7.30–7.25 (m, 2H), 6.18 (s, 1H), 5.60 (s, 1H), 4.61 (dd, J = 6.0, 2.9 Hz, 2H), 4.54 (dd, J = 5.8, 

3.1Hz, 2H), 2.77 (s, 3H), 1.97 ppm (s, 3H). 13C{1H} NMR (100 MHz, CDCl3, 25 oC) δ = 167.3, 

164.2, 153.8, 136.1, 126.3, 126.2, 124.5, 124.0, 121.8, 110.9, 108.8, 62.6, 62.0, 18.4, 14.6 ppm, IR 

(KBr) v: 2958, 2927, 1719, 1453, 1235, 1171, 1088, 1009, 752 cm-1, HRMS (TOF, ESI): m/z 

calcd for C16H16KO5, [M + K]+ 327.0635, found 327.0650.

Methyl 2-ethylbenzofuran-3-carboxylate (3i):25 yellow oil, 75% yield (76.5 mg); 1H NMR (400 

MHz, CDCl3, TMS, 25 oC) δ = 8.01–7.92 (m, 1H), 7.49–7.41 (m, 1H), 7.31–7.26 (m, 2H), 3.95 (s, 

3H), 3.21 (q, J = 7.6Hz, 2H), 1.36 ppm (t, J = 7.6Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3, 25 

oC) δ = 168.6, 165.0, 153.8, 126.3, 124.4, 123.9, 122.0, 111.0, 108.0, 51.5, 21.9, 12.2 ppm.

Methyl 2-isopropylbenzofuran-3-carboxylate (3j):24 light yellow oil, 68% yield (74.1 mg); 1H 

NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 8.00–7.92 (m, 1H), 7.50–7.39 (m, 1H), 7.28 (dd, J = 

10.2, 7.0 Hz, 2H), 4.04 (dd, J = 13.9, 6.9 Hz, 1H), 3.95 (s, 3H), 1.37 ppm (d, J = 6.9 Hz, 6H). 

13C{1H} NMR (100 MHz, CDCl3, 25 oC) δ = 171.7, 165.0, 153.7, 126.3, 124.4, 123.8, 122.1, 

111.1, 107.0, 51.5, 27.7, 20.7 ppm.

Ethyl 2-propylbenzofuran-3-carboxylate (3k):24 yellow oil, 81% yield (93.9 mg); 1H NMR (400 

MHz, CDCl3, TMS, 25 oC) δ = 8.02–7.93 (m, 1H), 7.47–7.40 (m, 1H), 7.29 (dd, J = 8.9, 5.2 Hz, 

2H), 4.41 (q, J = 7.1 Hz, 2H), 3.17 (t, J = 7.5 Hz, 2H), 1.88–1.76 (m, 2H), 1.45 (t, J = 7.1 Hz, 3H), 

1.01 ppm (t, J = 7.4 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3, 25 oC) δ = 167.5, 164.6, 153.8, 

126.4, 124.4, 123.8, 122.0, 111.0, 108.9, 60.4, 30.2, 21.5, 14.5, 14.0 ppm.
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Ethyl 2-(tert-butyl)benzofuran-3-carboxylate (3l): yellow oil, 65% yield (79.9 mg); 1H NMR (400 

MHz, CDCl3, TMS, 25 oC) δ = 7.98–7.91 (m, 1H), 7.44 (dd, J = 6.0, 3.1 Hz, 1H),7. 28 (dt, J = 7.9, 

4.3 Hz, 2H), 4.42 (q, J = 7.1 Hz, 2H), 1.54 (d, J = 5.1 Hz, 9H), 1.46 ppm (t, J = 7.1 Hz, 3H). 

13C{1H} NMR (100 MHz, CDCl3, 25 oC) δ = 172.1, 164.5, 152.3, 127.6, 124.3, 123.7, 122.1, 

111.0, 108.1, 60.6, 35.3, 28.4, 14.5 ppm. IR (KBr) v: 2977, 2934, 2872, 1720, 1554, 1451, 1342, 

1237, 1139, 1065, 750 cm-1. HRMS (TOF, ESI) calcd for: C15H18NaO3, [M + Na]+ 269.1154, 

found 269.1129.

