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ABSTRACT

A practical metal-free oxidative Ugi-type three-component assembly has been 

achieved efficiently, employing tertiary amine-derived iminium ion as an imine 

surrogate, N-hydroxyimide as an acid surrogate, and DEAD as an oxidant. This 

dual-surrogate Ugi variant proceeded with a broad substrate scope and desired functional 

group tolerance, leading to a wide range of N-alkyl-N-acyl aminophthalimide and 

N-alkyl-N-acylaminosuccinimide derivatives in good isolated yields.  
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INTRODUCTION

Ugi reaction is considered as one of the most well-known multicomponent reactions 

(MCRs), because of its practical application for the construction of chemical libraries and 

pharmaceutical scaffolds for drug research.1,2 As the demand for molecular diversity 

grew considerably, exploration of novel multicomponent Ugi reactions has become a 

pivotal solution, involved in unearthing novel surrogates for the indispensible 

components in traditional Ugi processes, including imines, carboxylic acids and 

isocyanides (Scheme 1a). 

Since isocyanide is the core component in Ugi reaction, surrogates for isocyanide are 

less common than the ones for imine and acid. The first “isocyanide-free” Ugi reaction 

was revealed by El Kaïm in 2009. 3 In this reaction, precursors of isocyanide such as 

benzyl halide were regarded as the isocyanide surrogate, reaching the in situ isocyanide 

formation with the treatment of AgCN. In 2015, Dömling introduced a second practical 

“isocyanide-less” strategy, in which the isocyanide was yielded via the 

trisphosgene-promoted dehydration of the formamide. 4 Both of the above 

transformations were compatible with the subsequent Ugi reaction.

Extensive researches, perusing for novel Ugi component’s functional equivalents, 

have been performed and various workable replacements to imine and carboxylic acid 

have been summarized in an excellent book and some reviews. 2,5 Among the existing 

imine surrogates, iminium ions, directly transformed from secondary or tertiary amines 
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through the action of various oxidants, have seduced many organic chemists in oxidative 

Ugi-type reaction over recent years. 6,7 For example, in 2007, Zhu's group pioneered the 

first oxidative Ugi-type reaction, in which 1,2,3,4-tetrahydroisoquinolines (THIQs) were 

converted into the corresponding cyclic imines, using IBX (2-iodoxybenzoic acid) as a 

mild and efficient oxidant. 6b Ugi-type three-component assemblies, employing copper 

and peroxides as oxidants, were accomplished by Xie in 2010. 7a Alternatively, the first 

photoredox-catalyzed oxidative Ugi-type reactions were reported by Rueping's group in 

2013. 7c The surrogate iminium ions could also be formed through the cascade event 

involving sequential imine formation and decarboxylation. 6g Subsequently, taking 

advantage of the redox-neutral iminium ions formation and amine C–H functionalization 

of pyrrolidines and THIQs, Seidel performed a new variant of Ugi reaction. 6h We 

recently reported a Brønsted-acid-catalyzed three-component reaction involving the 

oxidation of tertiary amines triggered by a 1,5-hydride shift. 8 In addition, we also 

described a metal-free oxidative Ugi-type reaction, in which the tertiary amines, oxidized 

by DEAD, were converted into the corresponding iminium ions. 9,10,11 
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Scheme 1. Surrogate components in Ugi-type Reaction.

Well-studied acid surrogates, such as hydrazoic acids, cyanates, thiocyanates, 

thioacetic acid, phenols, thiophenol and even mineral acids and CO2, have expanded the 

diversity of the Ugi reaction outcomes. 12 Notably, the above reactions employing 

carboxylic acids or their surrogates always underwent a N-C bond formation in the 

Mumm-type rearrangement. Recently, the first two examples of N-N bond formation in 

the Mumm-type rearrangement were illustrated successively by El Kaïm and Dömling. 

13,14 The Dömling's work verified N-hydroxyimide as a new acid surrogate in the Ugi 

reaction, and provided straightforward access to α-hydrazino amides in the presence of 

Lewis acid (Scheme 1b). To expand the application of this strategy further, we initially 

supposed that the DEAD-promoted oxidative Ugi-type reaction of tertiary amines could 

allow the efficient unification with the iminium ion (imine surrogate), the 

N-hydroxyimide (acid surrogate) and isocyanide (Scheme 1c). In addition, we also 

focused on the feasibility of the Mumm-like migration of the phthalimide or succinimide 
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to the isocyanide nitrogen atom.
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RESULTS AND DISCUSSION

Table 1. Optimization of Reaction Conditions. [a]

N

N

ONTs
NO O

azodicarboxylate

solvent, rt, 6h
NO O

OH
Ts N

1a 2a 3a

+ +
NHPI

entry azodicarboxylate solvent yield[b]

1 DEAD THF 60

2 DIAD THF 43

3 DBAD THF 13

4 DEAD DCM 90

5 DEAD DCE 88

6 DEAD toluene 34

7 DEAD CH3CN 65

8 DEAD DMF 52

9[c] DEAD DCM 87

10[d] DEAD DCM 88

11[e] DEAD DCM 82

12[f] DEAD DCM 83

[a] 1a (0.3 mmol), azodicarboxylate (0.33 mmol), 2a (0.33 mmol), NHPI (0.33 mmol), solvent 

(3.0 mL). azodicarboxylate and 2a were added at the same time. [b] Isolated yield. [c] DEAD 

(0.66 mmol). [d] 2a (0.66 mmol). [e] NHPI (0.66 mmol). [f] 1a was treated with DEAD for 1 h, 
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and subsequently 2a and NHPI were added. NHPI = N-Hydroxyphthalimide. DIAD = diisopropyl 

azodicarboxylate. DBAD = di-tert-butyl azodicarboxylate.

The optimization of reaction conditions was initially carried out, with 

2-phenyl-1,2,3,4-tetrahydro-isoquinoline 1a, p-toluene sulfonyl isocyanide 2a and  

N-hydroxyphthalimide (NHPI) as standard substrates. At the outset, DEAD was selected 

as the oxidant in this Ugi-type reaction, which was performed in THF at room 

temperature (25 oC), and the anticipated acyl hydrazide 3a was rapidly obtained within 6 

hours in 60% yield (Table 1, entry 1). When the oxidant was changed to DIAD or 

DBAD, the conversion of 3a sharply decreased to 43% and 13%, respectively (Table 1, 

entries 2−3). Although NHPI was slightly soluble in DCM and DCE, the reaction 

processed smoothly, affording the desired products in excellent yields (Table 1, entries 

4−5). However, yield improvements were not attained when toluene, acetonitrile or DMF 

were used as solvent (Table 1, entries 6−8). Next, the influence of the equivalents was 

investigated. When the equivalent of DEAD, 2a or NHPI was doubled respectively, the 

isolated yields of 3a were almost constant (Table 1, entries 9−11). The adjustment of 

additive sequencedid not improve the reaction yield (Table 1, entries 12). According to 

the above results, the oxidative Ugi-type reaction of 1a (1.0 equiv), 2a (1.1 equiv) and 

NHPI (1.1 equiv), with DEAD (1.1 equiv) as the oxidant, was optimally carried out in 

DCM (0.1 M) at room temperature.
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Scheme 2. Scope of the reaction in terms of substrates 1.

With optimized conditions in hand, we next probed the scope of substrate 1 to 

confirm the generality of this protocol (Scheme 2). Both NHPI and 

N-hydroxysuccinimide (NHS) were employed as the acid component in these reactions, 

which provided 3a-9a and 3b-9b in the presence of 1, 2a and DEAD. The nitrogen-linked 

benzene rings with both electron-donating such as methyl, methoxyl (3a-7a, 3b-7b) and 

electron-withdrawing bromide (8a and 8b) were well tolerated under the 

DEAD-promoted system, affording the desired products in good to excellent yields. 

Notably, little influence of substituent position was observed when the o-, m-, and 

p-methyl or methoxyl-substituted tetrahydro-isoquinoline substrates were used. Similarly, 

the substrate carrying 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline moiety provided 9a 

and 9b in 67% and 59% yields, respectively. In addition, most reactions with NHPI 

provided slightly higher yields than the one with NHS. 
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Scheme 3. Scope of the reaction in terms of isocyanides.

