Liebigs Ann. Chem. 1986, 242-250

# Zur absoluten Konfiguration der Enantiomere der Antimuskarinika Procyclidin und Tricyclamoliodid: Röntgenstrukturanalyse von (R)-1-[3-Cyclohexyl-3-hydroxy-3-phenylpropyl]-1-methylpyrrolidiniumiodid

Reinhold Tacke<sup>\*a</sup>, Haryanto Linoh<sup>a</sup>, Dietmar Schomburg<sup>b</sup>, Ludger Ernst<sup>b</sup>, Ulrich Moser<sup>c</sup>, Ernst Mutschler<sup>c</sup> und Günter Lambrecht<sup>d</sup>

Institut für Anorganische und Analytische Chemie der Technischen Universität Braunschweig<sup>a</sup>, Hagenring 30, D-3300 Braunschweig Gesellschaft für Biotechnologische Forschung mbH<sup>b</sup>, Mascheroder Weg 1, D-3300 Braunschweig-Stöckheim Pharmakologisches Institut für Naturwissenschaftler, Universität Frankfurt<sup>c</sup>, Theodor-Stern-Kai 7, D-6000 Frankfurt A. Nattermann & Cie. GmbH, Pharmakologische Forschung<sup>d</sup>, Nattermannallee 1, D-5000 Köln 30

Eingegangen am 4. Juli 1985

Durch Röntgenstrukturanalyse von (R)-1-[3-Cyclohexyl-3-hydroxy-3-phenylpropyl]-1-methylpyrrolidiniumiodid [(R)-Tricyclamoliodid, (R)-2a] wurden die absoluten Konfigurationen der Enantiomere der Antimuskarinika Procyclidin (1a) und Tricyclamoliodid (2a) bestimmt. (R)-1a und (R)-2a sind etwa 380- bzw. 90mal stärker antimuskarinisch wirksam (isoliertes Meerschweinchen-Ileum) als die entsprechenden (S)-konfigurierten Enantiomere.

### On the Absolute Configuration of the Enantiomers of the Antimuscarinic Agents Procyclidine and Tricyclamol Iodide: X-Ray Structural Analysis of (R)-1-[3-Cyclohexyl-3-hydroxy-3-phenylpropyl]-1-methylpyrrolidinium Iodide

The absolute configurations of the antimuscarinic agents procyclidine (1a) and tricyclamol iodide (2a) were established by X-ray structural analysis of (R)-1-[3-cyclohexyl-3-hydroxy-3-phenyl-propyl]-1-methylpyrrolidinium iodide [(R)-tricyclamol iodide, (R)-2a]. The antimuscarinic potency of (R)-1a and (R)-2a is about 380 and 90 times, respectively, greater than that of the corresponding (S)-configurated enantiomers (guinea-pig ileum).

Die in Chloroformlösung linksdrehenden Enantiomere der Antimuskarinika Procyclidin (1a) und Tricyclamoliodid (2a) besitzen zu den Muskarinrezeptoren des Meerschweinchen-Ileums eine größere Affinität als die jeweiligen rechtsdrehenden Antipoden<sup>1,2,9)</sup>: Die antimuskarinische Potenz der linksdrehenden Enantiomere ist etwa 380- bzw. 90mal größer als die der rechtsdrehenden. Ein qualitativ analoges Verhalten wurde auch für die Antipoden des Sila-Procyclidins (1b) und des Sila-Tricyclamoliodids (2b) beobachtet  ${}^{3,4,9,22}$ .

Die absolute Konfiguration der Enantiomere der Silanole 1b und 2b konnte kürzlich auf der Grundlage der Röntgenstrukturanalyse von (-)-Sila-Procyclidin [(-)-1b] auf-

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986 0170-2041/86/0202-0242 \$ 02.50/0 geklärt werden<sup>3)</sup>, welchem die (*R*)-Konfiguration zukommt; die absolute Konfiguration von (-)-2b und (+)-2b wurde durch chemische Korrelation bestimmt<sup>4)</sup> [Quartärisierung von (-)-1b mit CH<sub>3</sub>I zu (-)-2b].



Die absolute Konfiguration der Antipoden der Kohlenstoff-Analoga 1a und 2a wurde dagegen unseres Wissens bisher nicht durch physikalische Methoden direkt bestimmt. In der referierenden Literatur<sup>5)</sup> wird dem stärker antimuskarinisch wirksamen Enantiomer (-)-1a allerdings (R)-Konfiguration zugeordnet. Diese Zuordnung basiert auf dem Vergleich mit den bei anderen Antimuskarinika dieses Strukturtyps gefundenen Stereostruktur-Wirkungs-Beziehungen (vgl. z. B. Lit.<sup>6)</sup>). Eine experimentell zweifelsfreie Festlegung der absoluten Konfigurationen der Enantiomere von 1a und 2a gelang uns nun auf der Grundlage der Röntgenstrukturanalyse des linksdrehenden Tricyclamoliodids [(-)-2a].

