Iron/Copper-Cocatalyzed Ullmann N,O-Arylation Using FeCl₃, CuO, and *rac*-1,1'-Binaphthyl-2,2'-diol

Zhe Wang,^a Hua Fu,^{*a} Yuyang Jiang,^{a,b} Yufen Zhao^a

^a Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China

Fax +86(10)62781695; E-mail: fuhua@mail.tsinghua.edu.cn

^b Key Laboratory of Chemical Biology, College of Shenzhen, Tsinghua University, Guangdong Province, Shenzhen 518057, P. R. of China

Received 22 May 2008

Abstract: We have developed an efficient and inexpensive bimetallic catalyst $FeCl_3$, CuO, and *rac*-BINOL that could promote N,Oarylation of aliphatic, arylamines, and phenols. The cross-coupling reaction conditions have high tolerance of various functional groups. This versatile and efficient iron/copper-cocatalyst can widely be used in the synthesis of the compounds containing (aryl)C–N or (aryl)C–O(aryl) bond.

Key words: copper, iron, cross-coupling, N-arylation, O-arylation

Although copper-catalyzed Ullmann reactions have been developed for more than one hundred years,¹ their applications are limited because of the harsh reaction conditions such as high temperatures, the usual requirement of stoichiometric amounts of copper catalysts, long reaction times, and low yields.² In recent years, copper-catalyzed Ullmann reactions show renaissance because of the discovery of new copper sources, bases, ligands, and other additives. Highly efficient ligands for copper-catalyzed arylations have been reported, including aliphatic diamines,³ 1,10-phenanthroline and its derivatives,⁴ ethylene glycol,^{5a} 1,1,1-tris(hydroxymethyl)ethane,^{5b} diethylsalicylamide,^{5c} amino acids,⁶ oxime-type and Schiff base ligands,⁷ thiophene-2-carboxylate,⁸ bidentate phosphines,9a diphosphinidenecyclobutene,^{9b} diazaphospholane,¹⁰ cyclic β -diketone,^{11a} β -ketone ester,^{11b} diphenyl pyrrolidine-2-phosphonate,^{12a} pyrrolidine-2phosphonic acid phenyl monoester,^{12b} and BINOL (1.1'binaphthyl-2.2'-diol)^{12c-12e} for N-arylation of amines and amides; 1-naphthoic acid,^{13a} 2,2,6,6-tetramethylheptane-3,5-dione,^{13b} N,N-dimethylglycine,^{6d} 8-hydroxyquinoline,^{13c} neocuproine,^{13d} salicylaldoxime (Salox),^{13e} 1,1,1tris-(hydroxymethyl)ethane,^{5b} and aminophosphonic acid derivatives^{12b,13f} for O-arylation of substituted phenols or alcohols. Iron is one of the most abundant metals on earth, and consequently one of the most inexpensive and environmentally friendly ones.¹⁴ Iron-catalyzed arylation has made great progress,¹⁵ but only a few examples for Narylation of amines by using iron alone or associated with copper as the catalysts were reported.¹⁶ In this paper, we have developed an inexpensive and readily available catalyst FeCl₃, CuO, and BINOL to construct C(aryl)–N and C(aryl)–O bonds from aryl iodides and bromides.

After the optimization process of solvents, ligands, and catalysts, the following cross-coupling reactions were carried out under our standard conditions – 10 mol% FeCl₃ and 10 mol% CuO as the cocatalyst, 20 mol% *rac*-BINOL as the ligand relative to aryl halides, DMF as the solvent, and Cs₂CO₃ as the base.

The iron/copper cocatalyzed N-arylation of aliphatic amines was explored under our standard conditions.¹⁷ As shown in Table 1, the coupling reactions were performed well for all the substrates examined, and the desired aryl-amines were obtained in good yields. Aryl halides containing electron-withdrawing group showed higher reactivity than those containing electron-donating group. Although aryl iodides containing electron-donating group and aryl bromides gave slightly lower reaction yields, they could provide higher yields when temperature was raised. For aryl halides, coupling of iodobenzenes containing bromine or chlorine selectively took place on the C–I bond (entries 15–18) using 1.2 equivalents of aliphatic amines as partners.

We also attempted the cross-coupling reactions of aryl halides with arylamines.¹⁷ As shown in Table 2, we found that FeCl₃, CuO, and *rac*-BINOL could promote the conversion of the substrates to the corresponding arylamines, and aryl bromides containing an electron-withdrawing group on the benzene ring afforded better results. Aryl iodides showed higher reactivity than aryl bromides in the coupling reaction. For example, coupling of 1-bromo-4iodobenzene with indole (entry 21) yielded the target product **5n** containing bromine on the benzene ring.

