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Use of Ru/CNF-P, nanoruthenium particles dispersed on a
nanocarbon fiber support, realizes highly efficient catalytic
partial hydrogenation of 1,1′-bi-2-naphthol and -naphthyl-
amine derivatives. The reactions proceed in high turnover
numbers without racemization of the axial chirality, offering
a practical procedure for the production of optically pure
5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyls in good to high
yields.

Optically pure 1,1′-binaphthyls withC2-symmetry such as
1,1′-bi-2-naphthol(BINOL),2,2′-diamino-1,1′-binaphthyl(DABN),
2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP), and their
derivatives (I ) have been widely used as chiral ligands for
catalytic asymmetric syntheses.1-3 It is also recognized that
monoprotected BINOL derivatives such as 2-hydroxy-2′-meth-
oxy-1,1′-binaphthyl (BINOL-Me) and 2-hydroxy-2′-(pivaloyl)-

oxy derivative (BINOL-Piv) are efficient chiral auxiliaries or
precursors for the synthesis of non-C2-symmetric 1,1′-binaph-
thyls.4 Chemical modification of naphthyl units in these chiral
binaphthyls sometimes enhances the properties as chiral lig-
ands.2,3 In particular, 5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaph-
thyls (H8-binaphthyls,II ) have recently received considerable
attention from organic chemists; they are more soluble and better
electron-donors than the corresponding binaphthyls.5

In the complexes containing a ligated metal center at the 2,2′-
positions, the H8-binaphthyls show larger bite angles than the
binaphthyls.6f,g These properties sometimes provide higher
asymmetric induction than the parent 1,1′-binaphthyls.5,6 As
typical examples, H8-binaphthyls are effective for alkylation of
aldehydes,6a,b hetero-Diels-Alder reaction of Danishefsky’s
diene,6c,d and hydrogenation of alkenes.6e-g Despite their
potential as better chiral auxiliaries, synthetic procedures for
H8-binaphthyls are problematic. Although partial hydrogenation
of 1,1′-binaphthyls with transition metal catalysts is a simple
method for the synthesis of H8-binaphthyls, the catalysts reported
in literature showed poor activity and sometimes formation of
an intermediary 5,6,7,8-tetrahydro-1,1′-binaphthyl (H4-binaph-
thyls) as a byproduct.2a,7 Moreover, the reactions were often
accompanied by racemization of the axial chirality.8 For
example, catalytic hydrogenation of BINOL to H8-BINOL over
Raney-Ni/Al alloy, Ru/C,7d or Pd/C7a,drequires a high substrate/
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catalyst mole ratio ofS/C < 14.9 The reaction of methoxy-
methyl-protected BINOL (BINOL-MOM2) with Raney-Ni/Al
alloy afforded H4-BINOL-MOM2 selectively.7c Higher temper-
ature and/or addition of acids or bases accelerate the reaction,
but racemization of the axial chirality is commonly observed.2a,7b,d

In spite of a lengthy reaction time (rt for a week) and large
amounts of the catalyst (S/C < 7), therefore, Cram’s hydrogena-
tion procedure using PtO22a is widely used for the production
of optically pure H8-binaphthyls.10 Thus, a hydrogenation
catalyst, which can apply a variety of binaphthyl derivatives
with high efficiency and no loss of optical purity, is a target to
be developed. We have recently synthesized carbon nanofiber
supported ruthenium nanoparticles (Ru/CNF-P) by pyrolysis of
Ru3(CO)12 in the presence of platelet-type CNF (CNF-P) and
found that they show high catalytic performance for the arene
hydrogenation.11,12 Here, we report use of Ru/CNF-P as a
practical solution for problematic production of H8-binaphthyls
by catalytic partial hydrogenation of 1,1′-binaphthyls.

