R. Wang et al.

#### Letter

# Brønsted Acids of Anionic Chiral Cobalt(III) Complexes as Catalysts for the Iodoglycosylation or Iodocarboxylation of Glycals

Α

Rui Wang ׻ Wen-Qiang Wu ׻ Na Li ׻ Jia Shen ◊<sup>b</sup> Kun Liu<sup>a</sup> Jie Yu <sup>\*</sup>a<sup>®</sup>



<sup>a</sup> Department of Applied Chemistry, Anhui Agricultural University, Hefei, 230036, P. R. of China

jieyu@ahau.edu.cn

<sup>b</sup> Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, P. R. of China

♦ These authors contributed equally to this work.

Received: 08.02.2019 Accepted after revision: 03.04.2019 Published online: 23.04.2019 DOI: 10.1055/s-0037-1611810; Art ID: st-2019-r0074-I

**Abstract** Brønsted acids of anionic chiral Co(III) complexes were found to act as efficient phase-transfer catalysts for the diastereoselective iodoglycosylation or iodocarboxylation of glycals with a variety of alcohols or carboxylic acids, respectively, with *N*-iodosuccinimide as the iodo cation source. The corresponding 2-deoxy-2-iodoglycosides, including monosaccharides and disaccharides, and 2-deoxy-2-iodoglyco-syl carboxylates, which are of high synthetic and biological importance, were obtained in high yields (up to 88%) with good diastereoselectivities (up to 9:1 dr).

**Key words** Brønsted acids, phase-transfer catalysis, iodoglycosylation, iodocarboxylation, glycals

Mono- and oligosaccharides are prevalent motifs in biologically active natural products such as glycopeptides, glycoproteins, proteoglycans, and glycolipids.<sup>1</sup> Deoxy sugars also constitute key intermediates with widespread applications in medicinal and pharmaceutical research.<sup>2</sup> Therefore. the development of efficient methods for the synthesis of these glycomolecules in high stereoselectivity and with broad structural diversity is undoubtedly appealing in chemistry, biology, and related fields.<sup>2f,3</sup> Remarkable progress has been made, especially in transition-metal-catalyzed and organocatalyzed conventional glycosylations for the preparation of complex carbohydrates.<sup>4</sup> In this study, we focused on the iodoglycosylation and iodocarboxylation of glycals by using anionic chiral Co(III) complexes as phase-transfer catalysts, affording the corresponding 2-deoxy-2-iodoglycosides and 2-deoxy-2-iodoglycosyl carboxylates, which are of high synthetic and biological importance.<sup>5</sup> Although iodoglycosylations and iodoacetoxylations through stoichiometric glycosylations using glycals and alcohols or acetic acid in the presence of an electrophilic iodine reagent (NIS) or an iodate reagent such as  $NH_4I$ , NaI,  $I_2$ ,

or TMSI(OAc)<sub>2</sub> with an oxidant [for example,  $H_2O_2$ , CAN,  $Cu(OAc)_2$ , PhI(OAc)<sub>2</sub>,<sup>6</sup> PPh<sub>3</sub>,<sup>6h</sup> or TfOH<sup>5d</sup>] have been reported, the exploration of high-performance catalytic systems that are, in principle, distinct from previous ones remains essential for the development of mild and efficient stereoselective glycosylation methods. Furthermore, there are few reports on the catalytic stereocontrol of such reactions with chiral catalysts, due to the difficulty of asymmetric intermolecular halogenation<sup>7,8</sup> or glycosylation.<sup>4,9</sup>

The potential of the octahedral chiral-at-metal complexes, in which the metal center does not serve as a catalytic center to activate substrate by coordination but merely provides a rigid framework and an environment of centrochirality, is less well recognized.<sup>10</sup> We have recently developed Brønsted acids and sodium salts of anionic chiral Co(III) complexes as efficient catalysts for the highly enantioselective bromoaminocyclization of olefins and for the Povarov reaction of enol ethers with 2-azadienes.<sup>11</sup> More importantly, the chiral Co(III)-complex-templated Brønsted acids have been proved to function as bifunctional phase-transfer catalysts to shuttle N-bromosuccinimide (NBS) to the reaction solution and to control stereoselectivity.<sup>11c,d</sup> We therefore speculated that such anionic chiral Co(III) complexes might also serve as alternative chiral-anion-mediated catalysts<sup>12</sup> with an iodo-cation source for the iodoglycosylation<sup>4,6a,13</sup> of glycals **2**<sup>14</sup> with alcohols **3** or carboxylic acids 5 (Scheme 1).

Here, we present our preliminary studies on catalytic iodoglycosylation and iodocarboxylation reactions for the preparation of 2-deoxy-2-iodoglycosides **4** and 2-deoxy-2-iodoglycosyl carboxylates **6** by using anionic chiral Co(III) complexes **1**.