As shown in Scheme 3, a diverse range of isocyanides 2 were next subjected to this 

transformation to survey the reaction compatibility. The isocyanides bearing alkyl groups 

such as cyclohexyl and benzyl gave the corresponding products (10a, 10b, 11a, 11b) in 

moderate yields. Methyl isocyanoacetate, combined with the standard substrate and the 

methyl-substituted derivative, provided four desired products (12a, 12b, 13a, 13b) in 

moderate to good yields. Several aryl isocyanides, including 4-anisyl and 2-naphthyl 

group, could serve as tolerable substrates in the transformation for the successful 

production of the corresponding products (14a-17a, 14b-17b).
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Scheme 4. Further experiments.

To explore the synthetic utility of this methodology, two gram scale reactions 

employing NHPI and NHS were carried out respectively in the presence of 1a, 2a and 

DEAD for 12 h, affording 3a in 86% yield and 3b in 82% yield (the average of three 

runs). Moreover, further structural derivatization of 3a and 3b was conducted (Scheme 

4). The substitution of the tosyl group of 3a by ethoxy group was achieved with the aid of 

NaOH, affording alkoxymethylamide 18 in 81% yield. In this reaction, to our surprise, 

the imide group was spontaneously removed by the strong basic condition. When 

compound 11a was treated as the reactant, the cleavage of the imide group also occurred, 

affording compound 19 in 77% yield. 15 Similarly, the amide compound 19 was obtained 

in 63% yield by the direct cleavage of imide group of 11a, but not by the deprotection of 

phthaloyl group via hydrazinolysis.14 The cleavage of the succinimide moiety in 3b was 

achieved with the treatment of Lewis acid such as AlCl3, affording amide 20 in 59% 
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Scheme 5. Proposed mechanism.

The plausible reaction pathway was illustrated in Scheme 5. The iminium ion A was 

obtained through two tandem steps: The nucleophilic addition initially occured between 1 

and DEAD, and then the corresponding two intermediates in the bracket could be in 

equilibrium with each other by an intramolecular hydrogen transfer and furnish the 

iminium ion A, pairing with its basic counter anion (1H-DEAD anion). Next, the actived 

iminium ion A readily paticipated the Ugi-type reaction with isocyanides and NHPI 

(NHPI could be deprotonated by the 1H-DEAD anion), affording the intermediate B. The 

subsequent Mumm rearrangement occured at the nitrogen of the imide, but not the 

tertiary amine, which completed the oxidative Ugi-type reaction effectively and gave rise 

to acyl hydrazide 3. Notably, during these transformations, DEAD served as the oxidant 

and 1H-DEAD anion served as the base. 

CONCLUSIONS

In conclution, we have developed a novel protocol for the preparation of  

N-alkyl-N-acylaminophthalimide/N-alkyl-N-acylaminosuccinimide via oxidative Ugi 
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reaction upon DEAD promotion, employing tertiary amine-derived iminium ion as an 

imine surrogate, N-hydroxyimide as an acid surrogate. Under the mild conditions, this 

surrogate-combined Ugi reaction proceeded with a broad substrate scope and desired 

functional group tolerance, giving the target compounds in good yields and extending the 

skeletal diversity of the products. The N-alkyl-N-acylaminophthalimide products and the 

N-alkyl hydrazine derivatives, demonstrating potential for further applications in 

medicinal research, are now involved in the ongoing project in our laboratory.

EXPERIMENTAL SECTION

General Methods

1H and 13C NMR spectra were recorded on an ACF* 300Q and 500Q Bruker 

spectrometer. High resolution mass spectra were recorded in electrospray ionization mass 

spectrometry measurements. Reactions were monitored by TLC on silica gel 60 F254 

plates. Column chromatography was carried out on silica gel (200-300 mesh). Data for 

1H NMR are recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = 

doublet, t = triplet, m = multiplet or unresolved, br s = broad singlet, coupling constant 

(s) in Hz, integration). Data for 13C NMR are reported in terms of chemical shift (δ, 

ppm). 

General procedure for synthesis of substrate 1:

2-phenyl-1,2,3,4-tetrahydroisoquinoline (1a): A two-neck flask was charged with 

copper (I) iodide (1.30 g, 6.70 mmol) and potassium phosphate (28.30 g, 133.30 mmol). 
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After the two-neck flask was evacuated and back filled with argon, a solution of 

1,2,3,4-tetrahydroisoquinoline (12.52 mL, 100 mmol) and iodobenzene (7.43 mL, 66.70 

mmol) in isopropanol (100 mL) and ethylene glycol (7.42 mL, 133.30 mmol) was added. 

The mixture was heated at 90 °C for 60~90 h and then allowed to cool to room 

temperature. Diethyl ether (50 mL) and water (50 mL) were added to the reaction. The 

aqueous layer was extracted with diethyl ether (3 × 30 mL). The combined organic layer 

was washed with brine and dried over Na2SO4. The mixture was filtered and evaporated 

under reduced pressure. The residue was purified by flash chromatography (petroleum 

ether/ethyl acetate = 500:1-10:1) to give 2-phenyl- 1,2,3,4-tetrahydroisoquinoline (1a) 

(4.30 g, 31% yield). The other substrates 1b-g could be prepared with the above 

mentioned method. The 1H NMR data were identical with those reported in the literature. 

16-18

2-phenyl-1,2,3,4-tetrahydroisoquinoline (1a): 

N

Off-white solid, 4.30 g, 31% yield. 1H NMR (300 MHz, CDCl3) δ 7.32 (dd, J = 8.5, 7.5 

Hz, 2H), 7.23–7.15 (m, 4H), 7.01 (d, J = 8.0 Hz, 2H), 6.86 (t, J = 7.3 Hz, 1H), 4.44 (s, 

2H), 3.59 (t, J = 5.8 Hz, 2H), 3.01 (t, J = 5.8 Hz, 2H).

2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (1b): 

N
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Light yellow solid, 261 mg, 39% yield. 1H NMR (300 MHz, CDCl3) δ 7.37–7.08 (m, 

6H), 6.95 (d, J = 8.4 Hz, 2H), 4.39 (s, 2H), 3.54 (t, J = 5.8 Hz, 2H), 3.02 (t, J = 5.7 Hz, 

2H), 2.32 (s, 3H). 

2-(m-tolyl)-1,2,3,4-tetrahydroisoquinoline (1c): 

N

Brown oil, 187 mg, 28% yield. 1H NMR (300 MHz, CDCl3) δ 7.25–7.12 (m, 6H), 

6.88-6.79 (m, 2H), 6.68-6.63 (m, 1H), 4.43 (s, 2H), 3.58-3.55 (m, 2H), 3.10-3.02 (m, 

2H), 2.37 (s, 3H). 

2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (1d): 

N

O

White solid, 315 mg, 44% yield. 1H NMR (300 MHz, CDCl3) δ 7.18 – 7.10 (m, 4H), 6.97 

(d, J = 8.8 Hz,, 2H), 6.85 (d, J = 8.8 Hz,, 2H), 4.28 (s, 2H), 3.77 (s, 3H), 3.45-3.40 (m, 

2H), 3.01-2.96 (m, 2H).

2-(2-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (1e): 

N
O

White solid, 142 mg, 20% yield. 1H NMR (300 MHz, CDCl3) δ 7.41 – 7.24 (m, 4H), 7.24 

– 7.15 (m, 2H), 7.15 – 7.03 (m, 2H), 4.48 (s, 2H), 4.07 (s, 3H), 3.59 (t, J = 5.9 Hz, 2H), 

3.16 (t, J = 5.9 Hz, 2H).

2-(4-bromophenyl)-1,2,3,4-tetrahydroisoquinoline (1f): 
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N

Br

White solid, 104 mg, 12% yield. 1H NMR (300 MHz, CDCl3) δ 7.37 (d, J = 8.8 Hz, 2H), 

7.25–7.09 (m, 4H), 6.84 (d, J = 8.9 Hz, 2H), 4.38 (s, 2H), 3.54 (t, J = 5.8 Hz, 2H), 2.99 (t, 

J = 5.8 Hz, 2H).