Ethyl 2-(2-ethoxy-2-oxoethyl)benzofuran-3-carboxylate (3m): yellow oil, 60% yield (82.8 mg); 

1H NMR (400 MHz, DMSO-d6, 25 oC ) δ = 7.98–7.90 (m, 1H), 7.70–7.63 (m, 1H), 7.40 (dt, J = 

5.3, 3.4 Hz, 2H), 4.33 (dd, J = 14.8, 7.7 Hz, 4H), 4.13 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H), 

1.19 ppm (t, J = 7.1 Hz, 3H). 13C{1H} NMR (100 MHz, DMSO-d6, 25 oC) δ = 167.9, 163.0, 158.7, 

153.3, 125.4, 125.1, 124.3, 121.5, 111.4, 110.2, 61.0, 60.4, 34.1, 14.0, 13.9 ppm. IR (KBr) v: 

2958, 2926, 2855, 1744, 1715, 1453, 1377, 1238, 1185, 1072, 750 cm-1. HRMS (TOF, ESI) calcd 

for: C15H16NaO5, [M + Na]+ 299.0895, found 299.0886.

Ethyl 2-phenylbenzofuran-3-carboxylate (3n):24 yellow oil, 59% yield (78.5 mg); 1H NMR (400 

MHz, CDCl3, TMS, 25 oC) δ = 8.11–8.06 (m, 1H), 8.03 (dd, J = 6.6, 3.0 Hz, 2H), 7.54 (dd, J = 

5.2, 3.9 Hz, 1H), 7.51–7.46 (m, 3H), 7.39–7.32 (m, 2H), 4.42 (q, J = 7.1 Hz, 2H), 1.41 ppm (t, J = 

7.1 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3, 25 oC) δ = 164.2, 160.9, 154.0, 130.4, 129.8, 

129.7, 128.2, 127.3, 125.3, 124.1, 122.9, 111.3, 109.2, 60.8, 14.4 ppm.

Ethyl 2-(3,4-dimethoxyphenyl)benzofuran-3-carboxylate (3o): light yellow solid, mp: 110–112 

oC, 73% yield (118.9 mg); 1H NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 8.05 (dd, J = 6.3, 2.9 Hz, 

1H), 7.80–7.69 (m, 2H), 7.52 (dd, J = 6.2, 2.9 Hz, 1H), 7.38–7.29 (m, 2H), 6.97 (d, J = 8.3 Hz, 
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1H), 4.43 (q, J = 7.1 Hz, 2H), 3.98 (s, 3H), 3.95 (s, 3H), 1.44 ppm (t, J = 7.1Hz, 3H). 13C{1H} 

NMR (100 MHz, CDCl3, 25 oC) δ = 164.4, 160.8, 153.6, 151.0, 148.6, 127.5, 125.1, 124.0, 123.2, 

122.8, 122.3, 112.7, 111.1, 110.7, 108.2, 60.7, 56.2, 56.1, 14.5 ppm. IR (KBr) v: 2959, 2936, 

2907, 2837, 1710, 1604, 1561, 1509, 1451, 1255, 1219, 1091, 1027, 861, 751 cm-1. HRMS (TOF, 

ESI) calcd for: C19H18NaO5, [M + Na]+ 349.1047, found 349.1065.

Ethyl 2-(thiophen-2-yl)benzofuran-3-carboxylate (3p): yellow oil, 44% yield (59.8 mg); 1H NMR 

(400 MHz, DMSO-d6, 25 oC) δ = 8.25 (dd, J = 3.7, 0.9 Hz, 1H), 7.98–7.94 (m, 1H), 7.92 (dd, J = 

5.0, 0.9 Hz, 1H), 7.65 (d, J = 7.3 Hz, 1H), 7.44–7.34 (m, 2H), 7.28 (dd, J = 4.9, 3.9 Hz, 1H), 4.40 

(q, J = 7.1 Hz, 2H), 1.39 ppm (t, J = 7.1 Hz, 3H). 13C{1H} NMR (100 MHz, DMSO-d6) δ = 163.2, 

154.9, 152.7, 131.7, 131.6, 130.2, 128.2, 126.3, 126.0, 124.6, 122.4, 111.2, 106.6, 60.9, 14.3 ppm, 

IR (KBr) v: 2930, 2853, 1709, 1568, 1451, 1237, 1086, 1058, 748, 709 cm-1. HRMS (TOF, ESI) 

calcd for: C15H12KO3S, [M + K]+ 311.0144, found 311.0150.

