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ABSTRACT
In this research, firstly, some derivatives of sulfur containing
[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one have been synthesized and
then they were used for the synthesis of novel derivatives of 6′-
amino-2,9′-dioxo-2′-phenyl-9′H-spiro[indoline-3,8′-pyrano[2,3-d]
[1,3,4]thiadiazolo[3,2-a]pyrimidine]-7′-carbonitriles via a one-pot
three-component condensation reaction of 7-hydroxy-2-phenyl-
5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one derivatives, malononi-
trile and isatin compounds in the presence of DABCO as a organocat-
alyst and under solvent-free conditions. In this report, a new family
of spiro-pyrano-thiadiazolo-pyrimidine derivatives have been syn-
thesized in short reaction times (10–60min) and good to excellent
yields (80–96%). The structures of all synthesizedproducts havebeen
confirmed by IR, 1H NMR, 13C NMR and mass spectrometry, and the
structure of one selected product was characterized by single-crystal
X-ray diffraction studies as well.
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1. Introduction

Recently, one of the main challenges in organic synthesis and medicinal chemistry is
the synthesis of novel heterocyclic systems with potential of biological activity [1–3].
Until now, different approaches have been developed for the synthesis of these valuable
compounds [4–7]. Among them, multicomponent reactions (MCRs) have emerged as a
powerful tool for the synthesis of a wide variety of biologically active heterocyclic com-
pounds andprovide significant advantages over traditionalmethods such as high efficiency,
high selectivity, straightforward reaction design, mild reaction condition, environmental
friendliness and high atom economy [8–10]. These reactions in which several easily avail-
able starting materials combine into a single synthetic operation to form complex organic
structures that are widely used in chemicals and pharmaceuticals [11–17]. Also, during
the past decade, solvent-free reactions have been attracted widespread retention, because
they are in agreement with principle of green and sustainable chemistry [18–22]. Hence,
development and design of efficient and green approaches for synthesis of new biological
compounds is the endless task for chemists and pharmacists.

It is well known that spirooxindole compounds are considered as attractive synthetic
targets in organic chemistry due to the unique conformational and interesting three-
dimensional structural features that are existed in a couple of bioactive compounds as well
as naturally occurring substances [23–25]. In addition, these valuable materials have big
potential in synthetic medicinal chemistry owing to their privileged scaffolds and various
biological activities and pharmacological properties including antimalarial, antimicro-
bial, antifungal, antitubercular, antioxidant, and anticancer activities [26–29]. Besides, the
spiropyran heterocyclic compounds are a core of a wide variety of biologically active com-
pounds and extensively found in nature and show different physiological applications such
as anticancer [30], antimicrobial [31], antibacterial [32,33], and antifungal activities [34].
Representative examples of naturally obtained spirooxindoles are the NITD609 (antibac-
terial agent, Figure 1, I) [35], the MDM2-P53 interaction inhibitor (Figure 1, II) [36], and
MI-77301 (anticancer activity, Figure 1, III) [37].

On the other hand, the heterocyclic systems including pyrimidine ring display inter-
esting biological properties such as antimicrobial, antibacterial, antifungal, antiviral, anti-
cancer activities [38–44], and additionally, high biological activity was also discovered at
annulated derivatives of pyrimidine. On this basis, thiazolopyrimidine derivatives exhibit a
bunch range of biological and pharmaceutical activities such as antibacterial [45], antimi-
crobial [46], anti-inflammatory [47, 48], antihypertensive [49], antinociceptive [50], and
anticancer [51]. For example, the compounds IV and V have been used as anti-HIV-1
and anti-cancer drugs (Figure 1, IV and V) [52,53]. Thereby, based on these excellent and
diverse applications of spirooxindole and thiazolopyrimidine heterocyclic compounds, the
development and introduction of new approaches for the synthesis of these molecules is a
pressing need in modern chemistry [54,55].

Thus, in continuation of our extensive attempts for the synthesis of novel het-
erocyclic molecules from readily available starting materials [56–63] in this study,
firstly, some [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one derivatives (3a-d) have been syn-
thesized based on heteroatom chemistry (Scheme 1) and then, they were employed for
the synthesis of novel 6′-amino-2,9′-dioxo-2′-phenyl-9′H-spiro[indoline-3,8′-pyrano[2,3-
d][1,3,4]thiadiazolo[3,2-a]pyrimidine]-7′-carbonitrile derivatives (6a-q) via a one-pot
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Figure 1. Selected biologically active compounds containing spirooxindole and thiazolopyrimidine
moiety.

Scheme 1. Synthesis of 7-hydroxy-2-phenyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one (3a-d).

Scheme 2. Synthesis of 6′-amino-2,9′-dioxo-2′-phenyl-9′H-spiro[indoline-3,8′-pyrano[2,3-d][1,3,4]
thiadiazolo[3,2-a]pyrimidine]-7′-carbonitrile derivatives (6a-q).

three-component reaction of different 7-hydroxy-2-phenyl-5H-[1,3,4]thiadiazolo[3,2-
a]pyrimidin-5-one (3a-d), isatin derivatives (4a-k), and malononitrile (5) in the pres-
ence of DABCO under solvent-free conditions. To the best of our knowledge, this is
the first report for the synthesis of this kinds of products using 7-hydroxy-2-phenyl-
5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one as an effective heterocyclic 1,3-dicarbonyl
compound (Scheme 2).
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2. Results and discussions