#### Darstellung und Eigenschaften der Enantiomere von 1a und 2a

Die Verbindungen (-)-1a, (+)-1a, (-)-2a und (+)-2a wurden in Anlehnung an die Patentliteratur<sup>7</sup> dargestellt und hinsichtlich ihrer physikalischen (Tab. 1) und pharmakologischen (Tab. 2) Eigenschaften erneut untersucht. Die Enantiomere des Procyclidins [(-)-1a und (+)-1a] wurden - ausgehend von rac-1a<sup>8)</sup> - mit Hilfe von D-(-)bzw. L-(+)-Weinsäure getrennt und dann mit Methyliodid unter Erhaltung der absoluten Konfiguration zu den Antipoden des Tricyclamolidodids [(-)-2a und (+)-2a] umgesetzt (vgl. hierzu den experimentellen Teil). Dabei wurde besonderer Wert auf die Herstellung von Präparaten hoher Enantiomerenreinheit gelegt, indem auf der Stufe von (-)-1a und (+)-1a bis zur Konstanz der physikalischen (Tab. 1) und pharmakologischen Daten (Tab. 2) sorgfältig umkristallisiert wurde. Mittels <sup>13</sup>C-NMR-spektroskopischer Untersuchungen unter Verwendung des chiralen Verschiebungsreagenzes Tris-[3-(heptafluorbutyryl)-d-camphorato]europium(III) [Eu(hfc)<sub>3</sub>] konnte gezeigt werden, daß die Enantiomere von 1a eine Enantiomerenreinheit von mehr als 96% e.e. besaßen, also maximal mit 2% des jeweils anderen Antipoden verunreinigt waren; für die Enantiomere von 2a schließen wir auf die gleiche Reinheit. Die tatsächlichen Enantiomerenreinheiten von (-)-1a, (+)-1a, (-)-2a und (+)-2a dürften jedoch in Anbetracht der gemessenen pharmakologischen Stereoselektivitätsindices (Tab. 2) deutlich größer gewesen sein; der NMR-spektroskopisch bestimmte Reinheitsgrad von mehr als 96% e.e. entspricht einer methodisch bedingten Mindestreinheit (Grenze der Nachweisempfindlichkeit). Abgesehen von den Schmelzpunkten der Enantiomere des Tricyclamoliodids ergab sich eine relativ gute Übereinstimmung zwischen den von uns bestimmten und den in der Literatur angegebenen physikalischen Daten (vgl. Tab. 1).

Die Bestimmung der antimuskarinischen Aktivitäten der Enantiomere von 1a und 2a erfolgte an der isolierten Longitudinalmuskulatur des Ileums und am elektrisch gereiz-

ten linken Atrium des Meerschweinchens unter Verwendung von Carbachol als Agonist. In Abb. 1 und Tab. 2 sind die Ergebnisse dieser Untersuchungen zusammengestellt.



Abb. 1. Affinitäten (pA<sub>2</sub>-Werte) der Enantiomere von Procyclidin (1a) und Tricyclamoliodid (2a) zu den postsynaptischen Muskarinrezeptoren der Longitudinalmuskulatur des Ileums und zu den postsynaptischen Rezeptoren der Atriummuskulatur des Meerschweinchens

Die Enantiomere von **1a** und **2a** verhalten sich an den postsynaptischen Muskarinrezeptoren des Ileums und der Atriummuskulatur als Antagonisten gegenüber dem Agonisten Carbachol. Sie erfüllen alle üblichen Kriterien für einen kompetitiven Antagonismus in einem weiten Konzentrationsbereich<sup>10–14</sup>).

Wie die Daten in Abb. 1 und Tab. 2 zeigen, sind die beiden (*R*)-konfigurierten Verbindungen sowohl am Ileum als auch am Atrium wesentlich stärker antimuskarinisch wirksam als die (*S*)-Antipoden. Die Stereoselektivitätsindices von 385 bzw. 89 am Ileum stehen dabei im Einklang mit Literaturdaten<sup>1,2)</sup>. Auch an zentralen Muskarinrezeptoren fanden *Barlow* und Mitarbeiter<sup>15)</sup> eine hohe Stereoselektivität für die Enantiomere von **1a** und **2a**, ohne allerdings deren absolute Konfiguration zu kennen.

Mit  $pA_2$ -Werten von 8.04 und 8.17 besitzen das (*R*)-konfigurierte Procyclidin [(*R*)-1a] bzw. Tricyclamoliodid [(*R*)-2a] eine signifikant höhere Affinität zu den Muskarinrezeptoren des Ileums im Vergleich zu den Rezeptoren der Atriummuskulatur ( $pA_2 = 7.04$  bzw. 7.65; Atrium/Ileum-Quotient = 10 bzw. 3.3). Dies deutet darauf hin, daß die Muskarinrezeptoren dieser beiden Organe keine einheitliche Population darstellen, sondern als Subtypen charakterisiert werden können. Diese Heterogenität der Muskarinrezeptoren konnten wir auch schon in anderen Untersuchungen mit Verbindungen vom Typ des Procyclidins wahrscheinlich machen<sup>9,13,14,16-20</sup>).

## Röntgenstrukturanalyse von (R)-(-)-2a

Die absolute Konfiguration von (-)-**2a** wurde röntgenstrukturanalytisch auf der Grundlage eines statistischen *R*-Wert-Vergleichs (Hamilton-Test<sup>23</sup>) ermittelt und hochsignifikant als (*R*)-Konfiguration bestimmt. Die Bindungslängen und -winkel (Tab. 3) liegen in den üblicherweise gefundenen Bereichen.