N-(4-Methoxyphenyl)-2-methylbenzofuran-3-carboxamide (3q): white solid, mp: 126–128 oC, 

62% yield (87.1 mg); 1H NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 7.73–7.67 (m, 1H), 7.51 (dt, J 

= 9.0, 8.3 Hz, 4H), 7.36–7.29 (m, 2H), 6.92 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H), 2.76 ppm (s, 3H). 

13C{1H} NMR (100 MHz, CDCl3, 25 oC) δ = 162.3, 160.8, 156.9, 153.8, 130.9, 125.5, 124.5, 

123.9, 122.3, 119.1, 114.5, 112.3, 111.7, 55.7, 14.1 ppm. IR (KBr) v: 3297, 2921, 2837, 1643, 

1606, 1515, 1454, 1234, 1177, 1025, 826,745 cm-1, HRMS (TOF, ESI): m/z calcd for 

C17H15NNaO3, [M + Na]+ 304.0950, found 304.0943.

3,4-Dihydrodibenzo[b,d]furan-1(2H)-one (3r):24 yellow oil, 60% yield (55.8 mg); 1H NMR (400 

MHz, CDCl3, TMS, 25 oC) δ = 8.11–8.00 (m, 1H), 7.52–7.42 (m, 1H), 7.36–7.28 (m, 2H), 3.04 (t, 

J = 6.3 Hz, 2H), 2.64–2.56 (m, 2H), 2.28 ppm (dt, J = 12.7, 6.4 Hz, 2H). 13C{1H} NMR (100 
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MHz, CDCl3, 25 oC) δ = 194.9, 170.9, 154.7, 125.1, 124.6, 123.9, 122.0, 116.7, 111.2, 38.0, 24.0, 

22.6 ppm.

3,3-Dimethyl-3,4-dihydrodibenzo[b,d]furan-1(2H)-one (3s):24 yellow oil, 45% yield (48.2 mg), 1H 

NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 8.05 (dd, J = 5.6, 3.2 Hz, 1H), 7.48 (dd, J = 5.9, 3.0 

Hz, 1H), 7.35 – 7.30 (m, 2H), 2.91 (s, 2H), 2.49 (s, 2H), 1.21 ppm (s, 6H). 13C{1H} NMR (100 

MHz, CDCl3, 25 oC) δ = 194.3, 170.1, 155.1, 125.0, 124.6, 123.8, 121.9, 115.5, 111.3, 52.4, 37.9, 

35.4, 28.8 ppm.

1-(2-Ethylbenzofuran-3-yl)propan-1-one (3t):24 yellow oil, 68% yield (68.6 mg); 1H NMR (400 

MHz, CDCl3, TMS, 25 oC) δ = 7.91 (dd, J = 6.0, 2.9 Hz, 1H), 7.47 (dd, J = 6.0, 3.0 Hz, 1H), 

7.35–7.28 (m, 2H), 3.20 (q, J = 7.5 Hz, 2H), 3.00 (q, J = 7.2 Hz, 2H), 1.37 (t, J = 7.5 Hz, 3H), 

1.26 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3, 25 oC) δ = 197.6, 167.7, 153.8, 126.0, 

124.4, 124.0, 121.6, 116.3, 111.3, 36.5, 22.6, 12.1, 7.9 ppm. 

(2-Methylbenzofuran-3-yl)(phenyl)methanone (3u):24 yellow oil, 83% yield (97.9 mg); 1H NMR 

(400 MHz, CDCl3, TMS, 25 oC) δ = 7.82 (d, J = 7.4 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.52–7.45 

(m, 3H), 7.41 (d, J = 7.7 Hz, 1H), 7.30–7.26 (m, 1H), 7.20 (t, J = 7.5 Hz, 1H), 2.55 ppm (s, 3H). 

13C{1H} NMR (100 MHz, CDCl3, 25 oC) δ = 192.3, 162.1, 153.8, 139.5, 132.8, 129.3, 128.7, 

127.1, 124.5, 123.7, 121.5, 117.1, 111.0, 14.8 ppm.