The diastereoselective iodoglycosylation of 3,4,6-tri-*O*-benzyl-D-glucal (**2a**) and benzyl alcohol (**3a**) with NIS at room temperature was initially tested, and the corresponding 2-deoxy-2-iodoglycoside **4aa** was obtained in 69% yield

## Syn lett

R. Wang et al.



with a 2:1 dr ( $\alpha/\beta$  ratio) without a catalyst (Table 1, entry 1). As expected, the reaction occurred smoothly in the presence of various Lewis acids (entries 2–9), delivering the product in good yields (up to 86%), albeit with only up to

### 2.5:1 dr. even at a low temperature of -40 °C (entries 6 and 8).<sup>5d</sup> Several Brønsted acids, such as *p*-toluenesulfonic acid and the chiral phosphoric acids PA1 and PA2, were also tested, and the results suggested that the proton has no impact on the diastereoselectivity (entries 10-12). When DMAP and PPh<sub>3</sub> were employed as the catalysts, the $\alpha/\beta$ ratio of 4aa was only 3:1 (entries 13 and 14). A series of anionic chiral Co(III) complexes, either as sodium salts or Brønsted acids, were then screened (entries 15-21), A-(*S*,*S*)-**1c** afforded the best diastereomeric ratio of 4:1 in the highest yield of 86% (entry 18). The metal-centered chirality in the chiral Co(III)-complex-templated Brønsted acids had little effect on the stereochemical outcome of the iodoglycosylation (entries 16, 19, and 20). Several iodinating reagents, such as 1.3-diiodo-5.5-dimethylhydantoin (DIH) and N-iodosaccharine (NISC), were then tested, and NIS was found to be the optimal iodine source for this protocol (entries 18, 22, and 23). To our delight, changing the ratio of **2a**. **3a**, and NIS ratio slightly improved the diastereoselectivity (entry 24). Moreover, a screening of the reaction parameters, including the solvent, temperature, and additives, suggested that the reaction in CH<sub>2</sub>Cl<sub>2</sub> at room temperature gave a higher $\alpha/\beta$ ratio of 5:1 with 4 Å MS (entries 24–34).

#### Table 1 Optimization of the Conditions for Iodoglycosylation<sup>a</sup>



| Entry            | Catalyst              | Solvent    | I⁺ source | Yield <sup>b</sup> (%) | dr <sup>c</sup> (α/β) |
|------------------|-----------------------|------------|-----------|------------------------|-----------------------|
| 1                | _                     | $CH_2CI_2$ | NIS       | 69                     | 2:1                   |
| 2 <sup>d</sup>   | ZnBr <sub>2</sub>     | $CH_2CI_2$ | NIS       | 76                     | 1.5:1                 |
| 3 <sup>d</sup>   | Sc(OTf) <sub>3</sub>  | $CH_2CI_2$ | NIS       | 86                     | 1:1                   |
| 4 <sup>d</sup>   | Mg(OTf) <sub>2</sub>  | $CH_2CI_2$ | NIS       | 85                     | 1.6:1                 |
| 5 <sup>d</sup>   | TMSOTf                | $CH_2CI_2$ | NIS       | 78                     | 1.5:1                 |
| 6 <sup>d,e</sup> | TMSOTf                | $CH_2CI_2$ | NIS       | 55                     | 2:1                   |
| 7 <sup>d</sup>   | TfOH                  | $CH_2CI_2$ | NIS       | 59                     | 1.8:1                 |
| 8 <sup>d,e</sup> | TfOH                  | $CH_2CI_2$ | NIS       | 45                     | 2.5:1                 |
| 9 <sup>d</sup>   | AgOTf                 | $CH_2CI_2$ | NIS       | 50                     | 2.5:1                 |
| 10 <sup>d</sup>  | TsOH·H <sub>2</sub> O | $CH_2CI_2$ | NIS       | 69                     | 1.5:1                 |
| 11               | PA1                   | $CH_2CI_2$ | NIS       | 61                     | 2:1                   |
| 12               | PA2                   | $CH_2CI_2$ | NIS       | 51                     | 2:1                   |
| 13 <sup>d</sup>  | DMAP                  | $CH_2CI_2$ | NIS       | 54                     | 3:1                   |