Während bei ähnlichen Verbindungen, wie zum Beispiel Pridinol (1,1-Diphenyl-3piperidino-1-propanol) und Procyclidin-hydrochlorid, die Konformation an der zentralen Ethylengruppierung  $O - CH_2CH_2 - N$  weitgehend durch Wasserstoffbrückenbindungen festgelegt wird, bedingt die in (-)-**2a** beobachtete  $O - H \cdots I$ -Brücke keine bestimmte Konformation. Die beim Pridinol beobachtete  $O - H \cdots N$ -Wasserstoffbrücke führt zu einer gestaffelt-synclinalen Konformation (Torsionswinkel  $62.0^{\circ}$ )<sup>24)</sup>. Dagegen wird beim Procyclidin-hydrochlorid, das Wasserstoffbrücken zwischen der OH- sowie NH-Gruppe des Kations und demselben Chlorid-Anion bildet, die sterisch ungünstige ekliptisch-anticlinale Konformation eingenommen (Torsionswinkel  $-120.8^{\circ}$ )<sup>25)</sup>. Wie aus Abb. 2 ersichtlich, liegt die entsprechende Ethylengruppierung in (-)-2a dagegen in der sterisch günstigen gestaffelt-antiperiplanaren Konformation vor (Torsionswinkel C(1) - C(2) - C(3) - N:  $-166.9^{\circ}$ ). Es wird eine schwache Wasserstoffbrücke zwischen der Hydroxygruppe und dem Anion beobachtet [vgl. den beobachteten H···I-Abstand von 275 pm mit der Summe der van-der-Waals-Radien von 318 pm; in (-)-2a: O···I 360 pm, Winkel O – H···I 164°].

Der Cyclohexylring von (-)-2a liegt in der erwarteten Sesselkonformation, der Pyrrolidiniumring in der Briefumschlagform vor, wobei das N-Atom außerhalb jener Ebene liegt, die von den vier C-Atomen des Ringes gebildet wird. Die *N*-Methylgruppe befindet sich in axialer Position. Die beste Ebene des Cyclohexylringes und die Phenylringebene schließen einen Diederwinkel von 82.1° ein.

Mit der Bestimmung der absoluten Konfiguration der Enantiomere des Tricyclamoliodids (2a) durch Röntgenstrukturanalyse von (-)-(R)-2a ist auch die absolute Konfiguration der Antipoden des Procyclidins (1a) festgelegt; sie ergibt sich durch chemische Korrelation auf der Grundlage der unter Konfigurationserhaltung ablaufenden Quartärisierung von 1a zu 2a. Durch optische Korrelation mit den Enantiomeren von 1a erscheint dann auch eine Konfigurationszuordnung für die Antipoden des mit 1a strukturverwandten Antimuskarinikums Trihexyphenidyl (3) zulässig: Dem in Chloroformlösung linksdrehenden und im Vergleich zum rechtsdrehenden Enantiomer stärker antimuskarinisch wirksamen Antipoden<sup>2)</sup> kommt demnach (R)-Konfiguration zu.



Unser Dank gilt der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung dieser Arbeit. Fräulein M. Wagner danken wir für die sorgfältige Durchführung der pharmakologischen Untersuchungen.

#### **Experimenteller** Teil

Schmelzpunkte (unkorrigiert): Kofler-Heiztischmikroskop (Fa. Reichert). – Spezifische Drehungen: Polarimeter 241 (Fa. Perkin-Elmer).

(*IRS*)-*I*-*Cyclohexyl-I-phenyl-3-pyrrolidino-1-propanol* (*rac*-Procyclidin, *rac*-**1**a) wurde in Anlehnung an Lit.<sup>8</sup>) dargestellt.

(R)-(-)-1-Cyclohexyl-1-phenyl-3-pyrrolidino-1-propanol [(R)-(-)-Procyclidin, (R)-(-)-1a]: Die Herstellung erfolgte in Anlehnung an Lit.<sup>7</sup>). Eine Mischung aus 40.0 g (0.139 mol) rac-1a, 21.0 g (0.14 mol) D-(-)-Weinsäure und 145 ml Ethanol wurde ca. 10 min unter Rückfluß gerührt und die resultierende Lösung heiß filtriert. Dann ließ man langsam auf Raumtemp. abkühlen,