(2-Methylbenzofuran-3-yl)(phenyl)methanol: 26 yellow oil, 90 % yield (64.2 mg); 1H NMR (400 

MHz, CDCl3 TMS, 25 oC) δ = 7.41 (d, J = 7.5 Hz, 2H), 7.31 (dt, J = 12.7, 8.2 Hz, 4H), 7.22 (dd, J 

= 14.4, 7.2 Hz, 1H), 7.17–7.12 (m, 1H), 7.05 (t, J = 7.5 Hz, 1H), 5.96 (s, 1H), 2.51 (d, J = 18.3 

Hz, 1H), 2.38 ppm (s, 3H).13C{1H} NMR (100 MHz, CDCl3, TMS, 25 oC) δ = 154.1, 152.2, 

142.6, 128.5, 127.5, 127.4, 126.0, 123.5, 122.5, 120.3, 117.0, 110.7, 68.9, 12.6 ppm.
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Ethyl benzofuran-3-carboxylate (3v):13(a) yellow oil, 40% yield (38.0 mg); 1H NMR: (400 MHz, 

DMSO-d6, 25 oC) δ = 8.75 (s, 1H), 7.98 (dd, J = 6.2, 2.4 Hz, 1H), 7.71 (dd, J = 6.6, 1.9 Hz, 1H), 

7.47 – 7.37 (m, 2H), 4.35 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (100 MHz, 

DMSO-d6, 25 oC) δ = 163.1, 155.4, 152.8, 126.0, 124.8, 124.6, 121.9, 114.2, 112.4, 60.8, 14.7.

Methyl 2-methyl-5-(4-oxobutyl)furan-3-carboxylate (4a): light brown oil, 88% yield (92.4 mg); 

1H NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 9.77 (s, 1H), 6.26 (s, 1H), 3.80 (s, 3H), 2.62 (t, J = 

7.3 Hz, 2H), 2.55–2.47 (m,5H), 1.96 (m, J = 7.3Hz, 2H). 13C{1H} NMR (100 MHz, CDCl3, 25 oC) 

δ = 201.8, 164.7, 158.2, 152.9, 113.7, 106.3, 51.3, 43.0, 27.0, 20.4, 13.8 ppm. IR (KBr) v: 2953, 

2723, 1719, 1585, 1442, 1370, 1228, 1087, 1031, 779 cm-1, HRMS (TOF, ESI) calcd for: 

C11H14NaO4, [M + Na]+ 233.0790, found 233.0792.

Methyl 4-hydroxy-2-methyl-4,5,6,7-tetrahydrobenzofuran-3-carboxylate (4b): yellow oil, 82% 

yield (86.1 mg); 1H NMR: (400 MHz, DMSO-d6, 25 oC) δ = 4.77 (d, J = 3.5 Hz, 1H), 4.55 (d, J = 

4.3 Hz, 1H), 3.75 (s, 3H), 2.51 (d, J = 1.7 Hz, 2H), 2.48 (s, 3H), 1.96 – 1.86 (m, 1H), 1.76 – 1.68 

(m, 2H), 1.65 – 1.58 (m, 1H). 13C{1H} NMR (100 MHz, DMSO-d6, 25 oC) δ = 164.8, 157.6, 151.1, 

120.5, 112.4, 60.9, 51.7, 31.9, 22.7, 17.9, 14.0 ppm. IR (KBr) v: 3458, 2949, 2931, 2857, 1718, 

1690, 1455, 1272, 1091 cm-1, HRMS (TOF, ESI) calcd for: C11H14NaO4, [M + Na]+ 233.0790, 

found 233.0786. 

1-(4-Methoxyphenyl)pentane-1,3-dione (a mixture of enol and ketone form) (2b):27 pink oil, 82% 

yield (3.37g); 1H NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 16.30 (s, 0.8H), 7.93 (d, J = 8.8 Hz, 

0.4 H), 7.87 (d, J = 8.8 Hz, 1.6 H), 6.94 (d, J = 8.8 Hz, 2H), 6.12 (s, 0.8 H), 4.04 (s, 0.4 H), 3.86 

(s, 3H), 2.61 (q, J = 7.2 Hz, 0.4 H), 2.44 (q, J = 7.5 Hz, 1.6 H), 1.21 (t, J = 7.5 Hz, 2.4 H), 1.07 
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ppm (t, J = 7.2 Hz, 0.6 H). 13C{1H} NMR (100 MHz, CDCl3 TMS, 25 oC) δ = 196.0, 184.1, 164.2, 

163.2, 131.3, 129.2, 127.8, 114.1, 114.0, 94.6, 55.7, 55.6, 53.8, 36.7, 32.0, 10.1, 7.7 ppm.