At the outset and to find the optimized reaction conditions, the three-component reac-
tion of heterocyclic-1,3-dione (3a), isatin (4a), and malononitrile (5) was selected as a
model reaction to synthesis of product 6a (Table 1). Then, in the first experiment, the
model reaction has been performed in the absence of catalyst under solvent-free condi-
tion at 100°C. The yield of the reaction was trace even after 24 h running the reaction
(Table 1, entry 1). Afterwards and in the second experiment, the model reaction was
examined in different catalysts including K2CO3, pipyridine,N,N-dimethylaminopyridine
(DMAP), 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU), diisopropylethylamine (DIPEA)
and 1,4-diazabicyclo[2.2.2]octane (DABCO) (Table 1, entries 2–7). The highest yield of
product 6a was obtained in the presence of DABCO as a Lewis basic catalyst (Table 1,
entry 7). After finding the best catalyst, in the next experiment, its amount has been opti-
mized (Table 1, entries 7–9). Surprisingly, the highest amount of product 6a was prepared
in the presence of 10mol% of DABCO (93%) and the yields of the reaction were decreased
to 85 and 87% in the lower and upper amount of DABCO, respectively (Table 1, entries 8
and 9). Evaluation of the effect of solvent was the next experiment. As a result, the model
reaction was carried out in the presence of different polar and nonpolar solvents like H2O,
EtOH,MeOH,MeCN, THF andDMF, andmore importantly solvent-free condition (Table
1, entries 1–15). Among these, the best condition was solvent-free in term of yield and time
of the reaction. The last experiment was the optimization of temperature. So, the model
reaction was tested in various temperatures including 80°C, 100°C and 120°C (Table 1,
entries 16 and 17). 100°C was the best temperature and with decrease the temperature to

Table 1. Optimization of reaction conditions for the synthesis of compound 6a.

Entry Catalyst (mol%) Condition Temperature (°C) Yield (%)a Time (h)

1 – Solvent-free 100 trace 24
2 K2CO3 Solvent-free 100 86 5.0
3 Bipyridine Solvent-free 100 47 2.0
4 DMAP Solvent-free 100 89 4.0
5 DBU Solvent-free 100 57 2.0
6 DIPEA Solvent-free 100 85 3.0
7 DABCO (10) Solvent-free 100 93 25 (min)
8 DABCO (5) Solvent-free 100 85 25 (min)
9 DABCO (20) Solvent-free 100 87 25 (min)
10 DABCO (10) H2O reflux 52 3.0
11 DABCO (10) EtOH reflux 84 1.0
12 DABCO (10) MeOH reflux 85 2.0
13 DABCO (10) MeCN reflux 86 7.0
14 DABCO (10) THF reflux 82 1.0
15 DABCO (10) DMF 80 84 1.0
16 DABCO (10) Solvent-free 80 82 25 (min)
17 DABCO (10) Solvent-free 120 93 25 (min)
aIsolated yield.
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80°C, the yield of the reaction was reduced to 82 after 25min running the reaction (Table
1, entry 16). Therefore, the optimized reaction condition for the synthesis of product 6a
was the use of 10mol% DABCO under solvent-free condition at 100°C (Table 1, entry 7).

Thereupon, the scope of the reaction has been investigated for the synthesis of a number
of spiro-pyrano-thiadiazolo-pyrimidine derivatives (6a-q) via a one-pot three-component
condensation reaction of different 1,3-dicarbonyl compounds (3a-d), various isatin deriva-
tives (4a-k), and malononitrile (5) under solvent-free condition at 100°C (Table 2). All

Table 2. Synthesis of different 6′-amino-2,9′-dioxo-2′-phenyl-9′H-spiro[indoline-3,8′-pyrano[2,3-
d][1,3,4]thiadiazolo[3,2-a]pyrimidine]-7′-carbonitrile derivatives 6a-q.a

aReaction condition: 7-hydroxy-2-phenyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one derivatives 3a-d (1.0mmol), isatin
derivatives 4a-k (1.0mmol), malononitrile 5 (1.2mmol) and DUBCO (10mol%) at 100°C under solvent-free condition
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Scheme 3. Proposed mechanism for the synthesis of spiro-pyrano-thiadiazolo-pyrimidine derivatives
in the presence of DABCO as a Lewis base catalyst.

isatin derivatives and heterocyclic1,3-diones with electron-withdrawing and electron-
donating groups gave the desired products with high yields (80–96%) in short reaction
times (10 to 60min) (Table 2).

To better understanding the reaction mechanism and effect of DABCO as a Lewis base
catalyst on this reaction [64], a plausible mechanism has been proposed for the synthe-
sis of spiro-pyrano-thiadiazolo-pyrimidine derivatives (Scheme 2). As can be seen in this
scheme, in the first step, from the condensation reaction of isatin (4) and malononitrile
(5), the intermediate (A) was formed. On the other hand, the DABCO can act as a strong
nucleophile and attacks to heterocyclic-1,3dione (3) to produce the active intermediate
(B). Next, this active intermediate is ready to react with intermediate (A) via Michael
addition to generate the intermediate (C). Finally, after remove the DABCO and 6-exo-
dig-cyclization reaction of intermediate (C) and (D), respectively, the desired product (6)
was generated (Scheme 3).

An ORTEP diagram of 6c characterized by single crystal X-ray analysis (Figure 2). As
depicted in this figure, the chemical structure and the stereochemistry of product 6c con-
firmed successfully (CCDC 1527745): C30H20N6O3S: MW = 545. For more information
about X-ray crystallographic data of compound 6c, please see the supporting file.

3. Conclusion

In summary, in this study an efficient and fast procedure has been described for the
synthesis of novel derivatives of spiro-pyrano-thiadiazolo-pyrimidine through one-pot
three-component assembly of isatin derivatives, malononitrile, and some heterocyclic-1,3-
dione in the presence of DABCO as a catalyst and under solvent-free condition. Simple and
fast synthetic procedure, short reaction times, high to excellent isolated yields and carry
out the reactions without using any hazardous solvents are the most advantages of present
research.
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Figure 2. ORTEP structures of compound 6c.

4. Experimental

4.1. Materials

All the starting materials have been purchased from Sigma-Aldrich andMerck companies
without any further purification. Melting points were recorded on an Electrothermal-type
9100 melting point apparatus and are uncorrected. The IR spectra were obtained on an
Avatar 370 FT-IR Thermo-Nicolet spectrometer. 1H and 13C NMR spectra were run on
BRUKERDRX-300 AVANCE spectrometer at 300 for 1HNMR, and 75MHz for 13CNMR
DMSO-d6 was used as solvent. The mass spectra were scanned on a Varian Mat CH-7
at 70 eV. Elemental analysis was performed on a Thermo Finnigan Flash EA microanal-
yser. X-ray crystal structure data were collected on a Bruker D8 VENTURE PHOTON 100
CMOS diffractometer with graphite monochromated Cu Kα radiation at 296(2) K. Isatin
derivatives were prepared by known methods [65,66].