6,7-dimethoxy-2-phenyl-1,2,3,4-tetrahydroisoquinoline (1g): 

N

O

O

Yellow solid, 121 mg, 15% yield.. 1H NMR (300 MHz, CDCl3) δ 7.30 (t, J = 7.8 Hz, 

2H), 6.99 (d, J = 8.2 Hz, 2H), 6.84 (t, J = 7.2 Hz, 1H), 6.66 (d, J = 3.0 Hz, 2H), 4.35 (s, 

2H), 3.88 (s, 3H), 3.88 (s, 3H), 3.56 (t, J = 5.8 Hz, 2H), 2.91 (t, J = 5.7 Hz, 2H).

General Procedure for the Synthesis of Compounds 3a-17a and 3b-17b 

Compound 1 (0.3 mmol), isocyanide 2 (0.33 mmol), NHPI or NHS (0.33 mmol), and 

CH2Cl2 (3.0 mL) were added to a 10 mL flask. DEAD (52 μL, 58 mg, 0.33 mmol, 1.1 

equiv.) was then added, and the resulting mixture was stirred at room temperature. The 

reaction was monitored by TLC until complete consumption of the starting material was 

observed. The solvent was directly extracted with ethyl acetate (3 x 5 mL) and the 

combined organic layer was washed with saturated NaHCO3 solution  (3 x 10 mL) and 

brine and dried over Na2SO4. After the organic phase removed under reduced pressure, 

the resulting residue was purified by flash chromatography (petroleum ether/ethyl 

acetate, 20:1–2:1) to give the desired product 3a-17a and 3b-17b, which was further 

purified by trituration with diethyl ether or diethyl ether/hexane. 
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N-(1,3-dioxoisoindolin-2-yl)-2-phenyl-N-(tosylmethyl)-1,2,3,4-tetrahydroisoquinoline

-1-carboxamide (3a): 

N

ONTs

NO O

White solid, 152 mg, 90%. m.p. 185–186oC; 1H NMR (300 MHz, CDCl3) δ 7.93 – 7.75 

(m, 4H), 7.61 – 7.49 (m, 1H), 7.36 (t, J = 7.7 Hz, 2H), 7.32 – 7.26 (m, 4H), 7.26 – 7.19 

(m, 1H), 7.16 (d, J = 8.0 Hz, 2H), 7.06 (t, J = 7.4 Hz, 1H), 6.95 (d, J = 7.9 Hz, 2H), 5.61 

(s, 1H), 4.78 (d, J = 14.5 Hz, 1H), 4.41 (d, J = 14.5 Hz, 1H), 3.89 – 3.76 (m, 1H), 3.58 – 

3.40 (m, 1H), 3.23 – 3.07 (m, 1H), 3.07 – 2.90 (m, 1H), 2.34 (s, 3H). 13C NMR (75 MHz, 

CDCl3) δ 164.2, 151.5, 146.6, 137.4, 137.0, 136.5, 132.7, 132.1, 131.8, 131.6, 131.6, 

131.5, 131.2, 130.5, 130.1, 129.5, 126.2, 125.1, 122.2, 70.8, 62.2, 50.4, 31.1, 24.2. 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C32H27N3O5S 566.1744; Found 566.1767.

N-(2,5-dioxopyrrolidin-1-yl)-2-phenyl-N-(tosylmethyl)-1,2,3,4-tetrahydroisoquinolin

e-1-carboxamide (3b): 

N

ONTs

NO O

White solid, 132 mg, 85% yield. m.p. 211–212oC. 1H NMR (300 MHz, CDCl3) δ 7.53 (d, 

J = 7.8 Hz, 2H), 7.42 – 7.13 (m, 9H), 7.12 – 6.97 (m, 2H), 5.53 (s, 1H), 4.76 (d, J = 14.5 

Hz, 1H), 4.49 (d, J = 14.5 Hz, 1H), 3.84 – 3.69 (m, 1H), 3.54 – 3.37 (m, 1H), 3.10 – 2.86 
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(m, 2H), 2.69 (s, 4H), 2.48 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 169.1, 160.6, 148.7, 

144.5, 134.8, 134.5, 130.0, 129.5, 128.8, 128.6, 127.9, 127.5, 126.7, 122.3, 119.3, 68.2, 

59.2, 47.3, 28.1, 25.5, 21.6. HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C28H27N3O5SNa 

540.1564; Found 540.1570.  

N-(1,3-dioxoisoindolin-2-yl)-2-(p-tolyl)-N-(tosylmethyl)-1,2,3,4-tetrahydroisoquinoli

ne-1-carboxamide (4a): 

N

ONTs

NO O

White solid, 158 mg, 91% yield. m.p. 184–186oC. 1H NMR (300 MHz, CDCl3) δ 7.95 – 

7.76 (m, 4H), 7.61 – 7.49 (m, 1H), 7.39 – 7.26 (m, 4H), 7.25 – 7.14 (m, 3H), 7.08 (d, J = 

8.2 Hz, 2H), 6.96 (d, J = 7.9 Hz, 2H), 5.55 (s, 1H), 4.81 (d, J = 14.6 Hz, 1H), 4.40 (d, J = 

14.6 Hz, 1H), 3.87 – 3.73 (m, 1H), 3.50 – 3.36 (m, 1H), 3.21 – 3.07 (m, 1H), 3.07 – 2.93 

(m, 1H), 2.36 (d, J = 2.8 Hz, 6H). 13C NMR (75 MHz, CDCl3) δ 163.2, 148.1, 145.3, 

136.2, 135.8, 133.7, 131.6, 131.5, 130.5, 130.3, 130.0, 129.2, 128.8, 128.2, 125.0, 121.5, 

69.6, 61.3, 49.6, 30.0, 23.0, 22.1. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C33H30N3O5S 580.1901; Found 580.1920. 

N-(2,5-dioxopyrrolidin-1-yl)-2-(p-tolyl)-N-(tosylmethyl)-1,2,3,4-tetrahydroisoquinoli

ne-1-carboxamide (4b): 
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N

ONTs

NO O

White solid, 127 mg, 80% yield. m.p. 186–187oC. 1H NMR (300 MHz, DMSO) δ 7.52 

(d, J = 7.8 Hz, 2H), 7.37 (d, J = 7.6 Hz, 1H), 7.34 – 7.07 (m, 7H), 6.99 (d, J = 8.1 Hz, 

2H), 5.46 (s, 1H), 4.77 (d, J = 14.5 Hz, 1H), 4.47 (d, J = 14.5 Hz, 1H), 3.84 – 3.66 (m, 

1H), 3.50 – 3.29 (m, 2H), 3.13 – 2.87 (m, 1H), 2.69 (s, 4H), 2.48 (s, 3H), 2.34 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 170.5, 162.2, 147.8, 145.8, 136.2, 135.9, 133.5, 131.4, 

130.8, 130.2, 130.0, 129.1, 128.8, 128.0, 121.2, 69.6, 60.9, 49.3, 29.6, 26.9, 23.0, 22.0. 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C29H30N3O5S 532.1901; Found 532.1914. 

N-(1,3-dioxoisoindolin-2-yl)-2-(m-tolyl)-N-(tosylmethyl)-1,2,3,4-tetrahydroisoquinoli

ne-1-carboxamide (5a): 

N

ONTs

NO O

White solid, 142 mg, 82% yield. m.p. 153–155oC. 1H NMR (300 MHz, CDCl3) δ 7.91 – 

7.76 (m, 4H), 7.62 – 7.56 (m, 1H), 7.39 – 7.16 (m, 6H), 7.07 – 6.92 (m, 4H), 6.89 (d, J = 

7.5 Hz, 1H), 5.59 (s, 1H), 4.81 (d, J = 14.7 Hz, 1H), 4.45 (d, J = 14.7 Hz, 1H), 3.89 – 

3.75 (m, 1H), 3.54 – 3.40 (m, 1H), 3.21 – 3.08 (m, 1H), 3.07 – 2.92 (m, 1H), 2.41 (s, 3H), 

2.35 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 161.52, 148.85, 143.92, 139.41, 134.82, 

134.36, 133.94, 130.19, 129.31, 129.15, 129.02, 128.81, 128.50, 127.88, 127.46, 126.83, 
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123.59, 123.34, 120.03, 116.44, 68.15, 59.63, 47.93, 28.58, 21.61, 21.55. HRMS 

(ESI-TOF) m/z: [M + H]+ Calcd for C33H30N3O5S 580.1901; Found 580.1908. 