(2-Ethylbenzofuran-3-yl)(4-methoxyphenyl)methanone (3w):15(b) light yellow oil, 87% yield (1.22 

g); 1H NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 7.85 (d, J = 8.7 Hz, 2H), 7.48 (d, J = 8.2 Hz, 

1H), 7.40 (d, J = 7.8 Hz, 1H), 7.28 (dd, J = 10.9, 3.7 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 

8.8 Hz, 2H), 3.89 (s, 3H), 2.91 (q, J = 7.5Hz, 2H), 1.34 (t, J = 7.5 Hz, 3H). 13C{1H} NMR (100 

MHz, CDCl3, 25 oC) δ = 190.6, 165.5, 163.6, 153.8, 132.0, 131.8, 127.3, 124.3, 123.5, 121.4, 

116.3, 113.8, 111.1, 55.6, 21.9, 12.5 ppm.

(2-Ethylbenzofuran-3-yl)(4-hydroxyphenyl)methanone (6a):28 light yellow solid, mp: 122–124 oC, 

85% yield (981.5 mg); 1H NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 7.79 (d, J = 8.6 Hz, 2H), 

7.48 (d, J = 8.2 Hz, 1H), 7.41 (d, J = 7.7 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.19 (t, J = 7.4 Hz, 1H), 

6.93 (d, J = 8.4 Hz, 2H), 2.91 (q, J = 7.5 Hz, 2H), 1.33 ppm (t, J = 7.5 Hz, 3H), 13C{1H} NMR 

(100 MHz, CDCl3, 25 oC) δ = 191.8, 166.0, 161.1, 153.8, 132.3, 131.4, 127.2 124.5, 123.6, 121.4, 

116.3, 115.6, 111.1, 22.0, 12.5 ppm.

(3,5-Dibromo-4-hydroxyphenyl)(2-ethylbenzofuran-3-yl)methanone (7a):16(a) white solid, mp: 

150–152 oC, 98% yield (1.52 g); 1H NMR (400 MHz, CDCl3,TMS, 25 oC) δ = 7.99 (s, 2H), 7.50 

(d, J = 8.2 Hz, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.31 (t, J = 7.2 Hz, 1H), 7.26–7.22 (m, 1H), 2.91 (q, 

J = 7.5 Hz, 2H), 1.36 ppm (t, J = 7.5 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3, TMS, 25 oC) δ = 

188.0, 166.6, 153.9, 153.3, 133.9, 133.6, 126.7, 124.8, 124.0, 121.1, 115.5, 111.3, 110.2, 22.1, 

12.4 ppm.

1-(4-Methoxyphenyl)heptane-1,3-dione (a mixture of enol and ketone form) (2c):28 pink oil, 80 % 

yield (3.74g); 1H NMR (400 MHz, DMSO-d6, 25 oC) δ = 16.58 (s, 0.8 H), 7.92 (t, J = 8.7 Hz, 2H), 

Page 24 of 35

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7.02 (d, J = 8.9 Hz, 2H), 6.40 (s, 0.8 H), 4.17 (s, 0.4 H), 3.82 (d, J = 3.6 Hz, 3H), 2.55 (t, J = 7.3 

Hz, 0.4 H), 2.41–2.34 (m, 1.6 H), 1.56 (dt, J = 15.1, 7.5 Hz, 1.6 H), 1.44 (dd, J = 15.0, 7.4 Hz, 0.4 

H), 1.35–1.20 (m, 2H), 0.89–0.80 ppm (m, 3H). 13C{1H} NMR (100 MHz, DMSO-d6, 25 oC) δ = 

205.4, 194.8, 193.3, 183.6, 163.4, 162.9, 130.8, 129.4, 129.1, 126.8, 114.0, 113.8, 95.1, 55.4, 55.3, 

52.7, 42.4, 37.6, 27.5, 25.0, 21.8, 21.6, 13.7, 13.6 ppm.