4.2. Typical procedure for the synthesis of heterocyclic-1,3dione (3)

In order to synthesis of compound 3, initially, the enamine 1was prepared according to the
following procedure; 9.0mL trifluoroacetic acid was added to a mixture of 3.0 g thiosemi-
carbazide and 3.06 g benzonitrile derivatives, and then themixture was refluxed at 75°C for
6 h. After completion the reaction, the reaction was permitted to cool to room temperature
andnext, 10mL ammoniumhydroxide solutionwas added droppingly and themixturewas
stirred constantly. The formed resulting precipitate was separated from the reaction mix-
ture by simple filtration and washed many times with hot EtOH and after recrystallization
with EtOH, it was dried in vacuum oven to afford the enamine 1 [67]. Afterwards, in order
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to synthesis of heterocyclic-1,3-dione, the prepared enamine 1 (5.0mmol) was added to
a solution of bis(2,4,6-trichlorophenyl) malonate 2 (5.0mmol) in 10mL acetone and this
mixture was stirred at room temperature for 3 h. After completion the reaction the result-
ing precipitate has been separated from the reactionmixture by simple filtration and finally
it was recrystallized with the mixture of chloroform/ethanol (10:10mL) to afford the final
product of heterocyclic-1,3-dione (3).

Spectral data for compound (3):
White powder; Mp: 274–277°C, 0.2 g, yield 81%; Rf (1:1 n-hexane/EtOAc) 0.68; IR (KBr)
(υmax/cm–1): 3076, 2869, 2745, 2657, 2568, 2504 (OH), 1661.38 (1C=O); 1H NMR
(300.84MHz, DMSO-d6): δ (ppm): 5.44 (1H, s, CH), 7.58–7.67 (3H,m,CHarom), 7.93 (2H,
d, 3JH,H = 6.016Hz, CHarom), 11.95 (1H, br, s, OH); 13C NMR (75.65MHz, DMSO-d6):
δ (ppm): 86.10 (CH– C=O), 127.64, 128.72, 130.03 (5CHarom of phenyl), 133.07 (Carom),
157.93 (N=C–N), 157.24 (N–C=O), 168.39 (N–C–OH), 162.35 (N=C–S); MS: (m/z,
%), 245 (M+, 28), 242, (100), 202 (99), 120 (88), 104 (87), 77 (92), 69 (95), 51 (87), 39 (49),
29 (87).

4.3. Typical procedure for the spiro-pyrano-thiadiazolo-pyrimidine derivatives
4a-q

A mixture of heterocyclic-1,3-diones 3a-d (1.0mmol), isatin derivatives 4a-k (1.0mmol)
andmalononitrile 5 (1.2mmol) was stirred under solvent-free condition at 100°C for 10 to
60min. The progress of the reaction was monitored by TLC. After finalization of the reac-
tion, the reaction mixture was cooled to room temperature and thereafter the precipitated
product was separated from the reaction mixture by simple filtration and washed three
times with EtOH (20mL). The obtained crude products were more purified by crystalliza-
tion (EtOH) to afford the final product 6a-q. The structures of all synthesized products have
been confirmed by IR, 1H NMR, 13C NMR, mass spectrometry, CHN analysis, and also a
structure of one selected product has been characterized by single-crystal X-ray diffraction
studies as well.

The chemical structure of all prepared products have been characterized withmass, FT-
IR, 1HNMR, 13CNMR, andCHN analysis (see Supporting Information). For example, the
1HNMR spectrum of product (6a) exhibited two doublet and two triplet with four protons
for the protons related to isatin ring at δ = 687–7.22, a singlet with two protons for NH2 at
δ = 7.49, one multiplet (3H) and one doublet (2H) for the protons related to phenyl ring
of thiadiazolopyrimidine moiety at δ = 7.60–792, and finally a singlet with one proton for
NH at δ = 10.66. Moreover, the FT-IR was another analysis to approve the structures of all
synthesized products. In this regard, the IR absorption peak at 3429 cm−1 is assigned to the
NH group, the peak at 2197 cm−1 is belongs to CNmoiety and the peaks at 1723 and 1698
are attributed to the C=O functional groups. In addition, the carbonNMR spectrumof 6a
showed 20 distinct C NMR signal particularly carbonyls at δ = 158.9 and 177.8 ppm and
cyanide at δ = 117.8 ppm. Besides, the mass spectrometry of all synthesized compounds
exhibited the molecular ion peaks at relevantm/z values.

Spectral data for compound (6a):
Gray powder; Mp: 300°C, 0.41 g, yield 93%; Rf (1:3 n-hexane/EtOAc) 0.42; FT-IR (KBr)
(υmax/cm−1): 3649, 3429, 3313, 3289, 3186, 2197 (CN), 1723, 1698 (2 C=O); 1H NMR
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(300.84MHz, DMSO-d6): δ (ppm): 10.66 (s, 1H, NH), 7.92 (d, 2H, 3JHH = 6.9Hz, HAr),
7.71-7.60 (m, 3H, HAr), 7.49 (s, 2H, NH2), 7.22 (t, 1H, 3JHH = 7.4Hz, HAr), 7.10 (d,
1H, 3JHH = 7.2Hz, HAr), 6.94 (t, 1H, 3JHH = 7.5Hz, HAr), 6.87 (d, 1H, 3JHH = 7.5Hz,
HAr); 13C NMR (75.65MHz, DMSO-d6): δ (ppm): 48.7 (Cspiro), 57.0 (=C-CN), 96.5
(=C-C=O), 109.8 (CHAr), 117.8 (CN), 122.3, 124.4, 127.8, 128.3, 129.1, 130.1 (8 CHAr),
133.5, 133.7, 142.7 (3 CAr), 154.8 (N-C=N), 158.9 (C=O), 159.6 (=C-NH2), 159.9 (N-
N=C), 161.9 (CO-C=C-O), 177.8 (C=Oisa); MS: (m/z, %), 441 (M+, 21), 194 (100), 28
(99), 202 (97), 77 (78), 167 (74), 243 (73), 103 (72), 139 (62), 334 (42), Anal. Calcd for
C22H12N5O3S(440.43): C,60.00; H, 2.75; N,19.08%. Found: C, 60.28; H, 3.03; N, 18.95%.