С

R. Wang et al.

### Letter

| Table 1 | (continued) |
|---------|-------------|
| Table T | continued   |

| Entry             | Catalyst                             | Solvent                         | l <sup>+</sup> source | Yield <sup>b</sup> (%) | $dr^{c}(\alpha/\beta)$ |
|-------------------|--------------------------------------|---------------------------------|-----------------------|------------------------|------------------------|
| 14 <sup>d,e</sup> | PPh <sub>3</sub>                     | CH <sub>2</sub> Cl <sub>2</sub> | NIS                   | 85                     | 3:1                    |
| 15                | ∧-( <i>S</i> , <i>S</i> )- <b>1a</b> | CH <sub>2</sub> Cl <sub>2</sub> | NIS                   | 82                     | 3:1                    |
| 16                | ∆-( <i>R</i> , <i>R</i> )- <b>1a</b> | CH <sub>2</sub> Cl <sub>2</sub> | NIS                   | 85                     | 3.5:1                  |
| 17                | ∧-( <i>S</i> , <i>S</i> )- <b>1b</b> | CH <sub>2</sub> Cl <sub>2</sub> | NIS                   | 56                     | 3.8:1                  |
| 18                | ∧-( <i>S</i> , <i>S</i> )- <b>1c</b> | CH <sub>2</sub> Cl <sub>2</sub> | NIS                   | 86                     | 4:1                    |
| 19                | ∆-( <i>R</i> , <i>R</i> )- <b>1c</b> | CH <sub>2</sub> Cl <sub>2</sub> | NIS                   | 78                     | 3.5:1                  |
| 20                | ∆-( <i>S</i> , <i>S</i> )- <b>1c</b> | CH <sub>2</sub> Cl <sub>2</sub> | NIS                   | 50                     | 2:1                    |
| 21                | ∧-( <i>S</i> , <i>S</i> )- <b>1d</b> | CH <sub>2</sub> Cl <sub>2</sub> | NIS                   | 79                     | 3:1                    |
| 22                | ∧-( <i>S</i> , <i>S</i> )- <b>1c</b> | CH <sub>2</sub> Cl <sub>2</sub> | DIH                   | 40                     | 3:1                    |
| 23                | ∧-( <i>S</i> , <i>S</i> )- <b>1c</b> | CH <sub>2</sub> Cl <sub>2</sub> | NISC                  | 12                     | 3:1                    |
| 24 <sup>f</sup>   | ∧-( <i>S</i> , <i>S</i> )- <b>1c</b> | CH <sub>2</sub> Cl <sub>2</sub> | NIS                   | 82                     | 5:1                    |
| 25 <sup>f</sup>   | ∧-( <i>S</i> , <i>S</i> )- <b>1c</b> | CCl <sub>4</sub>                | NIS                   | 74                     | 3.5:1                  |
| 26 <sup>f</sup>   | ∧-( <i>S</i> , <i>S</i> )- <b>1c</b> | CHCl <sub>3</sub>               | NIS                   | 85                     | 3.8:1                  |
| 27 <sup>f</sup>   | ∧-( <i>S</i> , <i>S</i> )- <b>1c</b> | DCE                             | NIS                   | 79                     | 4.5:1                  |
| 28 <sup>f</sup>   | ∧-( <i>S</i> , <i>S</i> )- <b>1c</b> | toluene                         | NIS                   | 76                     | 3:1                    |
| 29 <sup>f,g</sup> | ∧-( <i>S</i> , <i>S</i> )- <b>1c</b> | CH <sub>2</sub> Cl <sub>2</sub> | NIS                   | 51                     | 4:1                    |
| 30 <sup>f,h</sup> | ۸-( <i>S</i> , <i>S</i> )- <b>1c</b> | CH <sub>2</sub> Cl <sub>2</sub> | NIS                   | 74                     | 4.5:1                  |
| 31 <sup>f,i</sup> | ۸-( <i>S</i> , <i>S</i> )- <b>1c</b> | CH <sub>2</sub> Cl <sub>2</sub> | NIS                   | 60                     | 3:1                    |
| 32 <sup>f,j</sup> | ۸-( <i>S</i> , <i>S</i> )- <b>1c</b> | CH <sub>2</sub> Cl <sub>2</sub> | NIS                   | 80                     | 4:1                    |
| 33 <sup>f,k</sup> | ∧-( <i>S</i> , <i>S</i> )- <b>1c</b> | CH <sub>2</sub> Cl <sub>2</sub> | NIS                   | 79                     | 4:1                    |
| 34 <sup>f,I</sup> | ۸-( <i>S</i> , <i>S</i> )- <b>1c</b> | CH <sub>2</sub> Cl <sub>2</sub> | NIS                   | 64                     | 4:1                    |

<sup>a</sup> Unless otherwise noted, the reaction was performed with glycal **2a** (0.1 mmol), **3a** (0.15 mmol), NIS (0.12 mmol), catalyst (0.01 mmol), 4 Å MS (100 mg) in the solvent (1 mL) at r.t. under N<sub>2</sub> in the absence of light for 24 h.

<sup>b</sup> Yield of isolated product 4aa.

<sup>c</sup> Determined by <sup>1</sup>H NMR.

<sup>d</sup> Catalyst (20 mmol%) was used.

<sup>e</sup> The reaction was carried out at -40 °C.

<sup>f</sup> The **2a/3a**/NIS ratio was 1:1.2:1.1.

<sup>g</sup> The reaction was carried out at 35 °C.

<sup>h</sup> The reaction was carried out at 0 °C.

The reaction was carried out at -20 °C.

<sup>j</sup> 3 Å MS (100 mg) was used instead of 4 Å MS.

<sup>k</sup> 5 Å MS (100 mg) was used instead of 4 Å MS. <sup>1</sup>No additive was used.

'no additive was used.

With the optimized reaction conditions in hand,<sup>15</sup> we next explored the scope of the iodoglycosylation with respect to the alcohol **3**. As shown in Table 2, various substituents on the aryl moiety of the benzyl alcohols **3b–f** were tolerated, affording the corresponding 2-deoxy-2-iodoglycosides **4** in up to 73% yield with up to 4.5:1 dr (Table 2, entries 1–5). The electronic nature of the substrates had no evident influence on the reactivity. In addition, 1-naphthylmethanol was also well tolerated and provided the product **4ag** with 4:1 dr (entry 6). Nonbenzylic aliphatic alcohols **3h–n** were also suitable substrates, giving the desired glycosides **4ah–an** in high yields and up to 6.5:1 dr (entries 7–13). Sterically hindered alcohols **3j** and **3k** readily participated in the reaction with up to 6.5:1 dr (entries 9 and 10). The *Z*-alkene in **3n** was also well tolerated (4:1 dr; entry

13). More importantly, the iodoglycosylation proceeded under mild conditions with monosaccharides such as the primary alcohol **30** and the secondary alcohol **3p**, giving the corresponding disaccharides with up to 9:1 dr (entries 14 and 15).

The scope of the iodoglycosylation using Brønsted acid of anionic chiral Co(III)-complexes **1** with regard to the glycals **2** was also evaluated (Table 3). Glycals with other hydroxy-protecting groups, such as **2b** and **2c**, were good substrates for the iodoglycosylation reaction, giving the corresponding products in moderate to high yields and with up to 8:1 dr (entries 1–8). Moreover, tri-*O*-benzyl-D-galactal (**2d**), the C4-epimer of **2a**, afforded the corresponding products in moderate yields with similar diastereoselectivities (up to 6.5:1 dr; entries 9 and 10).<sup>16</sup>

## **Synlett**

#### R. Wang et al.

## Letter

 Table 2
 Scope of the Alcohols 3 for the Iodoglycosylation<sup>a</sup>



D

<sup>a</sup> Unless otherwise noted, the reaction was performed with glycal **2a** (0.1 mmol), alcohol **3** (0.12 mmol), NIS (0.11 mmol), Λ-(*S*,*S*)-**1c** (0.01 mmol), and 4 Å MS (100 mg) in CH<sub>2</sub>Cl<sub>2</sub> (1 mL) at r.t., under N<sub>2</sub> in the absence of light for 24 h. <sup>b</sup> Yield of isolated product.