N-(2,5-dioxopyrrolidin-1-yl)-2-(m-tolyl)-N-(tosylmethyl)-1,2,3,4-tetrahydroisoquinol

ine-1-carboxamide (5b): 

N

ONTs

NO O

White solid, 122 mg, 77% yield. m.p. 175–176oC. 1H NMR (300 MHz, CDCl3) δ 7.51 (d, 

J = 7.9 Hz, 2H), 7.42 (d, J = 7.5 Hz, 1H), 7.33 – 7.12 (m, 6H), 6.98 – 6.76 (m, 3H), 5.50 

(s, 1H), 4.79 (d, J = 14.6 Hz, 1H), 4.52 (d, J = 14.6 Hz, 1H), 3.83 – 3.69 (m, 1H), 3.50 – 

3.34 (m, 1H), 3.12 – 2.87 (m, 2H), 2.69 (s, 4H), 2.48 (s, 3H), 2.37 (s, 3H). 13C NMR (75 

MHz, CDCl3) δ 168.99, 160.52, 148.62, 144.41, 139.36, 134.81, 134.45, 130.06, 129.44, 

129.28, 128.74, 128.53, 127.79, 127.54, 126.68, 123.09, 119.68, 116.12, 68.11, 59.28, 

47.51, 28.25, 25.52, 21.62, 21.57. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C29H30N3O5S 532.1901; Found 532.1918. 

N-(1,3-dioxoisoindolin-2-yl)-2-(4-methoxyphenyl)-N-(tosylmethyl)-1,2,3,4-tetrahydro

isoquinoline-1-carboxamide (6a): 

N

ONTs

NO O

O

White solid, 135 mg, 76% yield. m.p. 112–114oC. 1H NMR (300 MHz, CDCl3) δ 7.93 – 
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7.75 (m, 4H), 7.55 – 7.45 (m, 1H), 7.40 – 7.18 (m, 6H), 7.18 – 7.07 (m, 2H), 7.02 – 6.83 

(m, 4H), 5.44 (s, 1H), 4.85 (d, J = 14.6 Hz, 1H), 4.25 (d, J = 14.6 Hz, 1H), 3.84 (s, 3H), 

3.77 – 3.66 (m, 1H), 3.39 – 3.27 (m, 1H), 3.23 – 3.09 (m, 1H), 3.04 – 2.91 (m, 1H), 2.34 

(d, J = 2.0 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 163.3, 157.6, 145.3, 144.2, 136.0, 

135.7, 135.4, 131.8, 130.5, 130.3, 130.0, 129.1, 128.6, 128.2, 125.0, 124.2, 116.2, 69.5, 

62.4, 56.9, 50.6, 30.3, 22.9. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C33H30N3O6S 

596.1850; Found 596.1867. 

N-(2,5-dioxopyrrolidin-1-yl)-2-(4-methoxyphenyl)-N-(tosylmethyl)-1,2,3,4-tetrahydr

oisoquinoline-1-carboxamide (6b): 

N

ONTs

NO O

O

White solid, 135 mg, 82% yield. m.p. 134–135oC. 1H NMR (300 MHz, CDCl3) δ 7.53 (d, 

J = 7.8 Hz, 2H), 7.44 – 7.12 (m, 6H), 7.07 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 

5.36 (s, 1H), 4.79 (d, J = 14.5 Hz, 1H), 4.34 (d, J = 14.5 Hz, 1H), 3.83 (s, 3H), 3.75 – 

3.61 (m, 1H), 3.38 – 3.22 (m, 1H), 3.17 – 3.01 (m, 1H), 3.01 – 2.85 (m, 1H), 2.68 (s, 4H), 

2.49 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 170.6, 162.3, 157.4, 145.9, 144.0, 136.0, 

135.9, 131.6, 130.8, 130.8, 130.2, 130.0, 129.1, 128.6, 128.0, 124.0, 116.1, 69.5, 61.9, 

56.8, 50.3, 30.1, 26.9, 23.0. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C29H30N3O6S 

548.1850; Found 548.1865. 

N-(1,3-dioxoisoindolin-2-yl)-2-(2-methoxyphenyl)-N-(tosylmethyl)-1,2,3,4-tetrahydro
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isoquinoline-1-carboxamide (7a): 

N

ONTs

NO O

O

White solid, 155 mg, 87% yield. m.p. 180–181oC. 1H NMR (300 MHz, DMSO) δ 7.81 (s, 

4H), 7.43 (d, J = 6.8, 2.2 Hz, 1H), 7.36 – 7.22 (m, 6H), 7.18 (t, J = 7.8 Hz, 1H), 7.03 (t, J 

= 7.6 Hz, 1H), 6.95 (t, J = 7.2 Hz, 3H), 5.86 (s, 1H), 4.87 (d, J = 14.5 Hz, 1H), 4.08 (d, J 

= 14.6 Hz, 1H), 3.95 (s, 3H), 3.89 – 3.76 (m, 1H), 3.42 – 3.28 (m, 1H), 3.25 – 3.12 (m, 

1H), 3.11 – 2.98 (m, 1H), 2.33 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 163.2, 155.0, 145.2, 

138.9, 136.2, 135.6, 132.1, 130.5, 130.4, 130.0, 128.9, 128.6, 127.9, 126.7, 124.9, 124.8, 

122.8, 113.0, 69.4, 59.2, 57.0, 48.6, 30.6, 22.9. HRMS (ESI-TOF) m/z: [M + H]+ Calcd 

for C33H30N3O6S 596.1850; Found 596.1860. 

N-(2,5-dioxopyrrolidin-1-yl)-2-(2-methoxyphenyl)-N-(tosylmethyl)-1,2,3,4-tetrahydr

oisoquinoline-1-carboxamide (7b): 

N

ONTs

NO O

O

White solid, 124 mg, 76% yield. m.p. 168–169oC. 1H NMR (300 MHz, CDCl3) δ 7.52 (d, 

J = 8.2 Hz, 2H), 7.37 – 7.06 (m, 8H), 7.02 – 6.85 (m, 2H), 5.75 (s, 1H), 4.73 (d, J = 14.5 

Hz, 1H), 4.13 (d, J = 14.4 Hz, 1H), 3.91 (s, 3H), 3.86 – 3.70 (m, 1H), 3.37 – 3.22 (m, 

1H), 3.18 – 2.93 (m, 2H), 2.60 (s, 4H), 2.47 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 170.5, 
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170.0, 162.3, 154.7, 145.8, 138.9, 136.2, 136.0, 131.9, 131.1, 130.8, 130.4, 130.1, 128.9, 

128.6, 128.0, 127.8, 126.6, 124.7, 122.8, 112.9, 69.4, 58.7, 56.9, 48.3, 30.4, 26.9, 23.0. 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C29H30N3O6S 548.1850; Found 548.1859. 

2-(4-bromophenyl)-N-(1,3-dioxoisoindolin-2-yl)-N-(tosylmethyl)-1,2,3,4-tetrahydrois

oquinoline-1-carboxamide (8a): 

N

ONTs

NO O

Br

White solid, 145 mg, 75% yield. m.p. 162–164oC. 1H NMR (300 MHz, CDCl3) δ 7.91 – 

7.78 (m, 4H), 7.62 – 7.55 (m, 1H), 7.43 (d, J = 8.5 Hz, 2H), 7.36 – 7.16 (m, 6H), 6.99 

(dd, J = 17.0, 8.1 Hz, 4H), 5.55 (s, 1H), 4.78 (d, J = 14.5 Hz, 1H), 4.38 (d, J = 14.5 Hz, 

1H), 3.85 – 3.72 (m, 1H), 3.52 – 3.37 (m, 1H), 3.26 – 3.07 (m, 1H), 3.07 – 2.92 (m, 1H), 

2.36 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 161.5, 148.1, 144.5, 134.8, 132.7, 132.5, 

130.0, 129.5, 129.2, 129.0, 128.8, 128.5, 128.4, 127.7, 127.4, 127.2, 124.0, 121.0, 68.4, 

59.7, 48.1, 28.8, 21.9. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C32H27N3O5SBr 

644.0849; Found 644.0871. 

