JOC_{Note}

Highly Efficient Synthesis of Optically Pure 5,5',6,6',7,7',8,8'-Octahydro-1,1'-bi-2-naphthol and -naphthylamine Derivatives by Partial Hydrogenation of 1,1'-Binaphthyls with Carbon Nanofiber Supported Ruthenium Nanoparticles

Mikihiro Takasaki, Yukihiro Motoyama,* Seong-Ho Yoon, Isao Mochida, and Hideo Nagashima

Graduate School of Engineering Sciences, Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan

motoyama@cm.kyushu-u.ac.jp

Received September 13, 2007

Use of Ru/CNF-P, nanoruthenium particles dispersed on a nanocarbon fiber support, realizes highly efficient catalytic partial hydrogenation of 1,1'-bi-2-naphthol and -naphthylamine derivatives. The reactions proceed in high turnover numbers without racemization of the axial chirality, offering a practical procedure for the production of optically pure 5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyls in good to high yields.

Optically pure 1,1'-binaphthyls with C_2 -symmetry such as 1,1'-bi-2-naphthol (BINOL), 2,2'-diamino-1,1'-binaphthyl (DABN), 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), and their derivatives (I) have been widely used as chiral ligands for catalytic asymmetric syntheses.¹⁻³ It is also recognized that monoprotected BINOL derivatives such as 2-hydroxy-2'-methoxy-1,1'-binaphthyl (BINOL-Me) and 2-hydroxy-2'-(pivaloyl)-

oxy derivative (BINOL-Piv) are efficient chiral auxiliaries or precursors for the synthesis of non- C_2 -symmetric 1,1'-binaphthyls.⁴ Chemical modification of naphthyl units in these chiral binaphthyls sometimes enhances the properties as chiral ligands.^{2,3} In particular, 5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyls (H₈-binaphthyls, **II**) have recently received considerable attention from organic chemists; they are more soluble and better electron-donors than the corresponding binaphthyls.⁵

In the complexes containing a ligated metal center at the 2,2'positions, the H₈-binaphthyls show larger bite angles than the binaphthyls.6f,g These properties sometimes provide higher asymmetric induction than the parent 1,1'-binaphthyls.^{5,6} As typical examples, H₈-binaphthyls are effective for alkylation of aldehydes,^{6a,b} hetero-Diels-Alder reaction of Danishefsky's diene,^{6c,d} and hydrogenation of alkenes.^{6e-g} Despite their potential as better chiral auxiliaries, synthetic procedures for H₈-binaphthyls are problematic. Although partial hydrogenation of 1,1'-binaphthyls with transition metal catalysts is a simple method for the synthesis of H₈-binaphthyls, the catalysts reported in literature showed poor activity and sometimes formation of an intermediary 5,6,7,8-tetrahydro-1,1'-binaphthyl (H₄-binaphthyls) as a byproduct.^{2a,7} Moreover, the reactions were often accompanied by racemization of the axial chirality.⁸ For example, catalytic hydrogenation of BINOL to H₈-BINOL over Raney-Ni/Al alloy, Ru/C,^{7d} or Pd/C^{7a,d} requires a high substrate/

(6) Representative papers. H_8 -BINOL derivatives: (a) Chan, A. S. C.; Zhang, F.-Y.; Yip, C.-W. J. Am. Chem. Soc. **1997**, 119, 4080. (b) Lu, G.; Li, X.; Chan, W. L.; Chan, A. S. C. Chem. Commun. **2002**, 172. (c) Long, J.; Hu, J.; Shen, X.; Ji, B.; Ding, K. J. Am. Chem. Soc. **2002**, 124, 10. (d) Wang, B.; Feng, X.; Huang, Y.; Liu, H.; Cui, X.; Jiang, Y. J. Org. Chem. **2002**, 67, 2175. H_8 -DABN derivatives: (e) Zhang, F.-Y.; Pai, C.-C.; Chan, A. S. C. J. Am. Chem. Soc. **1998**, 120, 5808. H_8 -BINAP derivatives: (f) Zhang, X.; Matsumura, K.; Koyano, K.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Takaya, H. J. Chem. Soc., Perkin Trans. 1 **1994**, 2309. (g) Uemura, T.; Zhang, X.; Matsumura, K.; Sayo, N.; Kumobayashi, H.; Ohta, T.; Nozaki, K.; Takaya, H. J. Org. Chem. **1996**, 61, 5510. (h) Xiao, J.; Nefkens, S. C. A.; Jessop, P. G.; Ikariya, T.; Noyori, R. Tetrahedron Lett. **1996**, 37, 2813.