<sup>c</sup> Determined by <sup>1</sup>H NMR.

<sup>d</sup> Anomer ratios reported in the literature.

<sup>e</sup> The reaction was carried out on a 0.1 mmol scale for 72 h with a **2a/3**/NIS ratio of 2:1:2.4.

## Syn lett

#### R. Wang et al.





<sup>&</sup>lt;sup>a</sup> Unless otherwise noted, the reaction was performed with glycal **2** (0.1 mmol), alcohol **3** (0.2 mmol), NIS (0.15 mmol),  $\Lambda$ -(5,5)-**1c** (0.01 mmol), and 4 Å MS (100 mg) in CH<sub>2</sub>Cl<sub>2</sub> (1 mL) at r.t. under N<sub>2</sub> in the absence of light for 48 h.

<sup>b</sup> Yield of isolated product.

<sup>c</sup> Determined by <sup>1</sup>H NMR.

<sup>d</sup> Anomer ratios reported in the literature.

Encouraged by these results, we next studied the iodocarboxylation of glycal 2a with carboxylic acids and sodium salts 5 to give the corresponding 2-deoxy-2-iodoglycosyl carboxylates 6 (Table 4).<sup>17</sup> The reaction of the sodium salts 5a and 5c and the acids 5b and 5d in the absence of the chiral-Co(III)-complex-templated Brønsted acid were first tested, and products 6a and 6b were obtained with low diastereoselectivities (Table 4, entries 1-4). Interestingly, the presence of the Brønsted acid of a chiral Co(III) complex  $\Lambda$ -**1c** resulted in enhanced diastereoselectivity (up to 6.5:1 dr; entries 5–8), but the sodium salts of the acids still gave low yields (entries 5 and 6). It is suggested that the presence of an acidic proton might promote the reaction and that the bulky chiral Co(III) complexes influence the stereocontrol. The protocol also tolerated other carboxylic acids, and the corresponding glycosyl carboxylates 6c-e were obtained with good diastereoselectivities (up to 7.5:1 dr; entries 9-11).

Next, we performed a <sup>1</sup>H NMR spectral analysis of mixtures of NIS with Brønsted acid  $\Lambda$ -(*S*,*S*)-**1c** or benzoic acid (**5b**) in CDCl<sub>3</sub> at room temperature. The presence of succinimide in the former mixture clearly revealed that  $\Lambda$ -(*S*,*S*)-**1c** reacted with NIS to produce a new complex,<sup>11c,d</sup> thereby leading to the formation of succinimide, while no evidence was found to show that there is an interaction between benzoic acid (**5b**) and NIS in the latter mixture (Figure 1).



Ε



<sup>a</sup> Unless otherwise noted, the reaction was performed with glycal **2a** (0.1 mmol), **5** (0.15 mmol), NIS (0.12 mmol),  $\Lambda$ -(S,S)-**1c** (0.01 mmol), and 4 Å MS (100 mg) in CH<sub>2</sub>Cl<sub>2</sub> (1 mL) at r.t. under N<sub>2</sub> in the absence of light for 12 h. <sup>b</sup> Yield of isolated product.

<sup>c</sup> Determined by <sup>1</sup>H NMR.

<sup>d</sup> The reported anomer ratio of **5d** was 4:1.<sup>6f</sup>

On the basis of the interesting experimental results and our previous work,<sup>11c,d</sup> we propose a plausible mechanism for these reaction of a chiral-Co(III)-templated Brønsted acid in combination with NIS. As shown in Scheme 2, the Brønsted acid 1 might undergo an exchange reaction with NIS to generate a reactive chiral iodinating reagent 7, as suggested by the <sup>1</sup>H NMR spectral analysis. The chiral ionpair 7 might then undergo diastereoselective reaction with the glycal 2 to afford the 2-deoxy-2-iodoglycoside 4 or a 2deoxy-2-iodoglycosyl carboxylate 6 through nucleophilic addition of the alcohol 3 or carboxylic acid 5, respectively, with regeneration of Brønsted acid 1. The stereochemical outcomes were not good enough to have been caused by the competition of the rapid noncatalytic reaction of NIS.

In summary, we have developed a diastereoselective iodoglycosylation or iodocarboxylation of glycals with NIS mediated by a chiral-Co(III)-complex-templated Brønsted acid. The catalytic reaction proceeds under mild conditions, providing convenient access to 2-deoxy-2-iodoglycosides or 2-deoxy-2-iodoglycosyl carboxylates in up to 88% yield and with up to 9:1 dr. The anionic chiral Co(III) complexes also



F



function as bifunctional phase-transfer catalysts to shuttle the *N*-iodosuccinimide to the reaction solution. Further studies will focus on the development of stereoselective halogenations catalyzed by Brønsted acids of anionic chiral Co(III) complexes.

## **Funding Information**

We are grateful for financial support from NSFC (Grants 21672002), Anhui Provincial Natural Science Foundation (1908085J07), Young Talent Program in Anhui Provincal University (gxyqZD2017017), Opening Project of State Key Laboratory of Tea Plant Biology and Utilization (SKLTOF20150108) and the Key Project of Anhui Tabaco Company (20160551015).

## Acknowledgment

We sincerely thank Prof. Zheng-Zhu Zhang and Dr. Chuan-Zhi Yao (AHAU) for their support.

## **Supporting Information**

Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611810.