2-(4-bromophenyl)-N-(2,5-dioxopyrrolidin-1-yl)-N-(tosylmethyl)-1,2,3,4-tetrahydroi

soquinoline-1-carboxamide (8b): 
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N

ONTs

NO O

Br

White solid, 121 mg, 68% yield. m.p. 167–168oC. 1H NMR (300 MHz, CDCl3) δ 7.49 (d, 

J = 7.9 Hz, 2H), 7.46 – 7.33 (m, 3H), 7.32 – 7.07 (m, 5H), 6.90 (d, J = 8.4 Hz, 2H), 5.46 

(s, 1H), 4.77 (d, J = 14.5 Hz, 1H), 4.45 (d, J = 14.6 Hz, 1H), 3.82 – 3.62 (m, 1H), 3.48 – 

3.32 (m, 1H), 3.12 – 2.86 (m, 2H), 2.69 (s, 4H), 2.48 (s, 3H). 13C NMR (75 MHz, CDCl3) 

δ 170.4, 161.5, 148.9, 146.1, 135.9, 135.7, 133.7, 131.0, 130.9, 130.2, 130.0, 129.4, 

128.9, 128.3, 121.7, 69.5, 60.4, 48.8, 29.6, 26.9, 23.1. HRMS (ESI-TOF) m/z: [M + H]+ 

Calcd for C28H27N3O5SBr 596.0849; Found 596.0855. 

N-(1,3-dioxoisoindolin-2-yl)-6,7-dimethoxy-2-phenyl-N-(tosylmethyl)-1,2,3,4-tetrahy

droisoquinoline-1-carboxamide (9a): 

N

ONTs

NO O

O

O

Light yellow solid, 125 mg, 67% yield. m.p. 142–144oC. 1H NMR (300 MHz, CDCl3) δ 

7.80 (d, J = 3.2 Hz, 4H), 7.36 (t, J = 7.8 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 7.14 (d, J = 

7.9 Hz, 2H), 7.11 – 7.01 (m, 2H), 6.91 (d, J = 7.8 Hz, 2H), 6.64 (s, 1H), 5.45 (s, 1H), 

4.70 (d, J = 14.8 Hz, 1H), 4.52 (d, J = 14.8 Hz, 1H), 3.94 (s, 3H), 3.91 (s, 3H), 3.81 – 

3.66 (m, 1H), 3.41 – 3.25 (m, 1H), 3.21 – 3.04 (m, 1H), 2.85 (d, J = 15.9 Hz, 1H), 2.33 

(s, 3H). 13C NMR (75 MHz, CDCl3) δ 161.8, 149.1, 148.7, 148.3, 144.0, 134.4, 133.8, 
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129.5, 129.1, 128.9, 128.3, 126.6, 123.7, 123.5, 123.0, 121.6, 120.3, 110.9, 109.4, 67.9, 

59.6, 56.0, 55.8, 49.7, 28.8, 21.5. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C34H32N3O7S 626.1955; Found 626.1962. 

N-(2,5-dioxopyrrolidin-1-yl)-6,7-dimethoxy-2-phenyl-N-(tosylmethyl)-1,2,3,4-tetrahy

droisoquinoline-1-carboxamide (9b): 

N

ONTs

NO O

O

O

Light yellow solid, 102 mg, 59% yield. m.p. 148–150oC. 1H NMR (300 MHz, CDCl3) δ 

7.54 – 7.26 (m, 5H), 7.17 (t, J = 8.7 Hz, 3H), 7.06 (t, J = 7.4 Hz, 1H), 6.96 (s, 1H), 6.62 

(s, 1H), 5.39 (s, 1H), 4.67 (s, 2H), 3.92 (s, 3H), 3.87 (s, 3H), 3.80 – 3.63 (m, 1H), 3.40 – 

3.22 (m, 1H), 3.18 – 3.02 (m, 1H), 2.95 – 2.78 (m, 1H), 2.70 (s, 4H), 2.46 (s, 3H). 13C 

NMR (75 MHz, CDCl3) δ 170.14, 162.22, 150.31, 150.04, 149.52, 145.92, 135.69, 

130.84, 130.69, 129.60, 127.83, 124.33, 122.93, 121.61, 112.21, 110.74, 69.23, 60.77, 

57.20, 57.19, 51.12, 30.09, 26.90, 22.97. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C30H32N3O7S 578.1955; Found 578.1967. 

N-cyclohexyl-N-(1,3-dioxoisoindolin-2-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline-1-

carboxamide (10a): 
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N

ON

N OO

White solid, 98 mg, 68% yield. m.p. 136–138oC. 1H NMR (300 MHz, CDCl3) δ 7.97 – 

7.79 (m, 2H), 7.79 – 7.71 (m, 2H), 7.50 – 7.42 (m, 1H), 7.42 – 7.18 (m, 7H), 6.99 (t, J = 

7.3 Hz, 1H), 5.78 (s, 1H), 4.01 (dt, J = 12.6, 6.5 Hz, 1H), 3.69 – 3.50 (m, 2H), 3.11 (t, J = 

5.8 Hz, 2H), 1.54 – 0.60 (m, 10H). 13C NMR (75 MHz, CDCl3) δ 163.3, 152.4, 149.7, 

135.1, 134.1, 132.1, 129.5, 129.0, 128.9, 127.4, 126.2, 123.3, 121.4, 119.5, 57.6, 55.5, 

45.6, 33.8, 33.1, 28.8, 25.5, 23.5. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C30H30N3O3 480.2282; Found 480.2296. 

N-cyclohexyl-N-(2,5-dioxopyrrolidin-1-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline-1

-carboxamide (10b): 

N

ON

N OO

White solid, 46 mg, 35% yield. m.p. 131–132oC. 1H NMR (300 MHz, CDCl3) δ 7.52 – 

7.12 (m, 8H), 6.97 (t, J = 7.2 Hz, 1H), 5.72 (s, 1H), 4.07 – 3.88 (m, 1H), 3.73 – 3.43 (m, 

2H), 3.23 – 2.88 (m, 2H), 2.69 (s, 4H), 1.75 – 1.61 (m, 1H), 1.57 – 1.38 (m, 3H), 1.37 – 

1.00 (m, 4H), 0.90 (s, 2H). 13C NMR (75 MHz, CDCl3) δ 170.0, 151.7, 149.6, 135.1, 

132.0, 129.2, 129.0, 128.8, 127.5, 127.3, 126.2, 121.3, 119.5, 57.5, 55.7, 45.3, 34.0, 33.3, 

25.5, 23.8, 23.7. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C26H30N3O3 432.2282; 
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Found 432.2291. 

N-benzyl-N-(1,3-dioxoisoindolin-2-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline-1-car

boxamide (11a): 

N

ONPh
N OO

White solid, 98 mg, 67% yield. m.p. 86–88oC. 1H NMR (300 MHz, CDCl3) δ 7.92 – 7.76 

(m, 2H), 7.76 – 7.67 (m, 2H), 7.54 (d, J = 7.0 Hz, 1H), 7.39 – 7.26 (m, 4H), 7.26 – 7.14 

(m, 3H), 7.14 – 7.04 (m, 3H), 6.98 (t, J = 7.3 Hz, 1H), 6.84 (s, 2H), 5.80 (s, 1H), 4.60 (d, 

J = 16.1 Hz, 1H), 4.43 (d, J = 16.2 Hz, 1H), 4.03 – 3.87 (m, 1H), 3.74 – 3.55 (m, 1H), 

3.22 – 2.96 (m, 2H). 13C NMR (75 MHz, CDCl3) δ 164.4, 157.9, 150.8, 140.6, 136.6, 

135.6, 132.9, 130.8, 130.7, 130.2, 129.3, 129.0, 128.8, 128.0, 128.0, 127.6, 124.9, 122.7, 

120.0, 59.5, 51.9, 47.8, 30.0. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C31H26N3O3 

488.1969; Found 488.1983. 