|                                                                                                                        |                                                                                             | Tab. 1. Scl                                                                                      | hmelzpunkte und s <sub>i</sub>            | pezifische Dre                  | chungen der Enant                                                     | iomere von 1a                                   | und 2a                                                                           |                                         |                                                   |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------|
|                                                                                                                        | Sc                                                                                          | chmp. [°C]                                                                                       | [α] <sup>25</sup> <sub>546</sub> (in CHCI | 3)a) [(                         | x] <sup>20</sup> <sub>546</sub> (in CHCl <sub>3</sub> ) <sup>a)</sup> | $[\alpha]_{546}^{20}$ (in                       | C <sub>2</sub> H <sub>5</sub> OH) <sup>b)</sup>                                  | [α] <sup>20</sup> <sub>546</sub> (ir    | H <sub>2</sub> O)¢)                               |
| (R)-(-)-(R)-(-)-(R)-(-)-(R)-(-)-(R)-(-)-(R)-(-)-(R)-(-)-(R)-(-)-(R)-(-)-(R)-(-)-(R)-(-)-(R)-(-)-(R)-(-)-(R)-(-)-(R)-(R | 11a<br>2a<br>11<br>2a                                                                       | (06 - 107 <sup>d)</sup><br>(06 - 107<br>(64 - 165 <sup>e)</sup><br>64 - 165 <sup>e)</sup>        | -48 (c = 0.1)<br>+ 48 (c = 0.1)           | 5)                              | $-25 (c = 0.4)^{fj} + 25 (c = 0.4)^{gj}$                              | - 28 ( <i>c</i><br>+ 28 ( <i>c</i>              | = 0.4) <sup>h)</sup><br>= 0.4)                                                   | - 4 (c<br>+ 4 (c                        | = 0.4) <sup>i)</sup><br>= 0.4)                    |
| a) Das verwen<br>100 ml CHCl <sub>3</sub><br>g) Lit. <sup>1</sup> ): +25                                               | dete Chlorofor:<br>). – <sup>b</sup> ) Ethanol<br>. – <sup>h</sup> ) Lit. <sup>7</sup> ): – | m (LiChrosolv <sup>®</sup><br>l, p. a., absolut ()<br>- 26. – <sup>1)</sup> Lit. <sup>7</sup> ): | , Merck) wurde voi<br>Riedel-de Haën). –  | r der Messung<br>© Destillierte | säulenchromatogr<br>ss Wasser. – d) Lit.                              | aphisch mittels $7$ : 105 – 106 °C              | Al <sub>2</sub> O <sub>3</sub> (Aktivität I<br>C. – e) Lit. <sup>1</sup> ): 180° | ) gereinigt (<br>C. – <sup>f)</sup> Lii | 40 g Al <sub>2</sub> O <sub>3</sub> /<br>.1): -25 |
|                                                                                                                        |                                                                                             |                                                                                                  |                                           |                                 |                                                                       |                                                 |                                                                                  |                                         |                                                   |
| Tab. 2                                                                                                                 | . Pharmakolog<br>Lon                                                                        | ische Parameter<br>gitudinalmuskul                                                               | für den Antagonis<br>atur des Ileums un   | smus zwischer<br>d am elektrisc | l Carbachol und de<br>th gereizten linken                             | en Enantiomere<br>Atrium des Me                 | an von <b>1a</b> und <b>2a</b> seerschweinchens                                  | an der isoli                            | arten .                                           |
| Varhinduna                                                                                                             |                                                                                             | Ileum                                                                                            |                                           |                                 |                                                                       |                                                 | Atrium                                                                           |                                         |                                                   |
|                                                                                                                        | pA2-Wert                                                                                    | K <sub>D</sub> -Wert<br>[mol/1]                                                                  | Steigung <sup>a)</sup>                    | $N SI^{b}$                      | pA2-Wert                                                              | K <sub>D</sub> -Wert<br>[mol/1]                 | Steigung <sup>a)</sup>                                                           | N S                                     | <sup>b)</sup>                                     |
| (R)-(-)-1a<br>(S)-(+)-1a                                                                                               | $8.04 \pm 0.04$<br>5.46 $\pm 0.03$                                                          | $9.08 \cdot 10^{-9}$<br>$3.50 \cdot 10^{-6}$                                                     | $-0.92 \pm 0.07$<br>$-1.03 \pm 0.11$      | 12 385<br>9 385                 | $7.04 \pm 0.03$<br>5.51 $\pm 0.07$                                    | $9.12 \cdot 10^{-8}$<br>$3.09 \cdot 10^{-6}$    | $-1.02 \pm 0.08$<br>$-0.94 \pm 0.12$                                             | 12<br>9<br>3                            | 4 10 <sup>d)</sup><br>0.9                         |
| (R)-(-)-2a<br>(S)-(+)-2a                                                                                               | $8.17 \pm 0.02$<br>$6.22 \pm 0.04$                                                          | $6.76 \cdot 10^{-9}$<br>$6.03 \cdot 10^{-7}$                                                     | $-0.99 \pm 0.05$<br>$-0.98 \pm 0.10$      | $^{12}_{9}$ $^{89}_{89}$        | $7.65 \pm 0.05$<br>$5.97 \pm 0.02$                                    | $\frac{2.24 \cdot 10^{-8}}{1.07 \cdot 10^{-6}}$ | $-1.10 \pm 0.15$<br>$-1.07 \pm 0.09$                                             | 12<br>9 4                               | 3 3.3 <sup>d)</sup><br>1.8                        |
| <sup>a)</sup> Steigung ir.<br>K <sub>D</sub> (Atrium)/1                                                                | der <i>Arunlaksl</i><br>K <sub>D</sub> (Ileum). – d                                         | hana-Schild-Dar<br>p < 0.05.                                                                     | stellung <sup>10–12)</sup> . –            | b) Stereoselek                  | tivitätsindex SI =                                                    | $K_{\mathrm{D}}(S)/K_{\mathrm{D}}(R)$           | ¢) Atrium/Ile                                                                    | eum-Quotie                              | at $AI-Q =$                                       |