## **References and Notes**

- (a) Varki, A. Glycobiology **1993**, 3, 97. (b) Carbohydrates in Chemistry and Biology, Vols. 1–4; Ernst, B.; Hart, G. W.; Sinaÿ, P., Ed.; Wiley-VCH: Weinheim, **2000**. (c) Glycoscience, Chemistry and Chemical Biology, Vols. 1–3; Fraser-Reid, B. O.; Tatsuta, K.; Thiem, J., Ed.; Springer: Berlin, **2001**. (d) Bertozzi, C. R.; Kiessling, L. L. Science **2001**, 291, 2357.
- (2) (a) Deoxy Sugars; Gould, R. F., Ed.; ACS: Washington, 1968.
  (b) Kirschning, A.; Bechthold, A. F.-W.; Rohr, J. Top. Curr. Chem. 1997, 188, 1. (c) Weymouth-Wilson, A. C. Nat. Prod. Rep. 1997, 14, 99. (d) Kren, V.; Martínková, L. Curr. Med. Chem. 2001, 8, 1303. (e) De Lederkremer, R. M.; Marino, C. Adv. Carbohydr. Chem. Biochem. 2008, 61, 143. (f) Hou, D.; Lowary, T. L. Carbohydr. Res. 2009, 344, 1911.
- (3) (a) Demchenko, A. V. In Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance; Demchenko, A. V., Ed.; Wiley-VCH: Weinheim, 2008, 1. For some reviews on the methods for the synthesis of 2-deoxyglycosides, see: (b) Thiem, J.; Klaffke, W. Top. Curr. Chem. 1990, 154, 285. (c) Marzabadi, C. H.; Franck, R. W. Tetrahedron 2000, 56, 8385. (d) Borovika, A.; Nagorny, P. J. Carbohydr. Chem. 2012, 31, 255. (e) Zeng, J.; Xu, Y.; Wang, H.; Meng, L.; Wan, Q. Sci. China: Chem. 2017, 60, 1162. (f) Bennett, C. S.; Galan, M. C. Chem. Rev. 2018, 118, 7931.
- (4) For recent reviews, see: (a) Li, X.; Zhu, J. Eur. J. Org. Chem. 2016, 2016, 4724; and references cited therein. (b) Williams, R.; Galan, M. C. Eur. J. Org. Chem. 2017, 2017, 6247; and references cited therein. For selected examples of glycosylations controlled by chiral Brønsted acids, see: (c) Cox, D. J.; Smith, M. D.; Fairbanks, A. J. Org. Lett. 2010, 12, 1452. (d) Balmond, E. I.; Coe, D. M.; Galan, M. C.; McGarrigle, E. M. Angew. Chem. Int. Ed. 2012, 51, 9152. (e) Kimura, T.; Sekine, M.; Takahashi, D.; Toshima, K. Angew. Chem. Int. Ed. 2013, 52, 12131. (f) Gould, N. D.; Allen, C. L.; Nam, B. C.; Schepartz, A.; Miller, S. J. Carbohydr. Res. 2013, 382, 36. (g) Balmond, E. I.; Benito-Alifonso, D.; Coe, D. M.; Alder, R. W.; McGarrigle, E. M.; Galan, M. C. Angew. Chem. Int. Ed. 2014, 53, 8190. (h) Liu, D.; Sarrafpour, S.; Guo, W.; Goulart, B.; Bennett, C. S. J. Carbohydr. Chem. 2014, 33, 423. (i) Kuroda, Y.;

Harada, S.; Oonishi, A.; Kiyama, H.; Yamaoka, Y.; Yamada, K.-i.; Takasu, K. *Angew. Chem. Int. Ed.* **2016**, *55*, 13137. (j) Park, Y.; Harper, K. C.; Kuhl, N.; Kwan, E. E.; Liu, R. Y.; Jacobsen, E. N. *Science* **2017**, *355*, 162.