N-benzyl-N-(2,5-dioxopyrrolidin-1-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline-1-car

boxamide (11b): 

N

ONPh
N OO

White solid, 70 mg, 53% yield. m.p. 117–118oC. 1H NMR (300 MHz, CDCl3) δ 7.48 (s, 

1H), 7.39 – 7.08 (m, 10H), 7.06 – 6.87 (m, 3H), 5.74 (s, 1H), 4.60 (d, J = 16.0 Hz, 1H), 
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4.44 (d, J = 16.2 Hz, 1H), 4.01 – 3.82 (m, 1H), 3.72 – 3.50 (m, 1H), 3.11 – 2.95 (m, 2H), 

2.68 (s, 4H). 13C NMR (75 MHz, CDCl3) δ 171.3, 157.2, 150.6, 140.9, 136.6, 132.8, 

130.7, 130.2, 129.5, 129.0, 128.9, 128.2, 127.9, 127.8, 122.6, 120.0, 59.4, 52.0, 47.6, 

29.7, 27.0. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C27H26N3O3 440.1969; Found 

440.1980. 

Methyl N-(1,3-dioxoisoindolin-2-yl)-N-(2-phenyl-1,2,3,4-tetrahydroisoquinoline-

1-carbonyl)glycinate (12a): 

N

ONMeOOC
N OO

White solid, 102 mg, 72% yield. m.p. 114–116oC. 1H NMR (300 MHz, CDCl3) δ 7.99 – 

7.80 (m, 2H), 7.80 – 7.54 (m, 3H), 7.52 – 7.14 (m, 7H), 7.02 (t, J = 7.3 Hz, 1H), 5.66 (s, 

1H), 4.14 (d, J = 18.0 Hz, 1H), 4.05 – 3.82 (m, 2H), 3.65 – 3.50 (m, 1H), 3.39 (s, 3H), 

3.22 – 3.08 (m, 1H), 3.08 – 2.93 (m, 1H). 13C NMR (75 MHz, CDCl3) δ 173.7, 170.0, 

158.1, 149.4, 135.3, 134.6, 131.3, 129.7, 129.1, 128.1, 128.0, 127.0, 123.9, 122.1, 119.2, 

59.2, 51.9, 48.9, 47.6, 28.8. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C27H24N3O5 

470.1710; Found 470.1730. 

Methyl N-(2,5-dioxopyrrolidin-1-yl)-N-(2-phenyl-1,2,3,4-tetrahydroisoquinoline-

1-carbonyl)glycinate (12b): 
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N

ONMeOOC
N OO

White solid, 78 mg, 62% yield. m.p. 131–132oC. 1H NMR (300 MHz, CDCl3) δ 7.62 (d, J 

= 7.0 Hz, 1H), 7.41 – 7.22 (m, 4H), 7.22 – 7.07 (m, 3H), 6.99 (t, J = 7.4 Hz, 1H), 5.60 (s, 

1H), 4.15 (d, J = 18.5 Hz, 1H), 3.94 (d, J = 18.5 Hz, 1H), 3.90 – 3.78 (m, 1H), 3.59 (s, 

4H), 3.17 – 2.90 (m, 2H), 2.78 (s, 4H). 13C NMR (75 MHz, CDCl3) δ 170.4, 170.2, 156.9, 

149.3, 135.4, 131.1, 129.7, 129.1, 128.1, 127.0, 121.9, 118.9, 59.1, 52.1, 48.7, 47.3, 28.5, 

26.0. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C23H24N3O5 422.1710; Found 

422.1719. 

Methyl N-(1,3-dioxoisoindolin-2-yl)-N-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline-

1-carbonyl)glycinate (13a): 

N

ONMeOOC
N OO

White solid, 120 mg, 83% yield. m.p. 140–141oC. 1H NMR (300 MHz, CDCl3) δ 7.93 – 

7.81 (m, 2H), 7.81 – 7.63 (m, 3H), 7.50 – 6.99 (m, 7H), 5.61 (s, 1H), 4.15 (d, J = 17.9 

Hz, 1H), 3.94 (d, J = 18.0 Hz, 1H), 3.93 – 3.81 (m, 1H), 3.58 – 3.42 (m, 1H), 3.42 (s, 

3H), 3.27 – 3.07 (m, 1H), 3.08 – 2.92 (m, 1H), 2.35 (s, 3H). 13C NMR (75 MHz, CDCl3) 

δ 169.7, 157.9, 147.0, 135.0, 134.2, 131.5, 131.0, 129.9, 129.4, 128.8, 127.6, 126.6, 

123.5, 119.5, 59.2, 51.5, 48.5, 47.8, 28.6, 20.6. HRMS (ESI-TOF) m/z: [M + H]+ Calcd 
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for C28H26N3O5 484.1867; Found 484.1879. 

Methyl N-(2,5-dioxopyrrolidin-1-yl)-N-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline

-1-carbonyl)glycinate (13b): 

N

ONMeOOC
N OO

White solid, 99 mg, 76% yield. m.p. 177–179oC. 1H NMR (300 MHz, CDCl3) δ 7.64 (d, J 

= 7.1 Hz, 1H), 7.38 – 7.24 (m, 2H), 7.24 – 7.13 (m, 3H), 7.08 (d, J = 8.3 Hz, 2H), 5.54 (s, 

1H), 4.18 (d, J = 17.6 Hz, 1H), 3.94 (d, J = 18.6 Hz, 1H), 3.89 – 3.78 (m, 1H), 3.61 (s, 

3H), 3.54 – 3.40 (m, 1H), 3.18 – 2.91 (m, 2H), 2.79 (s, 4H), 2.33 (s, 3H). 13C NMR (75 

MHz, CDCl3) δ 170.1, 169.9, 156.8, 146.8, 135.0, 131.3, 130.8, 129.9, 128.7, 127.6, 

126.6, 119.2, 59.2, 51.7, 48.3, 47.6, 28.3, 25.6, 20.6. HRMS (ESI-TOF) m/z: [M + H]+ 

Calcd for C24H26N3O5 436.1867; Found 436.1874.

N-(1,3-dioxoisoindolin-2-yl)-N-(4-methoxyphenyl)-2-phenyl-1,2,3,4-tetrahydroisoqui

noline-1-carboxamide (14a): 

N

ON

N OO

O

White solid, 100 mg, 66% yield. m.p. 116–117oC. 1H NMR (300 MHz, CDCl3) δ 7.87 – 

7.78 (m, 2H), 7.76 – 7.66 (m, 2H), 7.48 (d, J = 7.2 Hz, 1H), 7.41 – 7.25 (m, 4H), 7.22 (d, 

J = 7.3 Hz, 1H), 7.10 – 6.88 (m, 3H), 6.65 (d, J = 8.3 Hz, 2H), 6.27 (d, J = 8.4 Hz, 2H), 
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5.71 (s, 1H), 3.74 (s, 4H), 3.62 – 3.47 (m, 1H), 3.10 – 2.82 (m, 2H). 13C NMR (75 MHz, 

CDCl3) δ 162.7, 157.0, 156.4, 149.4, 138.0, 135.7, 134.6, 132.1, 129.5, 129.4, 129.2, 

127.9, 127.6, 126.6, 123.9, 121.5, 121.3, 119.4, 114.2, 58.3, 55.8, 44.9, 28.9. HRMS 

(ESI-TOF) m/z: [M + H]+ Calcd for C31H26N3O4 504.1918; Found 504.1929. 