2-Butylbenzofuran-3-yl)(4-methoxyphenyl)methanone (3x):16(b) light yellow oil, 85% yield (1.3 g); 

1H NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 7.84 (d, J = 8.8 Hz, 2H), 7.47 (d, J = 8.2 Hz, 1H), 

7.36 (d, J = 7.3 Hz, 1H), 7.26 (dd, J = 9.4, 5.9 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.8 

Hz, 2H), 3.89 (s, 3H), 2.91 (t, J = 7.6 Hz, 2H), 1.80–1.71 (m, 2H), 1.36 (dd, J = 15.0, 7.4 Hz, 2H), 

0.89 ppm (t, J = 7.4 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3, 25 oC) δ = 190.7, 164.8, 163.6, 

153.8, 132.1, 131.8, 127.4, 124.3, 123.4, 121.4, 116.9, 113.8, 111.1, 55.6, 30.3, 28.0, 22.5, 13.8 

ppm

(2-Butylbenzofuran-3-yl)(4-hydroxyphenyl)methanone (8a):18(a) light yellow solid, mp: 120–122 

oC, 83% yield (1.04 g); 1H NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 10.46 (s, 1H), 7.68 (d, J = 

8.6 Hz, 2H), 7.62 (d, J = 8.1 Hz, 1H), 7.33 (dd, J = 15.7, 7.9 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 

6.89 (d, J = 8.6 Hz, 2H), 2.80 (t, J = 7.5 Hz, 2H), 1.65 (dt, J = 15.0, 7.5 Hz, 2H), 1.23 (dd, J = 

14.7, 7.3 Hz, 2H), 0.80 (t, J = 7.4 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3, 25 oC) δ = 189.3, 

163.1, 162.2, 153.0, 131.6, 129.7, 126.8, 124.5, 123.6, 120.7, 116.4, 115.3, 111.1, 29.5, 27.1, 21.6, 

13.4 ppm.

(2-Butylbenzofuran-3-yl)(4-hydroxy-3,5-diiodophenyl)methanone (9a):29 brown solid, mp: 

145–147 oC, 72% yield (1.38 g); 1H NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 8.10 (s, 2H), 7.62 

(d, J = 8.1 Hz, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.33 (dd, J = 11.3, 4.1 Hz, 1H), 7.26 (t, J = 7.4 Hz, 
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1H), 2.82–2.70 (m, 2H), 1.74–1.63 (m, 2H), 1.26 (dt, J = 14.7, 7.4 Hz, 2H), 0.83 (t, J = 7.3 Hz, 

3H). 13C{1H} NMR (100MHz, CDCl3, 25 oC) δ = 187.5, 165.7, 157.2, 153.7, 140.7, 135.2, 126.6, 

124.6, 123.8, 121.0, 115.9, 111.2, 82.1, 30.1, 28.2, 22.6, 13.8 ppm.

(2-Butylbenzofuran-3-yl)(4-(2-(diethylamino)ethoxy)-3,5-diiodophenyl)methanone (10a):18(a) 

light brown solid, mp: 100–102 oC, 91% yield (1.48 g); 1H NMR (400 MHz, CDCl3, TMS, 25 oC) 

δ = 8.21 (s, 2H), 7.49 (d, J = 8.1 Hz, 1H), 7.42 (d, J = 7.8 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.27 – 

7.22 (m, 1H), 4.15 (t, J = 6.7 Hz, 2H), 3.10 (t, J = 6.7 Hz, 2H), 2.87–2.82 (m, 2H), 2.73 (q, J = 7.1 

Hz, 4H), 1.82–1.73 (m, 2H), 1.36 (dd, J = 15.0, 7.4 Hz, 2H), 1.12 (t, J = 7.1 Hz, 6H), 0.92 (t, J = 

7.3 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3, 25 oC) δ = 187.9, 166.3, 161.6, 153.8, 140.8, 

138.4, 126.5, 124.8, 124.0, 121.2, 116.0, 111.2, 91.0, 71.5, 52.2, 47.8, 30.2, 28.3, 22.7, 13.8, 12.1 

ppm

Methyl 4-(1H-indol-3-yl)-2-methyl-4,5,6,7-tetrahydrobenzofuran-3-carboxylate (11a): light 

yellow oil, 80% yield (74.1 mg); 1H NMR: (400 MHz, DMSO-d6, 25 oC) δ = 10.65 (s, 1H), 7.54 

(d, J = 7.8 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.06 (t, J = 7.2 Hz, 1H), 6.98 (t, J = 7.1 Hz, 1H), 

6.58 (d, J = 1.8 Hz, 1H), 4.51 (s, 1H), 3.37 (s, 3H), 2.67 – 2.54 (m, 2H), 2.50 (s, 3H), 1.89 – 1.86 

(m, 2H), 1.70 – 1.67 (m, 2H). 13C{1H} NMR (100 MHz, DMSO-d6, 25 oC) δ = 163.9, 157.1, 149.7, 

136.5, 126.2, 122.7, 120.7, 119.3, 118.9, 118.2, 118.1, 112.1, 111.4, 50.6, 29.7, 29.0, 22.3, 18.0, 

13.8 ppm. IR (KBr) v: 3411, 2934, 2853, 1664, 1554, 1423, 1357, 742 cm-1, HRMS (TOF, ESI) 

calcd for: C19H19NO3, [M + H]+ 310.1443, found 310.1444. 