- (5) (a) Friesen, R. W.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111, 6656. (b) Suzuki, K.; Sulikowski, G. A.; Friesen, R. W.; Danishefsky, S. J. J. Am. Chem. Soc. 1990, 112, 8895. (c) Sebesta, D. P.; Roush, W. R. J. Org. Chem. 1992, 57, 4799. (d) Tanaka, H.; Takahashi, D.; Takahashi, T. Angew. Chem. Int. Ed. 2006, 45, 770. (e) Perret, P.; Slimani, L.; Briat, A.; Villemain, D.; Halimi, S.; Demongeot, J.; Fagret, D.; Ghezzi, C. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 734. (f) Wang, H.; Tao, J.; Cai, X.; Chen, W.; Zhao, Y.; Xu, Y.; Yao, W.; Zheng, J.; Wan, Q. Chem. Eur. J. 2014, 20, 17319. (g) Pradhan, T. K.; Lin, C. C.; Mong, K.-K. T. Org. Lett. 2014, 16, 1474.
- (6) (a) Thiem, J.; Karl, H.; Schwentner, J. Synthesis **1978**, 696. (b) Gammon, D. W.; Kinfe, H. H.; De Vos, D. E.; Jacobs, P. A.; Sels, B. F. *Tetrahedron Lett.* **2004**, *45*, 9533. (c) Roush, W. R.; Narayan, S.; Bennett, C. E.; Briner, K. Org. *Lett.* **1999**, *1*, 895. (d) Saeeng, R.; Sirion, U.; Sirichan, Y.; Trakulsujaritchok, T.; Sahakitpichan, P. *Heterocycles* **2010**, *81*, 2569. (e) Sirion, U.; Purintawarrakun, S.; Sahakitpicchan, P.; Saeeng, R. *Carbohydr. Res.* **2010**, *345*, 2401. (f) Reddy, T. R.; Rao, D. S.; Babachary, K.; Kashyap, S. *Eur. J. Org. Chem.* **2016**, *2016*, 291. (g) Yuan, W.; Liu, Y.; Li, C. *Synlett* **2017**, *28*, 1975. (h) Kimura, T.; Takahashi, D.; Toshima, K. J. Org. *Chem.* **2015**, *80*, 9552. A similar reaction using 3,4-O-isopropylidene-6-O-(*tert*-butyldiphenyl)silyl-protected glycosyl donors that favor the β-anomer was recently reported, see: (i) Yang, D.-M.; Chen, Y.; Sweeney, R. P.; Lowary, T. L.; Liang, X.-Y. *Org. Lett.* **2018**, *20*, 2287.
- (7) For leading reviews on asymmetric intermolecular halogenation, see: (a) Chen, J.; Zhou, L. Synthesis 2014, 46, 586; and references cited therein. (b) Cheng, Y. A.; Yu, W. Z.; Yeung, Y.-Y. Org. Biomol. Chem. 2014, 12, 2333.
- (8) For recent examples of asymmetric intermolecular halogenations, see: (a) Li, L.; Su, C.; Liu, X.; Tian, H.; Shi, Y. Org. Lett. 2014, 16, 3728. (b) Qi, J.; Fan, G.-T.; Chen, J.; Sun, M.-H.; Dong, Y.-T.; Zhou, L. Chem. Commun. 2014, 50, 13841. (c) Hu, D. X.; Seidl, F. J.; Bucher, C.; Burns, N. Z. J. Am. Chem. Soc. 2015, 137, 3795. (d) Soltanzadeh, B.; Jaganathan, A.; Staples, R. J.; Borhan, B. Angew. Chem. Int. Ed. 2015, 54, 9517. (e) Denmark, S. E.; Carson, N. Org. Lett. 2015, 17, 5728. (f) Landry, M. L.; Hu, D. X.; McKenna, G. M.; Burns, N. Z. J. Am. Chem. Soc. 2016, 138, 5150. (g) Zhou, P.; Cai, Y.; Zhong, X.; Luo, W.; Kang, T.; Li, J.; Liu, X.; Lin, L.; Feng, X. ACS Catal. 2016, 6, 7778. (h) Wang, Z.; Lin, L.; Zhou, P.; Liu, X.; Feng, X. Chem. Commun. 2017, 53, 3462. (i) Zhou, P.; Lin, L.; Chen, L.; Zhong, X.; Liu, X.; Feng, X. J. Am. Chem. Soc. 2017, 139, 13414. (j) Burckle, A. J.; Gál, B.; Seidl, F. J.; Vasilev, V. H.; Burns, N. Z. J. Am. Chem. Soc. 2017, 139, 13562. (k) Guo, S.; Cong, F.; Guo, R.; Wang, L.; Tang, P. Nat. Chem. 2017, 9, 546. (1) Horibe, T.; Tsuji, Y.; Ishihara, K. ACS Catal. 2018, 8, 6362.
- (9) For selected reviews, see: (a) Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503. (b) Seeberger, P. H.; Werz, D. B. Nature 2007, 446, 1046. (c) Boltje, T. J.; Buskas, T.; Boons, G.-J. Nat. Chem. 2009, 1, 611. (d) Zhu, X.; Schmidt, R. R. Angew. Chem. Int. Ed. 2009, 48, 1900. (e) Yu, B.; Sun, J.; Yang, X. Acc. Chem. Res. 2012, 45, 1227. (f) Ranade, S. C.; Demchenko, A. V. J. Carbohydr. Chem. 2013, 32, 1. (g) Nigudkar, S. S.; Demchenko, A. V. Chem. Sci. 2015, 6, 2687. (h) Yang, Y.; Zhang, X. H.; Yu, B. Nat. Prod. Rep. 2015, 32, 1331.