246

versetzte mit Impfkristallen (gebildet durch spontane Kristallisation aus kleineren Analogansätzen; diese spontane Kristallisation trat jedoch nicht bei jedem Ansatz ein) und ließ 24 h bei 20 °C ungestört stehen. Die während dieser Zeit gebildeten Kristalle (17 g) wurden durch Filtration isoliert, zweimal aus Ethanol umkristallisiert und die hierbei erhaltenen Kristalle (12 g, Schmp. 107 - 109 °C) mit 108 ml 0.5 N wässeriger NaOH-Lösung versetzt. Danach extrahierte man dreimal mit Ether, wusch die vereinigten etherischen Extrakte mit etwas Wasser, trocknete die etherische Lösung mit Na<sub>2</sub>SO<sub>4</sub>, befreite vom Lösungsmittel und kristallisiert den Rückstand (7.2 g) dreimal aus Ethanol um; Ausb. 5.0 g (25%, bezogen auf eingesetztes *rac*-1a) farblose Kristalle (Tab. 1).

(S)-(+)-1-Cyclohexyl-1-phenyl-3-pyrrolidino-1-propanol [(S)-(+)-Procyclidin, (S)-(+)-1a]:Die Herstellung erfolgte analog zur Darstellung von (R)-(-)-1a unter Verwendung von L-(+)-Weinsäure als Hilfsreagenz (Tab. 1).

(R)-(-)-1-[3-Cyclohexyl-3-hydroxy-3-phenylpropyl]-1-methylpyrrolidiniumiodid [(R)-(-)-Tricyclamoliodid, (R)-(-)-2a]: Die Herstellung erfolgte in Anlehnung an Lit.<sup>7</sup>). Eine Lösung aus1.0g (3.5 mmol) (R)-(-)-1a in 10 ml Aceton wurde mit 0.7 g (4.9 mmol) Methyliodid versetzt und3 h bei Raumtemp. gerührt. Nach Verdampfen des Lösungsmittels und des überschüssigen Methyliodids erhielt man einen festen Rückstand, dessen Umkristallisation aus Aceton 1.2 g (80%)farblose Kristalle lieferte (Tab. 1).

(S)-(+)-1-[3-Cyclohexyl-3-hydroxy-3-phenylpropyl]-1-methylpyrrolidiniumiodid [(S)-(+)-Tricyclamoliodid, (S)-(+)-2a]: Die Herstellung erfolgte analog zur Darstellung von <math>(R)-(-)-2adurch Umsetzung von (S)-(+)-1a mit Methyliodid (Tab. 1).

<sup>13</sup>C-NMR-spektroskopische Bestimmung der Enantiomerenreinheit von (R)-(-)-1a und (S)-(+)-1a: <sup>13</sup>C-NMR (75.5 MHz; AM-300-Gerät, Fa. Bruker; CDCl<sub>3</sub>):  $\delta = 23.6$  (t, 2C, C-3,4 von NC<sub>4</sub>H<sub>8</sub>), 26.7, 26.93, 26.95, 27.03, 27.3 (alle t, C-2 bis C-6 von C<sub>6</sub>H<sub>11</sub>), 34.8 (t, CCH<sub>2</sub>CH<sub>2</sub>N), 49.4 (d, C-1 von C<sub>6</sub>H<sub>11</sub>), 52.7 (t, CCH<sub>2</sub>CH<sub>2</sub>N), 53.9 (t, 2C, C-2,5 von NC<sub>4</sub>H<sub>8</sub>), 80.1 (s, COH), 125.7 (d, C<sub>p</sub>), 126.4 (d, 2C, C<sub>o</sub>), 127.5 (d, 2C, C<sub>m</sub>), 147.3 (s, C<sub>i</sub>). – Neben sonstigen Aufspaltungen wurden für das CCH<sub>2</sub>CH<sub>2</sub>N-Atom ( $\delta = 34.8$ ) nach Zusatz von Eu(hfc)<sub>3</sub> [58 mg 1a und 97 mg Eu(hfc)<sub>3</sub> in 0.6 ml CDCl<sub>3</sub>] zwei getrennte Resonanzsignale [ $\delta = 36.04$ , 36.25;  $\Delta \delta = 0.21$  ppm] beobachtet, über deren relative Intensitäten das Enantiomerenverhältnis bestimmt werden konnte.

Pharmakologische Untersuchungen: Die Prüfungen auf antimuskarinische Aktivität erfolgten an der isolierten Longitudinalmuskulatur des Ileums und am isolierten, elektrisch gereizten linken Atrium des Meerschweinchens unter Verwendung von Carbachol als Agonist bei T = 32 °C. Die Auswertung der Versuchsergebnisse wurde nach Arunlakshana und Schild<sup>10-12</sup>) vorgenommen. Zur Charakterisierung der Affinitäten der Enantiomere von **1a** und **2a** zu den ilealen und kardialen Muskarinrezeptoren wurden die  $pA_2$ -Werte bzw. die Dissoziationskonstanten  $K_D$  herangezogen (Abb.1, Tab. 2). Alle pharmakologischen Parameter wurden als Mittelwerte  $\bar{x} \pm S$ . E. (Standardfehler des Mittelwertes) für die Anzahl N der Experimente ausgedrückt. Die Differenz zweier Mittelwerte wurde als signifikant angesehen, wenn p < 0.05 war (t-Test). – Für weitere experimentelle Details siehe Lit.<sup>14,21</sup>).