N-(2,5-dioxopyrrolidin-1-yl)-N-(4-methoxyphenyl)-2-phenyl-1,2,3,4-tetrahydroisoqu

inoline-1-carboxamide (14b): 

N

ON

N OO

O

White solid, 78 mg, 57% yield. m.p. 129–131oC. 1H NMR (300 MHz, CDCl3) δ 7.43 – 

7.33 (m, 1H), 7.33 – 7.22 (m, 4H), 7.22 – 7.15 (m, 1H), 7.02 – 6.88 (m, 3H), 6.69 (d, J = 

8.4 Hz, 2H), 6.32 (d, J = 8.4 Hz, 2H), 5.66 (s, 1H), 3.77 (s, 3H), 3.75 – 3.67 (m, 1H), 

3.61 – 3.46 (m, 1H), 3.05 – 2.81 (m, 2H), 2.71 (s, 4H). 13C NMR (75 MHz, CDCl3) δ 

169.7, 156.5, 149.3, 138.0, 135.7, 132.0, 129.3, 129.2, 127.9, 127.7, 126.6, 121.5, 121.1, 

119.9, 119.2, 114.3, 58.2, 55.9, 44.8, 28.6, 25.9. HRMS (ESI-TOF) m/z: [M + H]+ Calcd 

for C27H26N3O4 456.1918; Found 456.1927. 

N-(1,3-dioxoisoindolin-2-yl)-N,2-bis(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin

e-1-carboxamide (15a): 

N

ON

N OO

O O
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White solid, 117 mg, 73% yield. m.p. 140–141oC. 1H NMR (300 MHz, CDCl3) δ 7.90 – 

7.80 (m, 2H), 7.79 – 7.68 (m, 2H), 7.44 (d, J = 7.2 Hz, 1H), 7.41 – 7.31 (m, 2H), 7.24 (d, 

J = 7.4 Hz, 1H), 7.14 (d, J = 8.9 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 6.65 (d, J = 8.8 Hz, 

2H), 6.19 (d, J = 8.7 Hz, 2H), 5.51 (s, 1H), 3.95 – 3.82 (m, 1H), 3.86 (s, 3H), 3.75 (s, 

3H), 3.50 – 3.35 (m, 1H), 3.12 – 2.89 (m, 2H). 13C NMR (75 MHz, CDCl3) δ 158.4, 

157.5, 157.0, 144.9, 139.2, 136.6, 135.7, 133.3, 130.6, 130.5, 128.8, 128.5, 127.5, 124.9, 

122.7, 115.8, 115.3, 60.8, 57.0, 56.9, 47.6, 30.4. HRMS (ESI-TOF) m/z: [M + H]+ Calcd 

for C32H28N3O4 518.2074; Found 518.2083. 

N-(2,5-dioxopyrrolidin-1-yl)-N,2-bis(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoli

ne-1-carboxamide (15b): 

N

ON

N OO

O O

White solid, 102 mg, 70% yield. m.p. 124–126oC. 1H NMR (300 MHz, CDCl3) δ 7.45 – 

7.16 (m, 4H), 7.07 (d, J = 8.9 Hz, 2H), 6.86 (d, J = 8.9 Hz, 2H), 6.68 (d, J = 8.8 Hz, 2H), 

6.23 (d, J = 8.7 Hz, 2H), 5.46 (s, 1H), 4.00 – 3.81 (m, 1H), 3.85 (s, 3H), 3.78 (s, 3H), 

3.47 – 3.33 (m, 1H), 3.10 – 2.86 (m, 2H), 2.74 (s, 4H). 13C NMR (75 MHz, CDCl3) δ 

168.8, 155.6, 155.0, 142.9, 137.2, 134.6, 131.2, 128.5, 126.8, 126.6, 125.5, 122.8, 120.7, 

113.7, 113.4, 58.6, 55.0, 54.9, 45.4, 28.2, 25.0. HRMS (ESI-TOF) m/z: [M + H]+ Calcd 

for C28H28N3O4 470.2074; Found 470.2080. 

N-(1,3-dioxoisoindolin-2-yl)-N-(naphthalen-2-yl)-2-phenyl-1,2,3,4-tetrahydroisoquin
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oline-1-carboxamide (16a): 

N

ONN

O

O

White solid, 77 mg, 49% yield. m.p. 92–94oC. 1H NMR (300 MHz, CDCl3) δ 7.92 – 7.79 

(m, 2H), 7.78 – 7.66 (m, 3H), 7.65 – 7.56 (m, 2H), 7.51 (d, J = 7.9 Hz, 1H), 7.46 – 7.26 

(m, 6H), 7.22 (d, J = 7.4 Hz, 1H), 7.13 – 7.02 (m, 3H), 6.56 (d, J = 8.0 Hz, 2H), 5.74 (s, 

1H), 3.77 – 3.62 (m, 1H), 3.58 – 3.41 (m, 1H), 3.05 – 2.88 (m, 1H), 2.88 – 2.71 (m, 1H). 

13C NMR (75 MHz, CDCl3) δ 162.3, 156.7, 149.1, 142.0, 135.6, 135.3, 134.3, 133.5, 

131.7, 130.3, 129.1, 128.9, 128.2, 127.6, 127.5, 127.3, 127.2, 126.4, 126.1, 124.5, 123.6, 

121.3, 121.0, 119.4, 116.0, 58.5, 44.9, 28.6. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C34H26N3O3 524.1969; Found 524.1983.

N-(2,5-dioxopyrrolidin-1-yl)-N-(naphthalen-2-yl)-2-phenyl-1,2,3,4-tetrahydroisoqui

noline-1-carboxamide (16b): 

N

ONN

O

O

White solid, 76 mg, 53% yield. m.p. 148–150oC. 1H NMR (300 MHz, CDCl3) δ 7.75 (d, J 

= 7.7 Hz, 1H), 7.62 (d, J = 8.6 Hz, 1H), 7.57 – 7.35 (m, 4H), 7.39 – 7.20 (m, 4H), 7.18 

(d, J = 6.1 Hz, 1H), 7.06 – 6.90 (m, 3H), 6.66 – 6.51 (m, 2H), 5.66 (s, 1H), 3.74 – 3.59 
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(m, 1H), 3.53 – 3.39 (m, 1H), 3.02 – 2.83 (m, 1H), 2.86 – 2.62 (m, 5H). 13C NMR (75 

MHz, CDCl3) δ 169.64, 156.04, 149.36, 142.34, 135.67, 133.88, 131.91, 130.71, 129.41, 

129.18, 128.64, 127.97, 127.86, 127.70, 127.60, 126.64, 126.55, 124.94, 121.45, 121.31, 

119.60, 116.42, 58.72, 45.02, 28.75, 25.93. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C30H26N3O3 476.1969; Found 476.1977. 

N-(1,3-dioxoisoindolin-2-yl)-N-(naphthalen-2-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoqui

noline-1-carboxamide (17a): 

N

ONN

O

O

White solid, 97 mg, 60% yield. m.p. 151–153oC. 1H NMR (300 MHz, CDCl3) δ 7.85 (dd, 

J = 5.5, 3.1 Hz, 2H), 7.81 – 7.68 (m, 3H), 7.58 (t, J = 8.3 Hz, 3H), 7.52 – 7.28 (m, 5H), 

7.21 (d, J = 7.3 Hz, 1H), 7.14 (d, J = 8.3 Hz, 2H), 7.01 (d, J = 8.3 Hz, 2H), 6.57 (dd, J = 

8.6, 2.1 Hz, 1H), 6.48 (s, 1H), 5.63 (s, 1H), 3.87 – 3.68 (m, 1H), 3.55 – 3.37 (m, 1H), 

3.05 – 2.87 (m, 1H), 2.87 – 2.74 (m, 1H), 2.41 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 

161.8, 156.4, 146.5, 141.5, 134.7, 133.8, 132.9, 131.2, 130.7, 129.8, 129.1, 128.6, 128.4, 

127.6, 127.0, 126.9, 126.7, 126.6, 125.7, 125.5, 123.9, 123.1, 120.5, 120.0, 115.6, 58.5, 

44.8, 28.2, 20.2. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C35H28N3O3 538.2125; 

Found 538.2135.