Hydrogenation of BINOL (1a) was carried out in a 100 mL
autoclave with1 (0.5 mmol) and Ru/CNF-P (1.7 wt % Ru; 0.34
mol % of metal loadings;S/C ) 300) in ethanol under hydrogen
(initial pressure: PH2 ) 40 atm) (Table 1).13 At 70 °C, (R)-
BINOL 1a (>99.9% ee) was completely consumed in 3 h. At
this stage, H8-BINOL 2a and H4-BINOL 3a were both formed

in 92 and 7% yield, respectively (entry 1). Prolonged reaction
time to 5.5 h resulted in formation of2a as a single product in
quantitative yield with>99.9% ee (entry 2). The catalytic
efficiency of the Ru/CNF-P was much higher than that of two
commercially available Ru/C catalysts as shown in entries 3
and 4; even with theS/C ratio of 100, conversion of1a was
lower than 80% and a major product was H4-BINOL 3a (2a/3a
) 1:6-1:2) after 5.5 h. The Ru/CNF-P-catalyzed reaction can
also be performed at 50°C, and the optically pure2a was
obtained as a single product in 95% isolated yield after 7 h
(entry 5). Ru/CNF-P does not have a reproducibility problem
of heterogeneous catalysis; the desired2a was obtained in
quantitative yields over five experiments under the conditions
shown in entry 2. This is in sharp contrast to the results using
commercially available Ru/C catalysts, in which conversion of
1awas varied from 48 to 77% in three independent experiments
under the conditions shown in entries 3 and 4. Application of
the hydrogenation using a minimum amount of the Ru/CNF-P
catalyst to a gram-scale production of2a was successful; the
hydrogenation of1a (1.00 g, 3.5 mmol) using 15 mg of
Ru/CNF-P (255µg of Ru) at 50°C for 48 h afforded the
optically pure2a in 99% isolated yield (1.02 g). The turnover
number of this reaction was calculated to be 1390 (entry 6).

The Ru/CNF-P catalyst is also useful for production of
derivatives of BINOL and DABN as shown in entries 7-12.
In all cases, the partial hydrogenation proceeds at 50-100 °C
to afford the corresponding H8 product in almost quantitative
yield without loss of optical purity. The BINOL-derived1c-e
were completely converted to the corresponding H8 derivatives
at 50 °C for 7 h, and optically pure2c-e were obtained in
92-98% isolated yields (entries 9-11). In the reaction of1e,
the reduction of ester function was not observed under these
conditions. It is noteworthy that the present procedure is useful
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TABLE 1. Hydrogenation of (R)-BINOL 1a, BINOL-derived ( R)-1a-e, and (R)-DABN 1fa

entry substrate catalyst S/C conditions
yield (%)

of 2b
ee (%)
of 2c

yield (%)
of 3b

1 BINOL (1a) Ru/CNF-P 300 70°C, 3 h 92 >99.9 7
2 BINOL (1a) Ru/CNF-P 300 70°C, 5.5 h >95 >99.9 not detected
3 BINOL (1a) Ru/Cd 100 70°C, 5.5 h 7-19 >99.9 41-57
4 BINOL (1a) Ru/Ce 100 70°C, 5.5 h 11-21 >99.9 41-62
5 BINOL (1a) Ru/CNF-P 300 50°C, 7 h >95 (95) >99.9 not detected
6f BINOL (1a) Ru/CNF-P 1390 50°C, 48 h >95 (99) >99.9 not detected
7 BINOL-Me2 (1b) Ru/CNF-P 300 70°C, 5.5 h 37 - 37
8 BINOL-Me2 (1b) Ru/CNF-P 300 100°C, 5.5 h >95 (95) >99.9g not detected
9 BINOL-MOM2 (1c) Ru/CNF-P 300 50°C, 7 h >95 (98) >99.9 not detected

10 BINOL-Me (1d) Ru/CNF-P 300 50°C, 7 h >95 (96) >99.9 not detected
11 BINOL-Piv (1e) Ru/CNF-P 300 50°C, 7 h >95 (92) >99.9 not detected
12h DABN (1f) Ru/CNF-P 150 100°C, 24 h 83 (80) >99.9 i