*Röntgenstrukturanalyse von (R)-(-)-2a*: (-)-2a kristallisiert aus Aceton (Kühlungskristallisation) in der orthorhombischen Gruppe  $P_{2_1} 2_1 2_1$  mit den aus 15 Reflexen (± *hkl*) diffraktometrisch bestimmten Gitterkonstanten a = 672.11(2), b = 2216.25(10), c = 1363.09(5) pm, Z = 4,  $d_{\text{ber}} = 1.404$  g · cm<sup>-3</sup>. Die Beugungsintensitäten wurden bei Raumtemp. auf einem Syntex-Vierkreisdiffraktometer (Typ  $P_{2_1}$ ) unter Verwendung von monochromatischer Mo-K $\alpha$ -Strahlung ( $\lambda = 71.069$  pm) im  $\Theta$ -2 $\Theta$ -Betrieb (3°  $\leq 2\Theta \leq 50^{\circ}$ ) gemessen. Die Meßgeschwindigkeit variierte in Abhängigkeit von der Reflexintensität zwischen 2.93 und 29.30°/min. – Bei der Datenreduk-



Abb. 2. Perspektivische Darstellung der Molekülstruktur von (R)-(-)-2a mit Angabe des Numerierungssystems

Tab. 3. Bindungslängen [pm] und -winkel [°] von (R)-(-)-2a

|                                                                                                                                                |                                                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                                 | <br>                                                                                                                                         |                                                                                                                                                      |                                                                                                                                             |                                                                                                                                                                        |                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| C(1)<br>C(11)<br>C(3)<br>C(4)<br>C(6)<br>C(12)<br>C(13)<br>C(15)<br>C(22)<br>C(23)<br>C(25)                                                    | -0<br>-C(1)<br>-C(2)<br>-N<br>-N<br>-C(5)<br>-C(11)<br>-C(12)<br>-C(14)<br>-C(21)<br>-C(22)<br>-C(24)                                                | 144.2(<br>153.6(<br>150.5(<br>149.3(<br>138.5(<br>139.5(<br>136.8(<br>152.1(<br>153.5(<br>150.3(                                                                 | 4)<br>5)<br>5)<br>6)<br>8)<br>6)<br>8)<br>6)<br>8)<br>5)<br>7)                                                                                                                                                                  | C(2)<br>C(21)<br>N<br>C(5)<br>C(5)<br>C(16)<br>C(16)<br>C(16)<br>C(26)<br>C(24)<br>C(26)                                                     | -C(1)<br>-C(1)<br>-C(3)<br>-N<br>-C(4)<br>-C(6)<br>-C(11)<br>-C(13)<br>-C(15)<br>-C(21)<br>-C(23)<br>-C(25)                                          | 153.0(<br>154.4(<br>150.7(<br>151.2(<br>151.4(<br>137.9(<br>136.2(<br>139.2(<br>153.3(<br>152.7(<br>153.3(                                  | 5)<br>4)<br>5)<br>7)<br>6)<br>6)<br>6)<br>5)<br>6)<br>6)                                                                                                               |                                                                    |
| C(2)<br>C(11)<br>C(21)<br>C(2)<br>C(3)<br>C(4)<br>C(7)<br>C(5)<br>C(5)<br>C(12)<br>C(16)<br>C(16)<br>C(12)<br>C(22)<br>C(26)<br>C(24)<br>C(26) | -C(1)<br>-C(1)<br>-C(1)<br>-C(2)<br>-N<br>-N<br>-N<br>-C(4)<br>-C(6)<br>-C(11)<br>-C(11)<br>-C(11)<br>-C(15)<br>-C(21)<br>-C(21)<br>-C(23)<br>-C(25) | -0<br>-C(2)<br>-C(2)<br>-C(1)<br>-C(3)<br>-C(4)<br>-C(4)<br>-N<br>-C(5)<br>-C(1)<br>-C(12)<br>-C(12)<br>-C(12)<br>-C(12)<br>-C(12)<br>-C(22)<br>-C(22)<br>-C(24) | 108.0(2<br>109.8(3)<br>113.0(3)<br>112.1(3)<br>112.9(3)<br>102.1(3)<br>102.1(3)<br>104.2(3)<br>104.2(3)<br>104.2(3)<br>104.2(3)<br>104.2(3)<br>104.2(3)<br>104.2(3)<br>104.2(3)<br>104.2(3)<br>109.4(3)<br>110.8(3)<br>112.5(4) | C(11)<br>C(21)<br>C(21)<br>C(21)<br>N<br>C(7)<br>C(8)<br>C(6)<br>C(6)<br>C(6)<br>C(15)<br>C(15)<br>C(15)<br>C(15)<br>C(26)<br>C(22)<br>C(25) | -C(1)<br>-C(1)<br>-C(1)<br>-C(3)<br>-N<br>-N<br>-N<br>-C(5)<br>-C(7)<br>-C(11)<br>-C(12)<br>-C(14)<br>-C(16)<br>-C(21)<br>-C(22)<br>-C(24)<br>-C(26) | -0<br>-0<br>-C(11)<br>-C(2)<br>-C(3)<br>-C(3)<br>-C(4)<br>-N<br>-C(1)<br>-C(11)<br>-C(11)<br>-C(11)<br>-C(11)<br>-C(21)<br>-C(21)<br>-C(21) | 109.8(<br>103.9(<br>112.1(<br>113.9(<br>109.7(<br>109.7(<br>109.1(<br>109.1(<br>104.3(<br>121.7(<br>120.5(<br>120.1(<br>120.6(<br>114.5(<br>111.6(<br>110.7(<br>111.1( | 3)))<br>3))<br>3))<br>3))<br>3))<br>3))<br>3))<br>3))<br>3))<br>3) |