Spectral data for compound (6b):
Milky powder; Mp: 300°C, 0.42 g, yield 94%; Rf (1:3 n-hexane/EtOAc) 0.37; FT-IR
(KBr)(υmax/cm−1): 3426, 3358, 3325, 3293, 3248, 3198, 3023, 2194 (CN), 1731, 1690 (2
C=O); 1H NMR (300.84MHz, DMSO-d6): δ (ppm): 10.65 (s, 1H, NH), 7.82 (d, 2H,
3JHH = 7.8Hz, HAr), 7.48–7.43 (m, 4H, HAr, NH2), 7.21 (t, 1H, 3JHH = 7.7Hz, HAr), 7.10
(d, 1H, 3JHH = 7.5Hz, HAr), 6.93 (t, 1H, 3JHH = 7.5Hz, HAr), 6.86 (d, 1H,3JHH = 7.8Hz,
HAr), 2.41 (s, 3H, CH3); 13C NMR (75.65MHz, DMSO-d6): δ (ppm): 21.6 (CH3), 48.7
(Cspiro), 57.0 (=C-CN), 96.4(=C-C=O), 109.7 (CHAr), 117.7 (CN), 122.3, 124.4, 125.6,
127.7, 129.0 (7 CHAr), 130.7, 133.7, 142.7, 144.0 (4 CAr), 154.8 (N-C=N), 158.8 (C=O),
159.6 (=CNH2), 159.8 (N-N=C), 161.8 (CO-C=C-O), 177.8 (C=O isa); MS: (m/z, %),
453 (M+, 5), 206 (100), 28 (97), 116 (57),192 (57), 133 (46), 331 (43), 215 (33), 65 (20),
Anal. Calcd for C23H14N6O3S (365.06): C, 60.79; H, 3.11; N,18.49%. Found: C, 60.62; H,
2.94; N, 18.65%.

Spectral data for compound (6c):
White powder; Mp: 300°C, 0.51 g, yield 94%; Rf = 0.53 (1:3 n-hexane/EtOAc); FT-IR
(KBr)(υmax/cm−1): 3485, 3381, 3183, 3060, 3036, 2917, 2200 (CN), 1710, 1654 (2 C=O),
1H NMR (300MHz, DMSO-d6): δ (ppm): 7.83 (d, 2H,3JHH = 8.1Hz, HAr), 7.58–7.52
(m, 4H, HAr, NH2), 7.44 (d, 2H, 3JHH = 8.1Hz, HAr), 7.38–7.29 (m, 3H, HAr), 7.23–7.19
(m, 2H, HAr), 7.00 (t, 1H, 3JHH = 7.5Hz, HAr), 6.79 (d, 1H, 3JHH = 7.5Hz, HAr), 5.04
(1H, d,2JHH = 16.2Hz, PhCHAHB), 4.94 (1H, d,2JHH = 15.9Hz, PhCHAHB), 2.41 (s, 3H,
CH3);13C NMR (75MHz, DMSO-d6): δ (ppm): 21.6 (CH3), 44.0 (Cspiro), 48.5 (CH2), 56.7
(=C-CN), 96.3 (=C-C=O), 109.4 (CN), 117.8, 123.2, 124.3, 125.6, 127.6, 127.7, 127.8,
128.9, 129.1 (13CHAr), 130.7, 132.9, 136.5, 143.3 (4 CAr), 144.1 (N-C=N), 154.9 (C=O),
158.9 (CAr), 159.7 (=CNH2), 160.0 (N-N=C), 162.0 (CO-C=C-O), 176.5 (C=Oisa);
MS: (m/z, %), 544 (M+, 19), 90 (100), 280 (78), 64 (75), 253 (72), 451 (72), 39 (71), 215 (70),
116 (51), 133 (39). Anal. Calcd for C30H20N6O3S (544.59): C, 66.17; H, 3.70; N, 15.43%.
Found: C, 66.30; H, 3.54; N, 15.25%.
Spectral data for compound (6d):
White powder; Mp: 300°C, 0.42 g, yield 89%; Rf (1:3 n-hexane/EtOAc) 0.47; FT-IR
(KBr)(υmax/cm−1): 3497, 3377, 3186, 3052, 3031, 2974, 2880, 2202 (CN), 1714, 1657 (2
C=O), 1H NMR (300MHz, DMSO-d6): δ (ppm): 7.79 (d, 2H,3JHH = 7.8Hz, HAr), 7.55
(s, 2H, NH2), 7.42 (d, 2H, 3JHH = 7.8Hz, HAr), 7.33 (t, 1H, 3JHH = 7.7Hz, HAr), 7.16
(d, 1H, 3JHH = 7.5Hz, HAr), 7.10-7.00 (m, 2H, HAr), 3.23 (s, 3H, N-CH3), 2.40 (s, 3H,
CH3); 13C NMR (75MHz, DMSO-d6): δ (ppm): 21.6 (CH3), 27.0 (N-CH3), 48.3 (Cspiro),
56.5 (=C-CN), 96.4 (=C-C=O), 108.7 (CHAr), 117.6 (CN), 123.0, 124.1, 125.6, 127.7,
129.3 (7 CHAr), 130.7, 132.9, 144.1, 144.3 (CAr), 154.7 (N-C=N), 158.7 (C=O), 159.6
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(=CNH2), 160.0 (N-N=C), 161.9 (CO-C=C-O), 176.3 (C=O isa); MS: (m/z, %), 468
(M+, 12), 206 (100), 220 (93), 28 (90), 152 (74), 255 (73), 116(56), 90(50), 133(42), 467(37),
Anal. Calcd for C24H16N6O3S (468.48): C, 61.53; H, 3.44; N, 17.94%. Found: C, 61.62; H,
3.24; N, 18.15%.