^{*} Corresponding author. Tel. & Fax: +81-92-583-7821.

Reviews: (a) Rosini, C.; Franzini, L.; Raffaelli, A.; Salvadori, P. Synthesis **1992**, 503. (b) Pu, L. Chem. Rev. **1998**, 98, 2405. (c) McCarthy, M.; Guiry, P. J. Tetrahedron **2001**, 57, 3809. (d) Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: Weinheim, Germany, 2000, and references therein.

^{(2) 2,2&#}x27;-Dimethoxy- and 2,2'-di(methoxymethy)oxy-1,1'-binaphthyl are well known as precursors for the 3,3'-disubstituted BINOL derivatives. (a) Cram, D. J.; Helgeson, R. C.; Peacock, S. C.; Kaplan, L. J.; Domeier, L. A.; Moreau, P.; Koga, K.; Mayer, J. M.; Chao, Y.; Siegel, M. G.; Hoffman, D. H. G.; Sogah, D. Y. J. Org. Chem. **1978**, 43, 1930. (b) Lingenfelter, D. S.; Helgeson, R. C.; Cram, D. J. J. Org. Chem. **1981**, 46, 393. (c) Maruoka, K.; Itoh, T.; Araki, Y.; Shirasaka, T.; Yamamoto, H. Bull. Chem. Soc. Jpn. **1988**, 61, 2975. (d) Simonsen, K. B.; Gothelf, K. V.; Jørgensen, K. A. J. Org. Chem. **1998**, 63, 7536. (e) Cox, P. J.; Wang, W.; Snieckus, V. Tetrahedron Lett. **1992**, 33, 2253.

^{(3) 6,6&#}x27;-Disubstituted BINOL derivatives: (a) Mikami, K.; Motoyama,
Y.; Terada, M. *Inorg. Chim. Acta* **1994**, 222, 71. (b) Sasai, H.; Tokunaga,
T.; Watanabe, S.; Suzuki, T.; Itoh, N.; Shibasaki, M. *J. Org. Chem.* **1995**, 60, 7388. (c) Ueno, M.; Ishitani, H.; Kobayashi, S. *Org. Lett.* **2002**, *4*, 3395.
(d) Saruhashi, K.; Kobayashi, S. *J. Am. Chem. Soc.* **2006**, *128*, 11232.

^{(4) (}a) Maruoka, K.; Saito, S.; Yamamoto, H. J. Am. Chem. Soc. **1995**, 117, 1165. (b) Ishihara, K.; Nakamura, S.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. **1996**, 118, 12854. (c) Taniguchi, T.; Ogasawara, K. Tetrahedron Lett. **1997**, 38, 6429. (d) Yamada, Y. M. A.; Shibasaki, M. Tetrahedron Lett. **1998**, 39, 5561. (e) Hocke, H.; Uozumi, Y. Tetrahedron **2003**, 59, 619.

⁽⁵⁾ Review: Au-Yeung, T. T.-L.; Chan, S.-S.; Chan, A. S. C. Adv. Synth. Catal. 2003, 345, 537 and references therein.

⁽⁷⁾ Representative papers: (a) Zhang, X.; Mashima, K.; Koyano, K.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Takaya, H. *Tetrahedron Lett.* **1991**, *32*, 7283. (b) Guo, H.; Ding, K. *Tetrahedron Lett.* **2000**, *41*, 10061. (c) Shen, X.; Guo, H.; Ding, K. *Tetrahedron: Asymmetry* **2000**, *11*, 4321. (d) Korostylev, A.; Tararov, V. I.; Fischer, C.; Monsees, A.; Börner, A. J. Org, Chem. **2004**, *69*, 3220.

⁽⁸⁾ Both BINOL and H₈-BINOL lose their optical rotations by heating in alcohols over 100 °C (\sim 2%), and such partial racemization accelerates under acidic or basic conditions (\sim 56%). *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L. A., Ed.; John Wiley & Sons: New York, 1995; Vol. 1, p 397. Also see ref 2a.