tion wurden die Lorentz-, Polarisations- sowie eine empirische Absorptionskorrektur ( $\mu = 1.571$  mm<sup>-1</sup>) durchgeführt. Für die Verfeinerung wurden 3358 der gemessenen 3549 Reflexe mit  $F \ge 1.25 \sigma(F)$  verwendet. Die Struktur wurde mit direkten Methoden und Differenz-Fourier-Synthesen gelöst. Die Wasserstoffatome wurden mit individuellen Temperaturfaktoren frei verfeinert. Die Verfeinerung konvergierte bei R = 0.027. Im letzten Verfeinerungszyklus war das Ver-

hältnis von Parameteränderung zu geschätzter Standardabweichung für alle Parameter kleiner als 1.0%. Eine abschließende Differenz-Fourier-Synthese ergab für die größten Elektronendichtemaxima Werte von  $0.81 \cdot 10^6 \text{ e} \cdot \text{pm}^{-3}$ . Neben eigenen Programmen wurde das Programm SHELX-76<sup>26)</sup> verwendet. Es wurden komplexe Atomformfaktoren<sup>27)</sup> benutzt. – Der Vergleich der  $R_{\text{G}}$ -Werte [0.0327 für die (*R*)-Konfiguration bzw. 0.0415 für die (*S*)-Konfiguration,  $R_{(S)}/R_{(R)} =$ 1.269] erlaubte es, die absolute Konfiguration mit einer Fehlerwahrscheinlichkeit von weniger als 0.5% zu bestimmen.

Die Atomkoordinaten sind in Tab. 4, die Bindungsparameter in Tab. 3 mit dem in Abb. 2 verwendeten Numerierungsschema wiedergegeben.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 51631, der Autoren und des Zeitschriftenzitats angefordert werden.

|       | X/A        | ¥/B         | Z/C         | UEQ       |
|-------|------------|-------------|-------------|-----------|
| I(1)  | 0.7086( 0) | 0.0433( 0)  | 0.5770( 0)  | 0.054( 0) |
| 0     | 0.8762(4)  | 0.1153( 1)  | 0.3548( 2)  | 0.046(1)  |
| C(1)  | 0.7187(5)  | 0.1444( 1)  | 0.3009(2)   | 0.040( 1) |
| C(2)  | 0.5269( 5) | 0.1087(2)   | 0.3180( 3)  | 0.042(1)  |
| C(3)  | 0.5582( 5) | 0.0410(2)   | 0.3056(2)   | 0.039( 1) |
| N     | 0.3678( 4) | 0.0053( 1)  | 0.2990(2)   | 0.040(1)  |
| C(4)  | 0.2322( 6) | 0.0153(2)   | 0.3854(3)   | 0.057(1)  |
| C(5)  | 0.1014(7)  | -0.0403( 3) | 0.3873(4)   | 0.080(2)  |
| C(6)  | 0.2148(8)  | -0.0898(2)  | 0.3342(4)   | 0.065(1)  |
| C(7)  | 0.4130( 6) | -0.0614( 2) | 0.3069(3)   | 0.051(1)  |
| C(8)  | 0.2658(8)  | 0.0172(2)   | 0.2036( 3)  | 0.071(2)  |
| C(11) | 0.6922( 6) | 0.2095( 1)  | 0.3376( 3)  | 0.046( 1) |
| C(12) | 0.8482(8)  | 0.2383(2)   | 0.3845( 3)  | 0.064(2)  |
| C(13) | 0.8280( 9) | 0.2977(2)   | 0.4168( 4)  | 0.077(2)  |
| C(14) | 0.6539(10) | 0.3280( 2)  | 0.4022( 3)  | 0.080(2)  |
| C(15) | 0.4986(10) | 0.3001(2)   | 0.3557( 4)  | 0.073(2)  |
| C(16) | 0.5178( 7) | 0.2409( 2)  | 0.3229(3)   | 0.057( 1) |
| C(21) | 0.7903( 6) | 0.1422( 1)  | 0.1933(2)   | 0.040( 1) |
| C(22) | 0.9840( 6) | 0,1762(2)   | 0.1771( 3)  | 0.051( 1) |
| C(23) | 1.0625( 6) | 0.1676(2)   | 0.0723( 4)  | 0.062( 1) |
| C(24) | 0.9081( 7) | 0.1879(2)   | -0.0030( 3) | 0.059( 1) |
| C(25) | 0.7137( 7) | 0,1558(2)   | 0.0130( 3)  | 0.059(1)  |
| C(26) | 0.6356( 6) | 0.1632( 2)  | 0.1180( 3)  | 0.054(1)  |