N-(2,5-dioxopyrrolidin-1-yl)-N-(naphthalen-2-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoqui
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noline-1-carboxamide (17b): 

N

ONN

O

O

White solid, 106 mg, 72% yield. m.p. 141–142oC. 1H NMR (300 MHz, CDCl3) δ 7.77 (d, 

J = 7.8 Hz, 1H), 7.64 (d, J = 8.6 Hz, 1H), 7.55 – 7.25 (m, 6H), 7.19 (d, J = 6.6 Hz, 1H), 

7.09 (d, J = 8.2 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 6.61 (dd, J = 8.6, 1.7 Hz, 1H), 6.52 (s, 

1H), 5.58 (s, 1H), 3.80 – 3.67 (m, 1H), 3.48 – 3.37 (m, 1H), 3.02 – 2.86 (m, 1H), 2.86 – 

2.67 (m, 5H), 2.39 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 170.74, 157.36, 148.39, 143.48, 

136.72, 134.96, 133.05, 132.48, 131.76, 131.03, 130.32, 129.64, 128.93, 128.69, 128.65, 

127.61, 127.54, 125.96, 122.42, 121.77, 117.64, 60.26, 46.56, 29.96, 27.01, 22.09. 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C31H28N3O3 490.2125; Found 490.2131.

Gram-Scale Preparation of compound 3a and 3b

A 100 mL flask was charged with the 1a (628 mg, 3 mmol), TosMIC (644 mg, 3.3 

mmol), NHPI (538 mg, 3.3 mmol) and DCM (30 mL). To the flask was added DEAD 

(0.52 mL, 3.3 mmol) dropwise. The resulting mixture was then stirred at room 

temperature. The reaction was monitored by TLC until complete consumption (12h). The 

residue was washed with saturated NaHCO3 (3 x 20 mL) and brine and dried over 

Na2SO4. After the organic phase removed under reduced pressure, the resulting residue 

was purified by flash chromatography (petroleum ether/ethyl acetate, 20:1–2:1) to give 
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the desired product 3a (three runs: 1.46 g, 86.0%; 1.42 g, 83.7%; 1.51 g, 89.0%; Average 

yield: 86%). 

A 100 mL flask was charged with the 1a (628 mg, 3 mmol), TosMIC (644 mg, 3.3 

mmol), NHS (380 mg, 3.3 mmol) and DCM (30 mL). To the flask was added DEAD 

(0.52 mL, 3.3 mmol) dropwise. The resulting mixture was then stirred at room 

temperature. The reaction was monitored by TLC until complete consumption (12h). The 

residue was washed with saturated NaHCO3 (3 x 20 mL) and brine and dried over 

Na2SO4. After the organic phase removed under reduced pressure, the resulting residue 

was purified by flash chromatography (petroleum ether/ethyl acetate, 10:1–1:1) to give 

the desired product 3b (three runs: 1.29 g, 83.1%; 1.31 g, 84.4%; 1.21 g, 77.9%; Average 

yield: 82% ).

Synthesis of compound 18

A suspension of 3a (170 mg, 0.3 mmol) in EtOH (6 mL) was added solid NaOH (24 

mg, 0.6 mmol, 2.0 equiv.). The reaction was stirred at room temperature for 24 h. The 

solvent was directly removed under vacuum. The residue was extracted with ethyl acetate 

and combined organic phase was concentrated in vacuo. The crude product was purified 

by column chromatography (petroleum ether/ethyl acetate = 5:1-2:1) to give 18. 

N-(ethoxymethyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline-1-carboxamide (18): 

N

ON
H

O

18

Colorless glass, 75 mg, 81% yield. 1H NMR (300 MHz, CDCl3) δ 7.69 – 7.59 (m, 1H), 
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7.52 (t, J = 6.8 Hz, 1H), 7.42 – 7.24 (m, 4H), 7.24 – 7.14 (m, 1H), 7.07 – 6.89 (m, 3H), 

5.08 (s, 1H), 4.84 – 4.60 (m, , 2H), 3.90 (dt, J = 11.3, 4.6 Hz, 1H), 3.51 – 3.27 (m, 3H), 

3.22 – 2.92 (m, 2H), 1.09 (t, J = 7.0 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 173.3, 149.2, 

134.5, 132.3, 129.4, 128.8, 127.7, 127.5, 126.7, 119.9, 114.9, 69.9, 65.4, 63.8, 45.3, 28.8, 

14.9. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C19H23N2O2 311.1754; Found 

311.1765. 

Synthesis of compound 19

Method A: A suspension of 11a (146 mg, 0.3 mmol) in EtOH (6 mL) was added 

solid NaOH (24 mg, 0.6 mmol, 2.0 equiv.). The reaction was stirred at room temperature 

for 24 h. The solvent was directly removed under vacuum. The residue was extracted 

with ethyl acetate and combined organic phase was concentrated in vacuo. The crude 

product was purified by column chromatography (petroleum ether/ethyl acetate = 

5:1-1:1) to give 19.

Method B: A suspension of 11a (146 mg, 0.3 mmol) in methanol (3 mL) was added 

0.2 mL hydrazine hydrate (80%). The reaction was stirred at room temperature for 12 h. 

The solvent was directly removed under vacuum. The residue was purified by column 

chromatography (petroleum ether/ethyl acetate = 5:1-1:1) to give 19. 

2-phenyl-N-(tosylmethyl)-1,2,3,4-tetrahydroisoquinoline-1-carbohydrazide (19): 

N

ON
H

19
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Brown glass, 79mg, 77% yield (method A); 65 mg, 63% yield (method B). 1H NMR (300 

MHz, CDCl3) δ 7.80 – 7.62 (m, 1H), 7.42 – 7.17 (m, 8H), 7.14 – 7.03 (m, 2H), 7.03 – 

6.88 (m, 3H), 5.12 (s, 1H), 4.57 – 4.32 (m, 2H), 3.87 (dt, J = 11.1, 4.5 Hz, 1H), 3.35 (td, 

J = 10.7, 4.2 Hz, 1H), 3.20 – 2.90 (m, 2H). 13C NMR (75 MHz, CDCl3) δ 171.7, 148.8, 

137.6, 133.9, 132.1, 128.8, 128.3, 128.0, 127.1, 126.9, 126.8, 126.7, 126.2, 119.2, 114.4, 

65.0, 44.7, 42.9, 28.4. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C23H23N2O 343.1805; 

Found 343.1818.

Synthesis of compound 20

A solution of 3a (170 mg, 0.3 mmol) in DCE (3 mL) was added AlCl3 (120 mg, 0.9 

mmol). The reaction was stirred at room temperature for 48 h. The suspention was 

quenched with 10% NaOH under ice cooling, and the aqueous layer was extracted with 

ethyl acetate and combined organic phase was concentrated in vacuo. The crude product 

was purified by column chromatography (petroleum ether/ethyl acetate = 5:1-2:1) to give 

20.

2-phenyl-N-(tosylmethyl)-1,2,3,4-tetrahydroisoquinoline-1-carboxamide (20): 

N

ON
H

Ts

20

White solid, 74 mg, 59% yield. m.p. 110–112oC. 1H NMR (300 MHz, CDCl3) δ 7.76 (t, J 

= 7.0 Hz, 1H), 7.43 (d, J = 7.9 Hz, 2H), 7.41 – 7.13 (m, 5H), 7.03 (d, J = 8.0 Hz, 2H), 

6.95 (t, J = 7.3 Hz, 1H), 6.84 (d, J = 8.2 Hz, 2H), 5.11 – 4.77 (m, 2H), 4.32 (dd, J = 14.2, 
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5.7 Hz, 1H), 4.09 – 3.88 (m, 1H), 3.39 – 3.11 (m, 2H), 3.11 – 2.94 (m, 1H), 2.35 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 173.6, 150.5, 146.2, 136.2, 135.1, 133.2, 131.1, 130.9, 

130.3, 129.7, 129.1, 129.0, 128.1, 121.4, 116.0, 66.9, 61.4, 46.2, 30.4, 23.0. HRMS 

(ESI-TOF) m/z: [M + H]+ Calcd for C24H25N2O3S 421.1580; Found 421.1593. 
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