TABLE 1. Hydrogenation of (R)-BINOL 1a, BINOL-derived (R)-1a-e, and (R)-DABN 1f^a

a: X, Y = OH (BINOL) b: X, Y = OMe (BINOL-Me₂) c: X, Y = OMOM (BINOL-MOM₂) d: X = OH, Y = OMe (BINOL-Me) e: X = OH, Y = Piv (BINOL-Piv) f: X, Y = NH₂ (DABN)

entry	substrate	catalyst	S/C	conditions	yield (%) of 2^b	ee (%) of 2 ^{<i>c</i>}	yield (%) of 3^b
1	BINOL (1a)	Ru/CNF-P	300	70 °C, 3 h	92	>99.9	7
2	BINOL (1a)	Ru/CNF-P	300	70 °C, 5.5 h	>95	>99.9	not detected
3	BINOL (1a)	Ru/C^d	100	70 °C, 5.5 h	7-19	>99.9	41-57
4	BINOL (1a)	Ru/C^e	100	70 °C, 5.5 h	11-21	>99.9	41-62
5	BINOL (1a)	Ru/CNF-P	300	50 °C, 7 h	>95 (95)	>99.9	not detected
6 ^f	BINOL (1a)	Ru/CNF-P	1390	50 °C, 48 h	>95 (99)	>99.9	not detected
7	BINOL-Me ₂ $(1b)$	Ru/CNF-P	300	70 °C, 5.5 h	37	-	37
8	BINOL-Me ₂ $(1b)$	Ru/CNF-P	300	100 °C, 5.5 h	>95 (95)	>99.9 ^g	not detected
9	BINOL-MOM ₂ (1c)	Ru/CNF-P	300	50 °C, 7 h	>95 (98)	>99.9	not detected
10	BINOL-Me (1d)	Ru/CNF-P	300	50 °C, 7 h	>95 (96)	>99.9	not detected
11	BINOL-Piv (1e)	Ru/CNF-P	300	50 °C, 7 h	>95 (92)	>99.9	not detected
12^{h}	DABN (1f)	Ru/CNF-P	150	100 °C, 24 h	83 (80)	>99.9	i

^{*a*} All reactions were carried out with 0.5 mmol of (*R*)-1, 10 mg of Ru/CNF-P (1.7 wt % Ru) in 10 mL of EtOH under H₂ (initial pressure = 40 atm). ^{*b*} Determined by ¹H NMR analysis. The yield in parentheses was the isolated yield. ^{*c*} Determined by HPLC analysis of the crude product. ^{*d*} Ru/C (5 wt %) was used. ^{*e*} Ru/C (5 wt %, dry type) was used. ^{*f*} One gram of 1a and 15 mg of catalyst were used. ^{*s*} Determined by HPLC of 2a after demethylation of 2b with TMSI. ^{*h*} If (0.25 mmol) was used. ^{*i*} Some unidentified compounds were formed as byproducts.

catalyst mole ratio of S/C < 14.9 The reaction of methoxymethyl-protected BINOL (BINOL-MOM₂) with Raney-Ni/Al alloy afforded H₄-BINOL-MOM₂ selectively.^{7c} Higher temperature and/or addition of acids or bases accelerate the reaction, but racemization of the axial chirality is commonly observed.^{2a,7b,d} In spite of a lengthy reaction time (rt for a week) and large amounts of the catalyst (S/C < 7), therefore, Cram's hydrogenation procedure using PtO22a is widely used for the production of optically pure H₈-binaphthyls.¹⁰ Thus, a hydrogenation catalyst, which can apply a variety of binaphthyl derivatives with high efficiency and no loss of optical purity, is a target to be developed. We have recently synthesized carbon nanofiber supported ruthenium nanoparticles (Ru/CNF-P) by pyrolysis of Ru₃(CO)₁₂ in the presence of platelet-type CNF (CNF-P) and found that they show high catalytic performance for the arene hydrogenation.^{11,12} Here, we report use of Ru/CNF-P as a practical solution for problematic production of H₈-binaphthyls by catalytic partial hydrogenation of 1,1'-binaphthyls.