Tab. 4. Lageparameter der Atome von (R)-(-)-2a

- <sup>1)</sup> W. M. Duffin und A. F. Green, Brit. J. Pharmacol. 10, 383 (1955).
- <sup>2)</sup> R. B. Barlow, J. Pharm. Pharmacol. 23, 90 (1971).
- <sup>3)</sup> W. S. Sheldrick, H. Linoh, R. Tacke, G. Lambrecht, U. Moser und E. Mutschler, J. Chem. Soc., Dalton Trans. **1985**, 1743.
- <sup>4)</sup> R. Tacke, H. Linoh, L. Ernst, G. Lambrecht, U. Moser und E. Mutschler, Publikation in Vorbereitung.
- <sup>5)</sup> R. Dahlbom in Stereochemistry and Biological Activity of Drugs (Hrsg. E. J. Ariëns, W. Soudijn und P. B. M. W. M. Timmermans), S. 127-142, Blackwell Scientific Publications, Oxford/London/Edinburgh/Boston/Melbourne 1983.
- <sup>6)</sup> T. A. Hamor, J. Chem. Soc., Perkin Trans. 2, 1977, 643.
- <sup>7)</sup> Wellcome Foundation Ltd. (Erf. D. W. Adamson und W. M. Duffin), Brit. Pat. 750156 (13. Juni, 1956) [Chem. Abstr. **51**, 2880c (1957)].
- <sup>8)</sup> Wellcome Foundation Ltd. (Erf. H. C. Murfitt), Brit. Pat. 758941 (10. Oktober 1956) [Chem. Abstr. 51, 9701 a (1957)].

- 9) G. Lambrecht, H. Linoh, U. Moser, E. Mutschler und R. Tacke, Naunyn-Schmiedeberg's Arch. Pharmacol. 329, Suppl. R73 (1985).
- 10) D. McKay, J. Pharm. Pharmacol. 30, 312 (1978).
- 11) R. J. Tallarida, A. Cowan und M. W. Adler, Life Sci. 25, 637 (1979).
- 12) O. Arunlakshana und H. O. Schild, Brit. J. Pharmacol. 14, 48 (1959).
- <sup>13)</sup> R. Tacke, M. Strecker, G. Lambrecht, U. Moser und E. Mutschler, Liebigs Ann. Chem. 1983, 922.
- <sup>14)</sup> R. Tacke, M. Strecker, G. Lambrecht, U. Moser und E. Mutschler, Arch. Pharm. (Weinheim, Ger.) 317, 207 (1984).
- 15) R. B. Barlow, D. Dawbarn und C.J. Pycock, Brit. J. Pharmacol. 72, 277 (1981).
- <sup>16</sup> G. Lambrecht, H. Linoh, U. Moser, E. Mutschler, M. Strecker und R. Tacke, Naunyn-Schmiedeberg's Arch. Pharmacol. 319, Suppl. R 59 (1982).
- <sup>17)</sup> G. Lambrecht, U. Moser, E. Mutschler, J. Wess, H. Linoh, M. Strecker und R. Tacke, Naunyn-Schmiedeberg's Arch. Pharmacol. 325, Suppl. R 62 (1984).
- 18) E. Mutschler und G. Lambrecht, Trends Pharmacol. Sci. 5, Suppl. 39 (1984).
- <sup>19)</sup> G. Lambrecht und E. Mutschler in Proceedings from the VIIIth International Symposium on Medicinal Chemistry (Hrsg. R. Dahlbom und J. G. L. Nillsson), Bd. 2, S. 379-390, Swedish Pharmaceutical Press, Stockholm 1985.
- <sup>20)</sup> G. Lambrecht, H. Linoh, U. Moser, E. Mutschler, M. Strecker, R. Tacke und J. Wess in Proceedings from the VIIIth International Symposium on Medicinal Chemistry (Hrsg. R. Dahlbom und J. G. L. Nillsson), Bd. 2, S. 424 – 426, Swedish Pharmaceutical Press, Stockholm 1985.
- <sup>21)</sup> G. Lambrecht, Arzneim.-Forsch. 30(II), 2113 (1980).
- 22) R. Tacke in Organosilicon and Bioorganosilicon Chemistry: Structure, Bonding, Reactivity and Synthetic Application (Hrsg. H. Sukurai), S. 251 – 262, Ellis Horwood Ltd., Chichester 1985.
- 23) W. C. Hamilton, Statistics in Physical Science, Ronald Press, New York 1964.
- <sup>24)</sup> R. Tacke, M. Strecker, W. S. Sheldrick, L. Ernst, E. Heeg, B. Berndt, C.-M. Knapstein und R. Niedner, Chem. Ber. 113, 1962 (1980).
- 25) N. Camerman und A. Camerman, Mol. Pharmacol. 7, 406 (1971).
- <sup>26)</sup> G. M. Sheldrick, unveröffentlichtes Programm.
- 27) D. T. Cromer und J. T. Waber in International Tables for Crystallography, Bd. IV, S. 99ff. und S. 149, Kynoch Press, Birmingham 1974.

[113/85]