Spectral data for compound (6e):
White powder; Mp: 300°C, 0.45 g, yield 94%; Rf (1:3 n-hexane/EtOAc) 0.48; FT-IR
(KBr)(υmax/cm−1): 3489, 33.77, 3190, 3064, 3032, 2984, 2937, 2880, 2199 (CN), 1709, 1656
(2 C=O); 1H NMR (300.84MHz, DMSO-d6): δ (ppm): 7.80 (d, 2H,3JHH = 7.8Hz, HAr),
7.53 (s, 2H, NH2), 7.41 (d, 2H, 3JHH = 7.8Hz, HAr), 7.32 (t, 1H, 3JHH = 7.5Hz, HAr), 7.17
(d, 1H, 3JHH = 7.2Hz,HAr), 7.12 (d, 1H, 3JHH = 7.8Hz,HAr), 7.01 (t, 1H, 3JHH = 7.4Hz,
HAr), 3.80 (q, 2H, 3JHH = 13.8Hz,3JHH = 6.9Hz,CH2-CH3), 2.39 (s, 3H, CH3), 1.24 (t,
3H,3JHH = 6.9Hz, CH2-CH3); 13C NMR (75.65MHz, DMSO-d6): δ (ppm): 17.5 (CH2-
CH3), 26.3 (CH3), 39.8 (CH2), 53.0 (Cspiro), 61.4 (=C-CN), 101.1 (=C-C=O), 113.5
(CN), 122.3, 127.6, 129.0, 130.3, 132.5, 134.0 (8 CHAr), 135.4, 137.9, 147.9 (3CAr), 148.9
(N-C=N), 159.5 (C=O), 163.5 (CAr), 164.3 (=CNH2), 164.7 (CO-C=C-O), 166.6 (N-
N=C), 180.5 (C=O isa);MS: (m/z,%), 483 (M+, 52), 206 (100), 221 (72), 454 (69), 29 (68),
426 (42), 117 (38), 179 (36), 91 (29), 256 (15), Anal. Calcd for C25H18N6O3S (482.51): C,
62.23; H, 3.76; N, 17.42%. Found: C, 62.12; H, 3.94; N, 17.65%.

Spectral data for compound (6f):
Gray powder; Mp: 298°C, 0.39 g, yield 87%; Rf (1:3 n-hexane/EtOAc) 0.34; FT-IR
(KBr)(υmax/cm−1): 3649, 3427, 3317, 3289, 3187, 2913, 2860, 2200 (CN), 1724, 1699
(2 C=O); 1H NMR (300.84MHz, DMSO-d6): δ (ppm): 10.56 (s, 1H, NH), 7.92 (d,
2H, 3JHH = 6.6Hz, HAr), 7.71-7.60 (m, 3H, HAr), 7.48 (s, 2H, NH2), 7.02 (d, 2H,
3JHH = 6.0Hz, HAr), 6.93 (s, 1H, HAr), 6.76 (d, 1H,3JHH = 7.8Hz, HAr), 2.21 (s, 3H,
CH3); 13C NMR (75.65MHz, DMSO-d6): δ (ppm): 21.1 (CH3), 48.7 (Cspiro), 57.2 (=C-
CN), 96.6 (=C-C=O), 109.5 (CN), 117.8, 124.9, 127.8, 128.4, 129.3, 130.2 (8 CHAr),
131.1, 133.5, 133.8, 140.3 (4CAr), 154.8 (N-C=N), 158.8 (C=O), 159.6 (=CNH2), 159.8
(N-N=C), 161.9 (CO-C=C-O), 177.7 (C=O isa); MS: (m/z, %), 455 (M+, 6), 176 (100),
207 (97), 243 (74), 28 (72), 153 (72), 126 (72), 102 (72), 66 (72), 44 (62), Anal. Calcd for
C23H14N6O3S (454.46):C, 60.70; H, 3.11; N, 18.49%. Found: C, 60.62; H, 2.94; N, 18.36%.

Spectral data for compound (6g):
White powder; Mp: 297°C, 0.45 g, yield 94%; Rf (1:3 n-hexane/EtOAc) 0.60; FT-IR
(KBr)(υmax/cm−1): 3457, 3325, 3183, 3052, 2987, 2933, 2880, 2199 (CN), 1704, 1656
(2 C=O); 1H NMR (300MHz, DMSO-d6): δ (ppm): 7.74-7.70 (m, 2H, HAr), 7.52-
7.48 (m, 4H, HAr, NH2), 7.32 (t, 1H, 3JHH = 7.4Hz, HAr), 7.17 (d, 1H, 3JHH = 6.3Hz,
HAr), 7.11 (d, 1H, 3JHH = 7.82Hz, HAr), 7.01 (t, 1H, 3JHH = 7.4Hz, HAr), 3.80 (q, 2H,
3JHH = 14.1Hz,3JHH = 6.9Hz, CH2-CH3), 2.40 (s, 3H, CH3), 1.24 (t, 3H,3JHH = 6.9Hz,
CH2-CH3); 13C NMR (75MHz, DMSO-d6): δ (ppm): 12.7 (CH2-CH3), 21.2 (CH3), 35.0
(CH2), 48.2 (Cspiro), 56.7 (=C-CN), 96.4 (=C-C=O), 108.7 (CN), 117.5, 122.8, 124.3,
125.0, 128.1, 128.3, 129.3, 130.0, (8 CHAr), 133.1, 134.2, (2CAr), 139.8 (N-C=N), 143.2
(CAr), 154.8 (C=O), 158.8 (CAr), 159.7 (=CNH2), 159.9 (CO-C=C-O), 161.9 (N-
N=C), 175.8 (C=O isa); MS: (m/z, %), 483 (M+, 23), 29 (99), 190 (97), 206 (74), 118
(81), 74 (80), 216 (68), 256 (60), 91 (51), 134 (50), Anal. Calcd for C25H18N6O3S (482.51):
C, 62.23; H, 3.76; N, 17.42%. Found: C, 62.32; H, 3.58; N, 17.15%.
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Spectral data for compound (6h):
Milky powder; Mp: 293°C, 0.43 g, yield 96%; Rf (1:3 n-hexane/EtOAc) 0.43; FT-IR
(KBr)(υmax/cm–1): 3649, 3501, 3444, 3375, 3187, 2199 (CN), 1725, 1651 (2 C=O); 1H
NMR (300MHz, DMSO-d6): δ (ppm): 10.65 (s, 1H, NH),7.74-7.71 (m, 2H, HAr), 7.51-
7.49 (m, 4H, HAr, NH2), 7.22 (t, 1H, 3JHH = 7.7Hz, HAr), 7.10 (d, 1H, 3JHH = 7.22Hz,
HAr), 6.94 (t, 1H, 3JHH = 7.4Hz, HAr), 6.87 (d, 1H, 3JHH = 7.5Hz, HAr), 2.40 (s, 3H,
CH3); 13C NMR (75MHz, DMSO-d6): δ (ppm): 21.2 (CH3), 48.7 (Cspiro), 57.0 (=C-CN),
96.5 (=C-C=O), 109.7 (CHAr), 117.7 (CN), 122.3, 124.4, 125.0, 128.2, 128.3, 129.1, 130.1
(7CHAr), 133.7, 134.2, 139.8 (3CAr), 142.8 (N-C=N), 154.8 (CAr), 158.8 (C=O), 159.7
(=CNH2), 159.8 (N-N=C), 161.9 (CO-C=C-O), 177.8 (C=O isa); MS: (m/z, %), 454
(M+, 2), 29 (100), 194 (80), 66 (57), 39 (56), 90 (50), 134 (47), 116 (33), 216 (31), 167 (31),
Anal. Calcd for C23H14N6O3S (454.46): C, 60.79; H, 3.11; N, 18.49%. Found: C, 60.82; H,
3.38; N, 18.31%.