Hydrogenation of BINOL (1a) was carried out in a 100 mL autoclave with 1 (0.5 mmol) and Ru/CNF-P (1.7 wt % Ru; 0.34 mol % of metal loadings; S/C = 300) in ethanol under hydrogen (initial pressure: $P_{\rm H2} = 40$ atm) (Table 1).¹³ At 70 °C, (*R*)-BINOL 1a (>99.9% ee) was completely consumed in 3 h. At this stage, H₈-BINOL 2a and H₄-BINOL 3a were both formed

10292 J. Org. Chem., Vol. 72, No. 26, 2007

in 92 and 7% yield, respectively (entry 1). Prolonged reaction time to 5.5 h resulted in formation of 2a as a single product in quantitative yield with >99.9% ee (entry 2). The catalytic efficiency of the Ru/CNF-P was much higher than that of two commercially available Ru/C catalysts as shown in entries 3 and 4; even with the S/C ratio of 100, conversion of 1a was lower than 80% and a major product was H₄-BINOL 3a (2a/3a = 1:6-1:2) after 5.5 h. The Ru/CNF-P-catalyzed reaction can also be performed at 50 °C, and the optically pure 2a was obtained as a single product in 95% isolated yield after 7 h (entry 5). Ru/CNF-P does not have a reproducibility problem of heterogeneous catalysis; the desired 2a was obtained in quantitative yields over five experiments under the conditions shown in entry 2. This is in sharp contrast to the results using commercially available Ru/C catalysts, in which conversion of **1a** was varied from 48 to 77% in three independent experiments under the conditions shown in entries 3 and 4. Application of the hydrogenation using a minimum amount of the Ru/CNF-P catalyst to a gram-scale production of 2a was successful; the hydrogenation of 1a (1.00 g, 3.5 mmol) using 15 mg of Ru/CNF-P (255 μ g of Ru) at 50 °C for 48 h afforded the optically pure 2a in 99% isolated yield (1.02 g). The turnover number of this reaction was calculated to be 1390 (entry 6).

The Ru/CNF-P catalyst is also useful for production of derivatives of BINOL and DABN as shown in entries 7–12. In all cases, the partial hydrogenation proceeds at 50–100 °C to afford the corresponding H₈ product in almost quantitative yield without loss of optical purity. The BINOL-derived 1c-e were completely converted to the corresponding H₈ derivatives at 50 °C for 7 h, and optically pure 2c-e were obtained in 92–98% isolated yields (entries 9–11). In the reaction of 1e, the reduction of ester function was not observed under these conditions. It is noteworthy that the present procedure is useful

⁽⁹⁾ The Pd/C-catalyzed reaction of (*R*)-BINOL can be performed at S/C = 100, but severe reaction conditions (100 °C, 80 atm) are required to obtain H₈-BINOL (99.7% ee) in high yields; see ref 7d.

⁽¹⁰⁾ Optically pure H₈-BINAP is generally obtained by optical resolution of racemic H₈-bis(diphenylphosphinyl)-1,1'-binaphthyl (H₈-BINAPO), which is prepared from (\pm)-BINOL, followed by reduction with trichlorosilane; see ref 7a.

⁽¹¹⁾ Motoyama, Y.; Takasaki, M.; Higashi, K.; Yoon, S.-H.; Mochida, I.; Nagashima, H. *Chem. Lett.* **2006**, *35*, 876.

⁽¹²⁾ The CNFs are classified into three types: graphite layers are perpendicular (platelet: CNF-P), parallel (tubular: CNF-T), and stacked obliquely (herringbone: CNF-H). These three CNFs can be synthesized selectively in large scales; see: (a) Rodriguez, N. M. J. Mater. Res. **1993**, 8, 3233. (b) Tanaka, A.; Yoon, S.-H.; Mochida, I. Carbon **2004**, 42, 591 and 1291.

⁽¹³⁾ The solvent strongly affected the reaction rate; the hydrogenations of BINOL in THF and dichloroethane were both sluggish, and the H₈-BINOL was obtained in <10% yields along with the formation of H₄-BINOL in ca. 20 and 50% yields, respectively.

for the production of oily binaphthyls, in which optical purity of the partially racemized product cannot be improved by recrystallization. Optically pure H₈-BINOL-MOM₂ **2c** is a typical compound of such oily binaphthyls, which can be effectively synthesized by the Ru/CNF-P-catalyzed hydrogenation in high yield (entry 9). Poor solubility of the dimethylether **1b** to ethanol retarded the reaction.¹⁴ The conversion of **1b** was 74% at 70 °C for 5.5 h, and only 37% of H₈-BINOL-Me₂ **2b** was obtained along with the formation of H₄-BINOL-Me₂ **3b** (37% yield, entry 7). Preparation of optically pure **2b** in 95% isolated yield was accomplished by the reaction at 100 °C; no byproduct was observed (entry 8).