a All reactions were carried out with 0.5 mmol of (R)-1, 10 mg of Ru/CNF-P (1.7 wt % Ru) in 10 mL of EtOH under H2 (initial pressure) 40 atm).
b Determined by1H NMR analysis. The yield in parentheses was the isolated yield.c Determined by HPLC analysis of the crude product.d Ru/C (5 wt %)
was used.e Ru/C (5 wt %, dry type) was used.f One gram of1a and 15 mg of catalyst were used.g Determined by HPLC of2a after demethylation of2b
with TMSI. h 1f (0.25 mmol) was used.i Some unidentified compounds were formed as byproducts.
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for the production of oily binaphthyls, in which optical purity
of the partially racemized product cannot be improved by
recrystallization. Optically pure H8-BINOL-MOM2 2c is a
typical compound of such oily binaphthyls, which can be
effectively synthesized by the Ru/CNF-P-catalyzed hydrogena-
tion in high yield (entry 9). Poor solubility of the dimethylether
1b to ethanol retarded the reaction.14 The conversion of1b was
74% at 70°C for 5.5 h, and only 37% of H8-BINOL-Me2 2b
was obtained along with the formation of H4-BINOL-Me2 3b
(37% yield, entry 7). Preparation of optically pure2b in 95%
isolated yield was accomplished by the reaction at 100°C; no
byproduct was observed (entry 8).

The solubility problem was also observed in the reaction of
2,2′-diamino-1,1′-binaphthyl 1f.14 DABN is less soluble in
ethanol than BINOL-Me2 1b, and the hydrogenation reaction
is quite sluggish under the conditions of [1f] ) 50 mM in
EtOH: S/C ) 300; below 70°C.15 When the reaction was
carried out with a lower concentration of1f ([1f] ) 25 mM)
and higher catalyst loading (S/C ) 150) at 100°C, (R)-DABN
1f was successfully hydrogenated in ethanol to give2f in 80%
isolated yield with over 99.9% ee (entry 12). Preparation of
H8-BINAP by hydrogenation of BINAP is a problem and has
not yet been achieved with conventional catalysts. We also
attempted the hydrogenation of BINAP in several organic
solvents (S/C ) 150); however, no reaction took place even at
120°C for 48 h; BINAP was recovered quantitatively after the
reaction.

Utility of the Ru/CNF catalyst in the production of H8-binaph-
thyls is enhanced by its reusability. After the reaction of (R)-
BINOL-MOM2 1c ([1c] ) 50 mM in EtOH,S/C ) 300) was
performed at 70°C, the catalyst was recovered by filtration and
subjected to a further run of hydrogenation. H8-BINOL-MOM2

2c was obtained in almost quantitative yields for the repeated
uses of the catalyst (first;>99%, second;>99%, third; 96%)
without loss of optical purity (>99.9% ee in all cases).

In summary, the results shown in this paper clearly demon-
strate that the Ru/CNF-P-catalyzed hydrogenation of binaphthyls
is useful for practical synthesis of optically pure H8-BINOL
derivatives and H8-DABN. Although hydrogenation of BINAP
has not yet been achieved, the desired H8-BINAP is easily
synthesized from H8-DABN.16

Experimental Section

General Procedure for the Partial Hydrogenation of (R)-1,1′-
Binaphthyls 1a-e. Hydrogenation of (R)-1,1′-binaphthyls1a-e
(>99.9% ee) was performed in a 100 mL stainless autoclave fitted
with a glass inner tube, in the presence of (R)-1,1′-binaphthyls1a-e
(0.5 mmol), EtOH (10 mL), and Ru/CNF-P (1.7 wt % Ru, 10
mg;S/C ) 300) at 50-100°C for 5.5-7 h under H2 (initial pressure
) 40 atm). After the reaction mixture was cooled to ambient

temperature, the insoluble Ru/CNF-P was removed by filtration,
and the filtrate was concentrated under reduced pressure. The optical
purity of the produced H8-1,1′-binaphthyls2a-e was determined
by chiral HPLC analysis.17

(R)-2,2′-Di[(methoxymethyl)oxy]-5,5′,6,6′,7,7′,8,8′-octahydro-
1,1′-binaphthyl (H 8-BINOL-MOM 2) (2c): Purification by silica
gel chromatography (hexane/CH2Cl2 ) 1:1); yield 98% (colorless
oil); [R]28