Spectral data for compound (6i):
Milky powder; Mp: 281°C, 0.46 g, yield 95%; Rf (1:3 n-hexane/EtOAc) 0.59; FT-IR
(KBr)(υmax/cm−1): 3489, 3369, 3187, 3015, 2962, 2917, 2872, 2201 (CN), 1716, 1703 (2
C=O); 1H NMR (300.84MHz, DMSO-d6): δ (ppm): 7.79-7.70 (m, 2H, HAr), 7.53-7.49
(m, 4H, HAr, NH2), 7.13 (d, 1H, 3JHH = 6.3Hz, HAr), 6.99-6.95 (m, 2H, HAr), 3.20 (s,
3H, N-CH3), 2.40 (s, 3H, CH3), 2.24 (s, 3H,CH3); 13C NMR (75.65MHz, DMSO-d6): δ
(ppm): 21.1 (CH3), 21.2 (CH3), 26.9 (N-CH3), 48.4 (Cspiro), 56.6 (=C-CN), 96.6 (=C-
C=O), 108.4 (CN), 117.7, 124.8, 125.0, 128.2, 128.3 (5 CHAr), 129.5 (CAr), 130.1, 132.0
(2 CHAr), 134.2, 139.8 (2CAr), 142.0 (N-C=N), 154.8, 158.7 (2 CAr), 159.7 (C=O), 159.9
(=CNH2), 160.0 (N-N=C), 162.0 (CO-C=C-O), 176.2 (C=O isa); MS: (m/z, %), 482
(M+, 21), 29 (100), 232 (100), 257 (51), 217 (50), 167 (36), 190 (25), 118 (22), 91 (18), 66
(15), 44 (13). Anal. Calcd for C25H18N6O3S (482.51): C, 62.23; H, 3.76; N, 19.42%. Found:
C, 62.42; H, 3.88; N, 19.15%
Spectral data for compound (6j):
Gray powder; Mp: 300°C, 0.47 g, yield 88%; Rf (1:3 n-hexane/EtOAc) 0.55; FT-IR
(KBr)(υmax/cm−1): 3481, 3448, 3352, 3268, 3183, 3068, 2198 (CN), 1743, 1724 (2 C=O);
1H NMR (300.84MHz, DMSO-d6): δ (ppm): 10.81 (s, 1H, NH), 7.74-7.72 (m, 2H,
HAr), 7.58 (s, 2H, NH2), 7.54-7.49 (m, 2H, HAr), 7.42-7.35 (m, 2H, HAr), 6.84 (d, 1H,
3JHH = 8.1Hz, HAr), 2.40 (s, 3H,CH3); 13C NMR (75.65MHz, DMSO-d6): δ (ppm): 21.2
(CH3), 49.0 (Cspiro), 56.2 (=C-CN), 95.9 (=C-C=O), 111.7 (CHAr), 114.0 (CAr), 117.6
(CN), 125.0, 127.3, 128.2, 128.3, 130.1, 131.8 (6 CHAr), 134.2, 136.0 (2 CAr), 139.8 (N-
C=N), 142.1, 155.0 (2 CAr), 158.9 (C=O), 159.7 (=CNH2), 160.0 (CO-C=C-O), 162.1
(N-N=C),177.5 (C=O isa); MS: (m/z, %), 534 (M+, 3), 114 (100), 138 (90), 272 (85),
69 (83), 216 (82), 91 (80), 29 (80), 245 (78), 165 (76), Anal. Calcd for C23H13BrN6O3S
(533.36): C, 51.79; H, 2.46; N, 15.76%. Found: C, 51.82; H, 2.38; N, 15.55%.