The solubility problem was also observed in the reaction of 2,2'-diamino-1,1'-binaphthyl **1f**.¹⁴ DABN is less soluble in ethanol than BINOL-Me₂ **1b**, and the hydrogenation reaction is quite sluggish under the conditions of [1f] = 50 mM in EtOH: S/C = 300; below 70 °C.¹⁵ When the reaction was carried out with a lower concentration of **1f** ([**1f**] = 25 mM) and higher catalyst loading (S/C = 150) at 100 °C, (R)-DABN **1f** was successfully hydrogenated in ethanol to give **2f** in 80% isolated yield with over 99.9% ee (entry 12). Preparation of H₈-BINAP by hydrogenation of BINAP is a problem and has not yet been achieved with conventional catalysts. We also attempted the hydrogenation of BINAP in several organic solvents (S/C = 150); however, no reaction took place even at 120 °C for 48 h; BINAP was recovered quantitatively after the reaction.

Utility of the Ru/CNF catalyst in the production of H₈-binaphthyls is enhanced by its reusability. After the reaction of (*R*)-BINOL-MOM₂ **1c** ([**1c**] = 50 mM in EtOH, S/C = 300) was performed at 70 °C, the catalyst was recovered by filtration and subjected to a further run of hydrogenation. H₈-BINOL-MOM₂ **2c** was obtained in almost quantitative yields for the repeated uses of the catalyst (first; >99%, second; >99%, third; 96%) without loss of optical purity (>99.9% ee in all cases).

In summary, the results shown in this paper clearly demonstrate that the Ru/CNF-P-catalyzed hydrogenation of binaphthyls is useful for practical synthesis of optically pure H₈-BINOL derivatives and H₈-DABN. Although hydrogenation of BINAP has not yet been achieved, the desired H₈-BINAP is easily synthesized from H₈-DABN.¹⁶

Experimental Section

General Procedure for the Partial Hydrogenation of (*R*)-1,1'-Binaphthyls 1a–e. Hydrogenation of (*R*)-1,1'-binaphthyls 1a–e (>99.9% ee) was performed in a 100 mL stainless autoclave fitted with a glass inner tube, in the presence of (*R*)-1,1'-binaphthyls 1a–e (0.5 mmol), EtOH (10 mL), and Ru/CNF–P (1.7 wt % Ru, 10 mg; S/C = 300) at 50–100 °C for 5.5–7 h under H₂ (initial pressure = 40 atm). After the reaction mixture was cooled to ambient temperature, the insoluble Ru/CNF-P was removed by filtration, and the filtrate was concentrated under reduced pressure. The optical purity of the produced H₈-1,1'-binaphthyls 2a-e was determined by chiral HPLC analysis.¹⁷

(*R*)-2,2'-Di[(methoxymethy])oxy]-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (H₈-BINOL-MOM₂) (2c): Purification by silica gel chromatography (hexane/CH₂Cl₂ = 1:1); yield 98% (colorless oil); $[\alpha]^{28}_{D}$ +48.9 (*c* 1.00, CHCl₃; >99.9% ee, *R*); IR (neat) ν 2931, 2846, 1593, 1475, 1237, 1151, 1023, 923, 803 cm⁻¹; ¹H NMR (396 MHz, CDCl₃) δ 1.60–1.78 (m, 8H), 2.10 (dt, *J* = 17.4, 6.3 Hz, 2H), 2.30 (dt, *J* = 17.4, 6.5 Hz, 2H), 2.77 (t, *J* = 6.0 Hz, 4H), 3.28 (s, 6H), 4.96 (d, *J* = 6.8 Hz, 2H), 5.02 (d, *J* = 6.8 Hz, 2H), 6.98 (d, *J* = 8.7 Hz, 2H), 7.04 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (99.5 MHz, CDCl₃) δ 23.2, 23.3, 27.4, 29.5, 55.7, 94.8, 112.8, 127.2, 128.9, 131.0, 136.9, 152.2; HPLC (hexane/*i*-PrOH = 500:1), *t*_R = 15.4 min (*S*), 16.8 min (*R*); HRMS (EI) calcd for C₂₄H₃₀O₄ 382.2144, found 382.2144.