D +48.9 (c 1.00, CHCl3; >99.9% ee,R); IR (neat)ν 2931,
2846, 1593, 1475, 1237, 1151, 1023, 923, 803 cm-1; 1H NMR (396
MHz, CDCl3) δ 1.60-1.78 (m, 8H), 2.10 (dt,J ) 17.4, 6.3 Hz,
2H), 2.30 (dt,J ) 17.4, 6.5 Hz, 2H), 2.77 (t,J ) 6.0 Hz, 4H), 3.28
(s, 6H), 4.96 (d,J ) 6.8 Hz, 2H), 5.02 (d,J ) 6.8 Hz, 2H), 6.98
(d, J ) 8.7 Hz, 2H), 7.04 (d,J ) 8.7 Hz, 2H);13C NMR (99.5
MHz, CDCl3) δ 23.2, 23.3, 27.4, 29.5, 55.7, 94.8, 112.8, 127.2,
128.9, 131.0, 136.9, 152.2; HPLC (hexane/i-PrOH) 500:1),tR )
15.4 min (S), 16.8 min (R); HRMS (EI) calcd for C24H30O4

382.2144, found 382.2144.
(R)-2-Hydroxy-2′-(pivaloyl)oxy-5,5′,6,6′,7,7′,8,8′-octahydro-

1,1′-binaphthyl (H 8-BINOL-Piv) (2e): Purification by silica gel
chromatography (hexane/CH2Cl2 ) 1:1); yield 92% (colorless
solid); mp 107-108°C; [R]26

D +62.6 (c 1.00, CHCl3; >99.9% ee,
R); IR (neat)ν 3479, 2930, 2846, 1749, 1591, 1479, 1227, 1135,
809 cm-1; 1H NMR (396 MHz, CDCl3) δ 0.95 (s, 9H), 1.59-1.81
(m, 8H), 2.02 (dt,J ) 17.4, 5.3 Hz, 1H), 2.14 (dt,J ) 17.4, 6.0
Hz, 1H), 2.32 (dt,J ) 17.4, 6.3 Hz, 1H), 2.42 (dt,J ) 17.4, 6.3
Hz, 1H), 2.63-2.77 (m, 2H), 2.77-2.88 (m, 2H), 4.73 (br s, 1H),
6.76 (d,J ) 8.2 Hz, 1H), 6.87 (d,J ) 8.2 Hz, 1H), 6.96 (d,J )
8.2 Hz, 1H), 7.16 (d,J ) 8.2 Hz, 1H); 13C NMR (99.5 MHz,
CDCl3) δ 22.7, 22.9, 23.2, 23.3, 26.7, 26.9, 27.3, 29.3, 29.7, 38.7,
114.1, 119.3, 122.5, 128.1, 129.4, 129.8, 130.2, 135.85, 135.92,
138.3, 147.2, 150.8, 178.2; HPLC (hexane/i-PrOH) 500:1),tR )
20.8 min (R), 23.0 min (S); HRMS (EI) calcd for C25H30O3

378.2195, found 378.2194.
(R)-2,2′-Diamino-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphth-

yl (H8-DABN) (2f). Hydrogenation was carried out with (R)-1f
(0.25 mmol) and Ru/CNF-P (S/C ) 150) in EtOH (10 mL) at 100
°C for 24 h under H2 (initial pressure) 40 atm). Purification by
silica gel chromatography (acetone) gave (R)-H8-DABN 2f in 80%
yield (colorless solid): [R]28

D +70.8 (c 0.50, CHCl3; >99.9% ee,
R); 1H NMR (396 MHz, CDCl3) δ 1.61-1.76 (m, 8H), 2.17 (dt,J
) 17.4, 6.5 Hz, 2H), 2.28 (dt,J ) 17.4, 6.0 Hz, 2H), 2.71 (t,J )
6.0 Hz, 4H), 3.31 (br s, 4H), 6.62 (d,J ) 8.2 Ht, 2H), 6.92 (d,J
) 8.2 Hz, 2H);13C NMR (99.5 MHz, CDCl3) δ 23.3, 23.5, 27.1,
29.5, 113.2, 122.1, 127.7, 129.3, 136.3, 141.7; HPLC (CHIRALCEL
OD-H, hexane/i-PrOH ) 20:1), tR ) 24.7 min (R), 28.0 min (S).
This compound was identified by spectral comparison with literature
data.6e
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reported; see ref 7d.
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(17) HPLC analysis was performed on an UV/vis detector (254 nm) using
Daicel CHIRALCEL OD-H (flow rate) 0.5 mL/min).
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