Spectral data for compound (6k):
Gray powder; Mp: 300°C, 0.43 g, yield 89%; Rf (1:3 n-hexane/EtOAc) 0.47; FT-IR
(KBr)(υmax/cm−1): 3436, 3330, 3186, 3076, 3019, 2207 (CN), 1730, 1701 (2 C=O); 1H
NMR (300MHz,DMSO-d6): δ (ppm): 10.80 (s, 1H,NH), 7.81 (d, 2H,3JHH = 7.8Hz,HAr),
7.58 (s, 2H, NH2), 7.43 (d, 2H,3JHH = 7.8Hz, HAr), 7.29-7.23 (m, 2H, HAr), 6.89 (d, 1H,
3JHH = 8.4Hz, HAr), 2.40 (s, 3H, CH3); 13C NMR (75MHz, DMSO-d6): δ (ppm): 21.6
(CH3), 49.0 (Cspiro), 56.2 (=C-CN), 95.9 (=C-C=O), 111.1 (CHAr), 117.6 (CN), 124.7
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(CHAr), 125.6 (CAr), 126.3, 127.7, 129.0 (5 CHAr), 130.7, 135.7, 141.7, 144.1 (4 CAr), 154.9
(N-C=N), 158.9 (C=O), 159.6 (=CNH2), 160.0 (N-N=C), 162.0 (CO-C=C-O), 177.6
(C=O isa); MS: (m/z, %), 489 (M+, 28), 227 (100), 29 (75), 257 (68), 216 (56), 190 (35),
368 (33), 118 (22), 461 (20), 66 (18), Anal. Calcd for C23H13ClN6O3S (488.90): C, 56.50;
H, 2.68; N, 17.19%. Found: C, 56.72; H, 2.36; N, 17.07%.

Spectral data for compound (6l):
Brick powder; Mp: 280 °C, 0.42 g, yield 86%; Rf (1:3 n-hexane/EtOAc) 0.46; FT-IR
(KBr)(υmax/cm−1): 3534, 3444, 3324, 3193, 2200 (CN), 1737, 1697 (2 C=O); 1H NMR
(300MHz, DMSO-d6): δ (ppm): 11.43 (s, 1H, NH),8.23 (dd, 1H, 3JHH = 8.4Hz,3JHH =
2.4Hz, HAr), 8.13 (d, 1H, 3JHH = 2.4Hz, HAr), 7.94-7.91 (m, 2H, HAr), 7.71-7.60 (m,
4H, HAr, NH2), 7.11 (d, 1H, 3JHH = 8.4Hz, HAr); 13C NMR (75MHz, DMSO-d6): δ

(ppm):48.9 (Cspiro), 55.5 (=C-CN), 95.5 (=C-C=O), 110.0(CHAr), 117.5 (CN), 120.4,
126.6, 127.8, 128.3, 130.2 (7 CHAr), 133.6, 134.6 (2 CAr), 143.0 (N-C=N), 149.3 (CAr),
155.1 (C=O), 159.1 (CAr), 159.8 (=CNH2), 160.2 (N-N=C), 162.4 (CO-C=C-O), 178.5
(C=O isa); MS: (m/z, %), 486 (M+, 5), 29 (100), 196 (74), 97 (28), 202 (26), 243 (26), 131
(18), 468 (17), 208 (14), 66 (12), Anal. Calcd for C22H11N7O5S (485.43): C, 54.43; H, 2.28;
N, 20.20%. Found: C, 54.62; H, 2.44; N, 19.95%.

Spectral data for compound (6m):
White powder; Mp: 300°C, 0.49 g, yield 91%; Rf (1:3 n-hexane/EtOAc) 0.63; FT-IR
(KBr)(υmax/cm−1): 3322, 3293, 3252, 3178, 2987, 2946, 2876, 2198(CN), 1710, 1659
(2 C=O); 1H NMR (300.84MHz, DMSO-d6): δ (ppm): 7.96 (d, 2H, 3JHH = 8.7Hz,
HAr), 7.71 (d, 2H, 3JHH = 8.4Hz, HAr), 7.62 (d, 2H, NH2), 7.35 (dd,3JHH = 2.1Hz,
3JHH = 8.1Hz,1H, HAr), 7.32 (d, 1H, 3JHH = 2.4Hz, HAr), 7.17 (d, 1H, 3JHH = 8.4Hz,
HAr), 3.79 (q, 3JHH = 13.8Hz, 3JHH = 6.6Hz, 2H,CH2), 1.21 (t, 3H,3JHH = 6.9Hz, CH3);
13C NMR (75.65MHz, DMSO-d6): δ (ppm): 12.6 (CH3), 35.2 (CH2), 48.4 (Cspiro), 55.9
(=C-CN), 95.9 (=C-C=O), 110.3 (CN), 117.4, 124.6, 126.9, 127.2 (6 CHAr), 129.1 (CAr),
129.6 (CHAr), 130.3, 135.0, 138.3 (3CAr), 142.1 (N-C=N), 154.9 (C=O), 158.6 (CAr),
158.9 (=CNH2), 160.0 (CO-C=C-O), 162.2 (N-N=C), 175.6 (C=O isa); MS: (m/z, %),
537 (M+, 41), 29 (92), 511 (89), 115 (31), 235 (26), 209 (20), 254 (18), 44 (11), 482 (11).
Anal. Calcd for C24H14Cl2N6O3S (537.37): C, 53.64; H, 2.63; N, 15.64%. Found: C, 53.82;
H, 2.38; N, 15.75%

Spectral data for compound (6n):
Gray powder; Mp: 300°C, 0.44 g, yield 87%; Rf (1:3 n-hexane/EtOAc) 0.30; FT-IR
(KBr)(υmax/cm−1): 3489, 3377, 3299, 3186, 3027, 2945, 2847, 2202 (CN), 1725, 1657
(2 C=O); 1H NMR (300.84MHz, DMSO-d6): δ (ppm): 10.47 (s, 1H, NH),7.96 (d,
2H, 3JHH = 8.7Hz, HAr), 7.72 (d, 2H, 3JHH = 8.7Hz, HAr), 7.48 (d, 2H, NH2), 7.76
(d, 2H, 3JHH = 7.5Hz, HAr), 3.67 (s, 2H,CH3); 13C NMR (75.65MHz, DMSO-d6): δ

