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Table 1
Optimization of reaction conditions for Williams’ morpholinone
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Entry Base Co-solvent Yielda

1 LDA THF 14
2 LDA HMPAb 45
3 LDA DMPUb 64
4 LDA DMFb 72
5 LiHMDS THF 45
6 LiHMDS DMFb 78
7c LiHMDS DMFb 60
8d LiHMDS DMFb 69

a Isolated yield.
b Used in a 1:1 mixture with THF.
c 1.0 equiv of LiHMDS.
d Without Li2CuCl2.
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Quaternary gramines were found to be a suitable source of the 3-methylindole fragment for diastereos-
elective alkylation. The best yields and stereoselectivity were obtained for the alkylation of a chiral
William’s morpholinone enolate. Based on this transformation, a general method for the synthesis of
enantiopure, indole ring substituted tryptophan derivatives was developed with good overall yields.
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Enantiopure, non-natural tryptophan derivatives are interesting
not only as replacements for their proteogenic counterparts,1,2 but
also as useful intermediates in the synthesis of various natural sub-
stances such as sarpagine–macrolide group alkaloids,3 indolactam
V,4 lysergic acid,5 and other ergot alkaloids.6 Indole ring-substi-
tuted tryptophan derivatives show activity as potent necroptosis
inhibitors,7 epigenetic modulators,8 and are prospective anticancer
agents.9 Synthesis of non-natural amino acids via the alkylation of
a chiral auxiliary which contains a glycine equivalent is a well
accepted procedure.10 For the synthesis of tryptophan derivatives,
suitable 3-methylene indole halides are required; however their
synthesis tends to be complicated.11

On the other hand, quaternary gramines are readily accessible
by the Mannich reaction and subsequent quaternization, usually
with MeI or Me2SO4. Although they have long been employed for
the synthesis of racemic tryptophans,1,12 few examples of their
application in asymmetric synthesis have been reported.13

We considered that quaternary gramines might also be suitable
for the synthesis of enantiopure, indole ring substituted trypto-
phan derivatives and herein we report our study for the develop-
ment of a general method for the alkylation of glycine
equivalents with quaternary gramine salts.

Initially we tested commercially available Williams’ morpholi-
none 1 as a chiral glycine equivalent.14 Employing literature condi-
tions,15 tryptophan 3a was obtained in only 14% yield. Therefore,
an optimization of the reaction conditions was performed.
A variety of co-solvents, capable of dissolving gramine better
than THF, were tested, and in comparison to THF (Table 1, entry
1), the yields were significantly improved using HMPA, DMPU, or
DMF (Table 1, entries 2–4).

Additionally, LiHMDS was found to be a more effective base
than LDA (Table 1, entry 5) and the highest yield (78%) was
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Table 2
Alkylation of chiral glycine equivalents by 2aa

Entry Substrate Product Yieldb (%)
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a Reaction conditions: LiHMDS 2.1 equiv, LiCuCl4 0.1 equiv THF/DMF 6:1, �78 �C,
1.5 h.

b Isolated yields.
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Figure 1. Side products from the alkylation of Xu lactone.

Table 3
Alkylation of Williams’ morpholinone by quaternary gramines
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Entry Gramine R Product Yielda (%)

1 2a H 3a 78
2 2b 2-Me 3b 82
3 2c 7-Et 3c 75
4 2d 5-OMe 3d 75
5 2e 4-OBn 3e 76
6 2f 5-OBn 3f 80
7 2g 5-F 3g 76
8 2h 6-Br 3h 65
9 2i 5-CN 3i 45

a Isolated yield.
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Figure 2. Reaction mechanism investigation.
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achieved when LiHMDS was used in combination with DMF
(Table 1, entry 6). In all cases (Table 1, entries 1–5) the conversion
of starting material 1 was complete and only one diastereomer 3a
was detected in the crude reaction mixture (confirmed by 1H NMR
and LC–MS). However, when only one equivalent of LiHMDS was
used, unreacted 1 remained and 3a was isolated in only 60% yield
(Table 1, entry 7). In the absence of Li2CuCl4 the yield of 3a was
slightly reduced (Table 1, entry 8).16,17

After the successful results with Williams’ morpholinone, our
attention turned to the recently developed Xu lactone 4,18 which
was synthesized according to literature procedures.19 This was
subjected to the conditions optimized for morpholinone 1 to give
indole derivative 5 in only 40% yield (Table 2, entry 1). During
the course of the reaction, the formation of minor isomer 6 (endo)
in up to 2% yield, as well as double 7 and triple 8 alkylation prod-
ucts were observed (see Fig. 1). The ratio of mono, di, and tri alky-
lated products in the crude reaction mixture were 1:0.2:0.1,
respectively. It is difficult to explain the observed reactivity. Any
speculation regarding the formation of aggregates was avoided
since DMF was used as a co-solvent. Changing the solvent from
DMF to HMPA did not influence the product distribution. The
amounts of bis and tris alkylated products were reduced to nearly
undetectable amounts when 1.1 equiv of base was used during the
alkylation with gramine 2a. In this case, however, unreacted
starting material 4 was present in the reaction mixture. These
results suggested that bis 7 and tris 8 alkylated products originated
from overalkylation of the initial alkylation product 5, not from
pre-formation of gramine dimers (or trimers), which then react
with lactone 4.
The next glycine equivalent examined, Seebach’s oxazolidi-
none20 9a, was subjected to the optimized reaction conditions to
give indole derivative 10a in 50% yield. To test whether the steric
bulk of the a-Bn group reduced the oxazolidinone reactivity, race-
mic oxazolidinone 9b was also tested, however to our disappoint-
ment alkylation of this sterically less hindered substrate proceeded
in only 22% yield.