Methyl 2-methyl-4-(1-methyl-1H-indol-3-yl)-4,5,6,7-tetrahydrobenzofuran-3-carboxylate (11b):  

yellow oil, 71% yield (68.8 mg); 1H NMR: (400 MHz, DMSO-d6, 25 oC) δ = 7.57 (d, J = 7.8 Hz, 

1H), 7.34 (d, J = 8.1 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 7.02 (t, J = 7.4 Hz, 1H), 6.60 (s, 1H), 4.52 
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(s, 1H), 3.66 (s, 3H), 3.39 (s, 3H), 2.66 – 2.54 (m, 2H), 2.51 (s, 3H), 1.88 – 1.83 (m, 2H), 1.69 – 

1.66 (m, 2H). 13C{1H} NMR (100 MHz, DMSO-d6, 25 oC) δ = 163.8, 157.1, 149.7, 136.8, 127.2, 

126.5, 120.9, 119.2, 118.4, 118.2, 118.1, 112.1, 109.5, 50.6, 32.1, 29.7, 28.8, 22.2, 17.8, 13.8 ppm. 

IR (KBr) v: 2927, 2853, 1715, 1467, 1444, 1259, 1090, 741 cm-1, HRMS (TOF, ESI) calcd for: 

C20H21NO3, [M + H]+ 324.1600, found 324.1595.

Methyl 2-methyl-4-(2,4,5-trimethoxyphenyl)-4,5,6,7-tetrahydrobenzofuran-3-carboxylate (12a): 

light yellow oil, 75% yield (81.0 mg); 1H NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 6.55 (s, 1H), 

6.32 (s, 1H), 4.55 (s, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.66 (s, 3H), 3.46 (s, 3H), 2.61 (dd, J = 23.5, 

12.1 Hz, 2H), 2.55 (s, 3H), 1.96 – 1.85 (m, 1H), 1.75 – 1.72 (m, 3H). 13C{1H} NMR (100 MHz, 

CDCl3, 25 oC) δ = 164.7, 158.2, 151.0, 150.9, 147.6, 142.4, 126.3, 118.8, 113.9, 112.5, 97.8, 57.1, 

56.6, 56.2, 50.5, 31.5, 30.4, 23.0, 18.9, 14.0. IR (KBr) v: 2937, 2849, 1711, 1508, 1439, 1315, 

1206, 1090, 1035, 816 cm-1, HRMS (TOF, ESI) calcd for: C20H24NaO6, [M + Na]+ 383.1471, 

found 383.1464.

Methyl 4-(2,2-diphenylvinyl)-2-methyl-4,5,6,7-tetrahydrobenzofuran-3-carboxylate (13a): yellow OO OMePhPh

oil, 52% yield (58.0 mg); 1H NMR (400 MHz, CDCl3, TMS, 25 oC) δ = 7.43 – 7.37 (m, 2H), 7.33 

(d, J = 7.2 Hz, 3H), 7.25 – 7.14 (m, 5H), 6.02 (d, J = 9.5 Hz, 1H), 3.82 – 3.75 (m, 1H), 3.56 (s, 

3H), 2.60 (d, J = 14.9 Hz, 2H), 2.52 (s, 3H), 1.99 – 1.89 (m, 1H), 1.82 – 1.76 (m, 3H). 13C{1H} 

NMR (100 MHz, CDCl3, 25 oC) δ = 165.1, 158.0, 149.2, 143.3, 140.4, 140.1, 134.0, 130.0, 128.1, 

128.0, 127.5, 127.0, 126.8, 120.1, 112.7, 51.1, 32.6, 31.2, 22.9, 19.8, 13.9. IR (KBr) v: 2927, 2855, 

1717, 1662, 1444, 1216, 1088, 765, 701 cm-1, HRMS (TOF, ESI) calcd for: C25H24O3, [M + H]+ 

373.1804, found 373.1802.
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