- (10) For reviews on chiral-at-metal complexes in catalysis, see:
  (a) Brunner, H. Angew. Chem. Int. Ed. 1999, 38, 1194. (b) Knight,
  P. D.; Scott, P. Coord. Chem. Rev. 2003, 242, 125. (c) Fontecave,
  M.; Hamelin, O.; Ménage, S. Top. Organomet. Chem. 2005, 15,
  271. (d) Bauer, E. B. Chem. Soc. Rev. 2012, 41, 3153. (e) Gong, L;
  Chen, L.-A.; Meggers, E. Angew. Chem. Int. Ed. 2014, 53, 10868.
  (f) Cao, Z.-Y.; Brittain, W. D. G.; Fossey, J. S.; Zhou, F. Catal. Sci. Technol. 2015, 5, 3441.
- (11) (a) Yu, J.; Jiang, H.-J.; Zhou, Y.; Luo, S.-W.; Gong, L.-Z. Angew. Chem. Int. Ed. 2015, 54, 11209. (b) Jiang, H.-J.; Liu, K.; Wang, J.; Li, N.; Yu, J. Org. Biomol. Chem. 2017, 15, 9077. (c) Jiang, H.-J.; Liu, K.; Yu, J.; Zhang, L.; Gong, L.-Z. Angew. Chem. Int. Ed. 2017, 56, 11931. (d) Liu, K.; Jiang, H.-J.; Li, N.; Li, H.; Wang, J.; Zhang, Z.-Z.; Yu, J. J. Org. Chem. 2018, 83, 6815. (e) Li, N.; Yu, H.; Wang, R.; Shen, J.; Wu, W.-Q.; Liu, K.; Sun, T.-T.; Zhang, Z.-Z.; Yao, C.-Z.; Yu, J. Tetrahedron Lett. 2018, 59, 3605. (f) Jiang, H.-J.; Zhong, X.-M.; Yu, J.; Zhang, Y.; Zhang, X.; Wu, Y.-D.; Gong, L.-Z. Angew. Chem. Int. Ed. 2019, 58, 1803.
- (12) For selected reviews on catalysis by chiral anions, see: (a) Lacour, J.; Hebbe-Viton, V. Chem. Soc. Rev. 2003, 32, 373. (b) Lacour, J.; Moraleda, D. Chem. Commun. 2009, 7073. (c) Zhang, Z.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187. (d) Wenzel, M.; Hiscock, J. R.; Gale, P. A. Chem. Soc. Rev. 2012, 41, 480. (e) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat. Chem. 2012, 4, 603. (f) Mahlau, M.; List, B. Angew. Chem. Int. Ed. 2013, 52, 518. (g) Brak, K.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2013, 52, 534. For selected examples, see: (h) Hamilton, G. L.; Kanai, T.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 14984. (i) Mayer, S.; List, B. Angew. Chem. Int. Ed. 2006, 45, 4193. (j) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496. (k) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901. (l) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2000, 39, 1279. (m) Llewellyn, D. B.; Adamson, D.; Arndtsen, B. A. Org. Lett. 2000, 2, 4165. (n) Carter, C.; Fletcher, S.; Nelson, A. Tetrahedron: Asymmetry 2003, 14, 1995.
- (13) For some reviews, see: (a) Lemieux, R. U.; Levine, S. Can. J. Chem.
  1964, 42, 1473. (b) De Castro, M.; Marzabadi, C. H. Tetrahedron
  2010, 66, 3395. For selected examples of syntheses of 2-deoxy-2-iodoglycosides, see: (c) Rodríguez, M. Á.; Boutureira, O.; Arnés, X.; Matheu, M. I.; Díaz, Y.; Castillón, S. J. Org. Chem. 2005, 70, 10297. (d) Kövér, A.; Boutureira, O.; Matheu, M. I.; Díaz, Y.; Castillón, S. J. Org. Chem. 2014, 79, 3060. (e) Battina, S. K.; Kashyap, S. Tetrahedron Lett. 2016, 57, 811.
- (14) For a review, see: (a) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem. Int. Ed. 1996, 35, 1380. For recent examples of syntheses of deoxyglycosides from glycals, see: (b) Sau, A.; Williams, R.; Palo-Nieto, C.; Franconetti, A.; Medina, S.; Galan, M. C. Angew. Chem. Int. Ed. 2017, 56, 3640. (c) Palo-Nieto, C.; Sau, A.; Galan, M. C. J. Am. Chem. Soc. 2017, 139, 14041. (d) Sau, A.; Galan, M. C. Org. Lett. 2017, 19, 2857. (e) Palo-Nieto, C.; Sau, A.; Williams, R.; Galan, M. C. J. Org. Chem. 2017, 82, 407. (f) Zhao, G.; Wang, T. Angew. Chem. Int. Ed. 2018, 57, 6120.

#### (15) 2-Deoxy-2-Iodoglycoside 4aa; Typical Procedure

A 10-mL oven-dried vial was charged with catalyst A-1c (7.2 mg, 0.01 mmol), NIS (24.8 mg, 0.11 mmol), activated 4 Å MS (100 mg), glycal **2a** (41.6 mg, 0.10 mmol), and distilled CH<sub>2</sub>Cl<sub>2</sub> (1 mL) at r.t. in the absence of light. Alcohol **3a** (0.12 mmol) was added and the resulting solution was stirred vigorously under N<sub>2</sub> for 24 h. The reaction was then quenched with Et<sub>3</sub>N (140 µL, 1.0 mmol) and sat. aq Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (0.2 mL). The mixture was purified by flash column chromatography to give the 2-deoxy-2-iodoglycosides **4aa** as an  $\alpha/\beta$  mixture. **4aa** $\alpha$ 

#### R. Wang et al.

Colorless oil; yield: 43.9 mg (67%);  $R_f = 0.43$  (PE–EtOAc, 10:1);  $[\alpha]_D^{20}$  +3.45 (*c* 1.27, CHCl<sub>3</sub>). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.48–7.35 (m, 4 H), 7.35–7.19 (m, 14 H), 7.16 (d, *J* = 6.2 Hz, 2 H), 5.30 (s, 1 H), 4.84 (d, *J* = 10.8 Hz, 1 H), 4.72–4.66 (m, 3 H), 4.52–4.46 (m, 5 H), 3.92–3.91 (m, 2 H), 3.80–3.75 (m, 1 H), 3.69 (d, *J* = 10.8 Hz, 1 H), 3.37–3.34 (m, 1 H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  = 138.46, 138.29, 137.80, 136.98, 128.51, 128.44, 128.35, 128.10, 128.08, 128.05, 127.82, 127.69, 127.52, 100.85, 100.80, 76.05, 75.31, 73.47, 72.51, 71.04, 69.54, 69.00, 33.58, 33.55. HRMS (ESI): *m/z* [M + Na]<sup>+</sup> calcd for C<sub>34</sub>H<sub>35</sub>NaIO<sub>5</sub>: 673.1427; found: 673.1420.