Finally, we attempted to alkylate Schöllkopf’s dihydropy-
razine21 11 using gramine 2a under the optimized conditions,
however only trace amounts of the desired product 12 were
detected (Table 2, entry 4).

Therefore, none of the tested glycine equivalents provided bet-
ter yields than Williams’ morpholinone 1.

Having evaluated various chiral enolates, we next examinated a
number of quaternary gramine derivatives22 for the alkylation of
Williams’ morpholinone.23 Compounds 3a–g were obtained in
good yields (Table 3, entries 1–8). In all cases only one diastere-
omer was detected in the crude reaction mixture (confirmed by
1H NMR and LC–MS). The cyano substituted gramine 2i formed
large aggregates after addition to the reaction mixture and as a
result, considerable amounts of unreacted starting material 2i as
well as the dialkylated product were obtained from the reaction
mixture with 3i being obtained in 45% yield.24

As reported,15,25 alkylation of enolates with quaternary grami-
nes proceeds via the 3-methylene-3H-indole 14 intermediate
(Fig. 2). Indeed, when N-methyl quaternary gramine 13 that could
react only by the SN2 mechanism, was applied to the alkylation of
Williams’ morpholinone, only a small amount of product 15 was
detected.

The yield of 3a reached 60% when only one equivalent of base
was used (Table 1, entry 7). Conversion of the starting material
was incomplete because the initially prepared enolate could be
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Figure 3. Synthesis of tryptophan derivatives.

Table 4
Synthesis of tryptophan derivatives

Entry Substrate R Method Product R Yielda (%)

1 3a H A 18a H 68
2 3b 2-Me A 18b 2-Me 76
3 3c 7-Et A 18c 7-Et 75
4 3d 5-OMe A 18d 5-OMe 64
5 3e 4-OBn A 18e 4-OH 72
6 3f 5-OBn A 18f 5-OH 72
7 3g 5-F B 18g 5-F 93
8 3i 5-CN B 18i 5-CH2NHBoc 78

a Isolated yield.
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protonated by gramine 2a. In this case intermediate 14 would still
be formed which could then react with any enolate still present in
the reaction mixture; the maximum yield would then be close to
50%. However, the obtained yield was higher than this, suggesting
that some parallel mechanism must be in action. Probably the
quaternary gramine reacts with some weak base present in the
reaction mixture (NMe3, (Me3Si)2NH).

In order to demonstrate the utility of indole substituted mor-
pholinones 3, several examples were converted into the corre-
sponding Boc protected tryptophan derivatives 18. The most
straightforward method for cleavage of the chiral auxiliary was
reduction with lithium in liquid ammonia15a in the presence of
tert-butyl alcohol (Fig. 3, Method A).26 Using this method
compounds 18a–d were obtained in good yields (Table 4, entries
1–4). As expected, benzyl ethers were also cleaved from the corre-
sponding indole derivatives 3e,f (Table 4, entries 5 and 6).

For compounds 3g,i which were not compatible with the condi-
tions for Method A, a three step protocol that included removal of
Boc group by TMS-I15c (16), hydrogenation over Pearlmann’s cata-
lyst27 (17) and subsequent Boc-protection of the formed amine
group was applied (Fig. 3, Method B). Tryptophan derivatives
18g,i were isolated in 93% and 78% yields, respectively (Table 4,
entries 7 and 8).28 It should be noted that during the reduction
with H2 over Pd(OH)2/C, the cyano group was reduced to an amino
group (entry 8).

Finally, we performed the alkylation reaction using the opposite
Williams’ morpholinone enantiomer with gramine 2b under the
developed conditions (78% yield) which was cleaved by Method
A (68% yield) to obtain the (R) enantiomer 18bR, that had the
reverse sign for the specific rotation.29

In summary, we have demonstrated the potential of quaternary
gramines as alkylating agents for enolates of glycine synthetic
equivalents. The best yields and diastereoselectivity were found
with William’s morpholinone. Presumably the alkylation proceeds
via a 3-methylene-3H-indole intermediate that acts as a Michael
acceptor. Based on these transformations, a general method for
the synthesis of enantiopure, indole ring substituted tryptophan
derivatives with good overall yields was developed.
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