(ppm): 49.2 (Cspiro), 55.9 (CH3), 57.1 (=C-CN), 96.5 (=C-C=O), 110.1, 111.2 (2
CHAr), 113.8 (CN), 117.7, 127.3, 129.6 (5 CHAr), 130.3, 134.9, 136.0, 138.3 (4 CAr),
154.8 (N-C=N), 155.6 (C=O), 158.5 (=CNH2), 158.9 (CAr), 159.8 (N-N=C), 161.9
(CO-C=C-O), 177.6 (C=O isa); MS: (m/z, %), 505 (M+, 11), 223 (100), 29 (99),
208 (83), 236 (30), 153 (30), 136 (25), 276 (24), 66 (23), 322 (8). Anal. Calcd for
C23H13ClN6O4S (504.90): C, 54.71; H, 2.60; N, 16.65%. Found: C, 54.82; H, 2.39;
N, 16.39%
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Spectral data for compound (6o):
Gray powder; Mp: 300°C, 0.39 g, yield 82%; Rf (1:3 n-hexane/EtOAc) 0.43; FT-IR
(KBr)(υmax/cm–1): 3440, 3329, 3191, 3076, 3019, 2202 (CN), 1727, 1702 (2 C=O); 1H
NMR (300.84MHz, DMSO-d6): δ (ppm): 10.81 (s, 1H, NH), 7.91 (d, 2H, 3JHH = 6.9Hz,
HAr), 7.70-7.58 (m, 5H, HAr, NH2), 7.29-7.26 (m, 2H, HAr), 6.90 (d, 1H,3JHH = 8.1Hz,
HAr); 13CNMR (75.65MHz,DMSO-d6): δ (ppm): 49.0 (Cspiro), 56.3 (=C-CN), 96.0 (=C-
C=O), 111.2 (CHAr), 117.7 (CN), 124.7 (CHAr), 126.3 (CAr), 127.8, 128.3, 129.0, 130.2
(6 CHAr), 133.6, 135.7, 141.7 (3 CAr), 155.0 (N-C=N), 159.0 (C=O), 159.7 (=CNH2),
160.0 (N-N=C), 162.1 (CO-C=C-O), 177.6 (C=O isa); MS: (m/z, %), 475 (M+, 2), 29
(98), 44 (85), 66 (73), 227 (67), 36 (61), 103 (56), 201 (55), 77 (54), 121 (43), Anal. Calcd
for C22H11ClN6O3S (474.88): C, 55.64; H, 2.33; N, 17.70%. Found: C, 55.72; H, 2.14; N,
17.95%.

Spectral data for compound (6p):
Karami powder; Mp: 300°C, 0.45 g, yield 85%; Rf (1:3 n-hexane/EtOAc) 0.65; FT-
IR (KBr)(υmax/cm−1): 3464, 3329, 3174, 3064, 3027, 2913, 2202 (CN), 1705, 1653
(2 C=O); 1H NMR (300.84MHz, DMSO-d6): δ (ppm): 7.93 (d, 2H,3JHH = 6.9Hz,
HAr), 7.71–7.57 (m, 4H, HAr, NH2), 7.51 (d, 2H, 3JHH = 6.9Hz, HAr), 7.37-7.26
(m, 3H, HAr), 7.23-7.19 (m, 2H, HAr), 7.01 (t, 1H, 3JHH = 7.3Hz, HAr), 6.78
(d, 1H, 3JHH = 7.8Hz, HAr), 5.05 (1H, d,2JHH = 16.2Hz, phCHAHB), 4.95 (1H,
d,2JHH = 16.2Hz, phCHAHB); 13C NMR (75.65MHz, DMSO-d6): δ (ppm): 44.0 (Cspiro),
48.5 (CH2),56.7 (=C-CN), 96.3 (=C-C=O), 109.4 (CN), 117.8, 123.2, 124.3, 127.6,
127.7, 127.9, 128.3, 128.9, 129.2, 130.2 (14 CHAr), 132.9, 133.6, 136.5 (3 CAr), 143.3
(N-C=N), 154.9 (C=O), 158.9 (CAr), 159.7 (=CNH2), 160.0 (N-N=C), 162.1 (CO-
C=C-O), 176.6 (C=O isa); MS: (m/z, %), 531 (M+, 10), 90(100), 281 (85), 242
(78), 202 (78), 175 (78), 102 (78), 51 (78), 28 (77), 120 (63). Anal. Calcd for
C29H18N6O3S (530.56): C, 65.65; H, 3.42; N, 15.84%. Found: C, 65.62; H, 3.24;
N, 15.95%.

Spectral data for compound (6q):
Karami powder; Mp: 300°C, 0.41 g, yield 80%; Rf (1:3 n-hexane/EtOAc) 0.46;
FT-IR (KBr)(υmax/cm−1): 3599, 3468, 3339, 3239, 3192, 3031, 2831, 2201 (CN),
1737, 1702 (2 C=O); 1H NMR (300.84MHz, DMSO-d6): δ (ppm): 10.82 (s, 1H,
NH), 7.91 (d, 2H, 3JHH = 6.9Hz, HAr), 7.70–7.58 (m, 5H, HAr, NH2), 7.41 (dd,
1H, 3JHH = 1.8Hz,3JHH = 8.1Hz, HAr), 7.36 (d, 1H, 3JHH = 1.8Hz, HAr), 6.85 (d,
1H,3JHH = 8.1Hz, HAr); 13C NMR (75.65MHz, DMSO-d6): δ (ppm): 49.0 (Cspiro), 56.3
(=C-CN), 96.0 (=C-C=O), 111.7 (CHAr), 114.1 (CAr), 117.7 (CN), 127.4, 127.8, 128.3,
130.2, 131.8 (7 CHAr), 133.6, 136.0 (2 CAr), 142.1 (N-C=N), 155.0 (CAr), 159.0 (C=O),
159.7 (=CNH2), 160.0 (N-N=C), 162.1 (CO-C=C-O), 177.5 (C=O isa); MS: (m/z, %),
519 (M+, 6),28 (100), 102 (75), 76 (56), 202 (54), 44 (42), 120 (38), 271 (37), 242 (37), 138
(32), Anal. Calcd for C22H11BrN6O3S (519.33): C, 50.88; H, 2.14; N, 16.18%. Found: C,
50.62; H, 2.41; N, 15.95%.
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