#### 4aaβ

White solid; yield: 9.5 mg (15%); mp 101–103 °C;  $R_f$  = 0.38 (PE–EtOAc, 10:1); [ $\alpha$ ]<sub>D</sub><sup>20</sup> +4.91 (*c* 0.55, CHCl<sub>3</sub>). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.47–7.36 (m, 4 H), 7.36–7.26 (m, 14 H), 7.19 (d, *J* = 6.9 Hz, 2 H), 4.97 (d, *J* = 10.2 Hz, 1 H), 4.92 (d, *J* = 11.7 Hz, 1 H), 4.85 (d, *J* = 10.1 Hz, 1 H), 4.80 (d, *J* = 10.9 Hz, 1 H), 4.68 (d, *J* = 11.8 Hz, 1 H), 4.62 (t, *J* = 9.6 Hz, 2 H), 4.57 (t, *J* = 12.5 Hz, 2 H), 4.01–3.94 (m, 1 H), 3.77–3.70 (m, 3 H), 3.64 (t, *J* = 9.2 Hz, 1 H), 3.49 (d, *J* = 7.6 Hz, 1 H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  = 138.17, 137.90, 137.85, 136.88, 128.55, 128.48, 128.42, 128.33, 128.18, 127.98, 127.89, 127.83, 127.76, 101.98, 86.01, 79.79, 75.62, 75.42, 75.03, 73.65, 71.39, 68.72, 32.68. HRMS (ESI): *m/z* [M + Na]<sup>+</sup> calcd for C<sub>34</sub>H<sub>35</sub>NalO<sub>5</sub>: 673.1427; found: 673.1422. (see Supporting Information for further information).

- (16) lodoglycosylations of either glucal (2b) or galactal (2d) with alcohol 3c in the absence of the chiral-Co<sup>III</sup>-complex-templated Brønsted acid were also tested, affording the desired 2-deoxy-2iodoglycosides in yields of 52% and 24% with 2.5:1 and 1.8:1 dr, respectively.
- (17) 2-Deoxy-2-Iodoglycosyl Carboxylate 6a; Typical Procedure A 10-mL oven-dried vial was charged with catalyst Λ-1c (7.2 mg, 0.01 mmol), NIS (27.0 mg, 0.12 mmol), activated 4 Å MS (100 mg), glycal 2a (41.6 mg, 0.10 mmol), and distilled CH<sub>2</sub>Cl<sub>2</sub>(1

mL) at r.t. in the absence of light. BzOH (**5a**; 0.15 mmol) was added and the resulting solution was stirred vigorously under N<sub>2</sub> for 12 h. The reaction was then quenched with Et<sub>3</sub>N (140 µL, 1.0 mmol) and sat. aq Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (0.2 mL). The mixture was purified by flash column chromatography to give the glycosyl carboxylate **6a** as a  $\alpha/\beta$  mixture.

#### 6aα

Colorless oil; yield: 42.7 mg (64%);  $R_f = 0.4$  (PE–EtOAc, 8:1);  $[\alpha]_D^{20}$  +3.78 (c 0.82, CHCl<sub>3</sub>). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.93 (d, J = 7.0 Hz, 2 H), 7.59 (t, J = 7.4 Hz, 1 H), 7.43 (t, J = 7.8 Hz, 2 H), 7.41–7.35 (m, 4 H), 7.34–7.24 (m, 9 H), 7.22–7.16 (m, 2 H), 6.66 (s, 1 H), 4.90 (d, J = 10.5 Hz, 1 H), 4.76–4.72 (m, 2 H), 4.58–4.52 (m, 4 H), 4.13–4.09 (m, 1 H), 4.07–4.03 (m, 1 H), 3.83 (dd, J = 11.3, 4.0 Hz, 1 H), 3.71 (dd, J = 11.3, 1.6 Hz, 1 H), 3.33 (dd, J = 8.7, 4.1 Hz, 1 H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  = 164.07, 138.37, 138.08, 137.26, 133.75, 129.92, 129.12, 128.62, 128.57, 128.49, 128.38, 128.34, 128.32, 128.11, 127.94, 127.81, 127.59, 96.17, 76.20, 75.63, 75.31, 73.67, 71.22, 68.65, 31.20. HRMS (ESI): m/z [M+Na]<sup>+</sup> calcd for C<sub>34</sub>H<sub>33</sub>INaO<sub>6</sub>: 687.1220; found: 687.1215.

6aß

Colorless oil; yield: 6.5 mg (10%);  $R_f = 0.4$  (PE–EtOAc, 8:1);  $[\alpha]_D^{20}$  +65.61 (*c* 0.22, CHCl<sub>3</sub>). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta = 8.11$  (d, J = 7.7 Hz, 2 H), 7.60 (t, J = 7.3 Hz, 1 H), 7.47 (t, J = 7.7 Hz, 2 H), 7.43 (d, J = 7.4 Hz, 2 H), 7.36 (t, J = 7.3 Hz, 2 H), 7.34–7.23 (m, 9 H), 7.17 (d, J = 7.4 Hz, 2 H), 6.05 (d, J = 9.5 Hz, 1 H), 5.00 (d, J = 10.2 Hz, 1 H), 4.91 (d, J = 10.2 Hz, 1 H), 4.82 (d, J = 10.8 Hz, 1 H), 4.60 (dd, J = 15.7, 11.5 Hz, 2 H), 4.48 (d, J = 12.1 Hz, 1 H), 4.19 (t, J = 9.8 Hz, 1 H), 3.87–3.69 (m, 5 H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>):  $\delta = 164.67$ , 137.76, 133.75, 130.34, 128.56, 128.51, 128.45, 128.16, 128.01, 127.98, 127.86, 127.80, 95.09, 85.65, 79.07, 76.17, 75.76, 75.10, 73.71, 68.02, 30.23. HRMS (ESI): m/z [M+Na]<sup>+</sup> calcd for C<sub>34</sub>H<sub>33</sub>INaO<sub>6</sub>: 687.1220; found: 687.1217. (See Supporting Information for further information).