(R)-2-Hydroxy-2'-(pivaloyl)oxy-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (H₈-BINOL-Piv) (2e): Purification by silica gel chromatography (hexane/ $CH_2Cl_2 = 1:1$); yield 92% (colorless solid); mp 107–108 °C; $[\alpha]^{26}_{D}$ +62.6 (c 1.00, CHCl₃; >99.9% ee, R); IR (neat) v 3479, 2930, 2846, 1749, 1591, 1479, 1227, 1135, 809 cm⁻¹; ¹H NMR (396 MHz, CDCl₃) δ 0.95 (s, 9H), 1.59–1.81 (m, 8H), 2.02 (dt, J = 17.4, 5.3 Hz, 1H), 2.14 (dt, J = 17.4, 6.0 Hz, 1H), 2.32 (dt, J = 17.4, 6.3 Hz, 1H), 2.42 (dt, J = 17.4, 6.3 Hz, 1H), 2.63-2.77 (m, 2H), 2.77-2.88 (m, 2H), 4.73 (br s, 1H), 6.76 (d, J = 8.2 Hz, 1H), 6.87 (d, J = 8.2 Hz, 1H), 6.96 (d, J =8.2 Hz, 1H), 7.16 (d, J = 8.2 Hz, 1H); ¹³C NMR (99.5 MHz, CDCl₃) δ 22.7, 22.9, 23.2, 23.3, 26.7, 26.9, 27.3, 29.3, 29.7, 38.7, 114.1, 119.3, 122.5, 128.1, 129.4, 129.8, 130.2, 135.85, 135.92, 138.3, 147.2, 150.8, 178.2; HPLC (hexane/*i*-PrOH = 500:1), $t_{\rm R}$ = 20.8 min (R), 23.0 min (S); HRMS (EI) calcd for C₂₅H₃₀O₃ 378.2195, found 378.2194.

(*R*)-2,2'-Diamino-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (H₈-DABN) (2f). Hydrogenation was carried out with (*R*)-1f (0.25 mmol) and Ru/CNF-P (*S*/*C* = 150) in EtOH (10 mL) at 100 °C for 24 h under H₂ (initial pressure = 40 atm). Purification by silica gel chromatography (acetone) gave (*R*)-H₈-DABN 2f in 80% yield (colorless solid): $[\alpha]^{28}_{\rm D}$ +70.8 (*c* 0.50, CHCl₃; >99.9% ee, *R*); ¹H NMR (396 MHz, CDCl₃) δ 1.61–1.76 (m, 8H), 2.17 (dt, *J* = 17.4, 6.5 Hz, 2H), 2.28 (dt, *J* = 17.4, 6.0 Hz, 2H), 2.71 (t, *J* = 6.0 Hz, 4H), 3.31 (br s, 4H), 6.62 (d, *J* = 8.2 Ht, 2H), 6.92 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (99.5 MHz, CDCl₃) δ 23.3, 23.5, 27.1, 29.5, 113.2, 122.1, 127.7, 129.3, 136.3, 141.7; HPLC (CHIRALCEL OD-H, hexane/*i*-PrOH = 20:1), *t*_R = 24.7 min (*R*), 28.0 min (*S*). This compound was identified by spectral comparison with literature data.^{6e}

Acknowledgment. This work was partially supported by the CREST-JST (Japan Science and Technology Corporation) and by a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Spectroscopic data of 1b-e, 2a, 2b, and 2d, copies of NMR spectra of 1a-f (¹H NMR) and 2a-f (¹H and ¹³C NMR). This material is available free of charge via the Internet at http://pubs.acs.org.

JO702015J

⁽¹⁴⁾ In the Pd/C-catalyzed reactions, similar results and explanations were reported; see ref 7d.

⁽¹⁵⁾ DABN **1f** is easily soluble in THF, but the hydrogenation of **1f** with Ru/CNF-P in THF at 100 °C did not proceed.

⁽¹⁶⁾ Murdoch reported that chiral BINAP could be synthesized from optically pure DABN. Brown, K. J.; Berry, M. S.; Waterman, K. C.; Lingenfelter, D.; Murdoch, J. R. *J. Am. Chem. Soc.* **1984**, *106*, 4717.

⁽¹⁷⁾ HPLC analysis was performed on an UV/vis detector (254 nm) using Daicel CHIRALCEL OD-H (flow rate = 0.5 mL/min).