The standard reaction conditions were also suitable for Oarylation.¹⁸ As shown in Table 3, aryl iodides gave good yields. However, aryl bromides were slightly inferior substrates (entries 11 and 13). Fortunately, addition of two equivalents of KI in the reaction system could improve the yields of the target products (entries 12, 14–17). Similarly, aryl halides containing an electron-withdrawing group showed higher reactivity than those containing an electron-donating one, and the substituted phenols containing an electron-rich group gave higher yields than those containing an electron-deficient one.

SYNLETT 2008, No. 16, pp 2540–2546 Advanced online publication: 22.08.2008 DOI: 10.1055/s-2008-1078214; Art ID: W08308ST © Georg Thieme Verlag Stuttgart · New York

 Table 1
 Iron/Copper-Cocatalyzed Cross-Coupling of Aryl Halides

 with Aliphatic Amines^a
 1

Ar> X = I 1	 + HN I, Br 2 	R ¹	FeCl ₃ (10 mol%) CuO (10 mol%) <i>rac</i> -BINOL (20 mo Cs ₂ CO ₃ , DMF	I%) ►	Ar	-N ^{R¹} R ² 3
En- try	Aryl halide	Product		Temp (°C)	Time (h)	Yield (%) ^b
1	PhI 1a	$\langle \rangle$	-NHC ₅ H ₁₁	80	12	84
2	1a	3a	NHC ₁₂ H ₂₅	90	12	76
3	1a		-H	80	12	89
4	1a	3c		90	12	85
5	1a			90	12	83
6	TolI 1b	3e Me	NHC ₅ H ₁₁	90	12	73
7	1b	Me	NHC ₁₂ H ₂₅	90	12	72
8	1b	3g Me		100	12	75
9	PhBr 1c		−NHC ₅ H ₁₁	100	12	76
10	1c	3a	-NO	100	24	82
11	4-O ₂ NC ₆ H ₄ Br 1d	3d 0 ₂ N-	NHC ₅ H ₁₁	90	12	86
12	3-O ₂ NC ₆ H ₄ Br 1e		H-N-	90	12	88
12	3-O ₂ NC ₆ H ₄ Br 1e	O ₂ N 3 j)—N—()	90	12	8

 Table 1
 Iron/Copper-Cocatalyzed Cross-Coupling of Aryl Halides

 with Aliphatic Amines^a (continued)

 a Reaction conditions: aryl halide (1.0 mmol), aliphatic amine (1.2 mmol), ligand (0.2 mmol), $Cs_{2}CO_{3}$ (2 mmol), DMF (2 mL) under $N_{2}.$ Amount of catalyst relative to aryl halide. b Isolated yield.

In summary, we have developed an efficient and inexpensive bimetallic catalyst FeCl₃, CuO, and *rac*-BINOL that could promote N,O-arylation of aliphatic, arylamines, and phenols, and the cross-coupling reactions could tolerate many functional groups. This versatile and efficient iron/ copper-cocatalyst can widely be used in the synthesis of the compounds containing the (aryl)C–N or (aryl)C–O(aryl) bond. Other synthetic applications of this catalyst are now in progress.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

 Table 2
 Iron/Copper-Cocatalyzed Cross-Coupling of Aryl Halides with Arylamines^a

ArX + X = I, Br	$\begin{array}{c} & & & & & & & & & & $	$\begin{array}{ccc} 0 \text{ mol\%}) \\ \text{mol\%}) \\ DL (20 \text{ mol\%}) \\ \hline \\ $			
1 Entry	4 Aryl halide	5 Product	Temp (°C)	Time (h)	Yield (%) ^b
1	1a		100	24	78
2	1a	5a	80	12	68
3	1a		100	12	85
4	1a		80	12	81
5	1a	Sd N O_2N	90	12	89
6	1a	5e	90	12	85
7	1a	Sf MeO	80	12	80
8	1b	5g Me	90	12	79
9	1b		90	12	82
10	1c	5h	110	12	76
11	1c	$H \rightarrow NO_2$	110	24	82
12	1c	5c	110	24	81
13	1e	O ₂ N H OMe	100	12	86

LETTER

Synlett 2008, No. 16, 2540-2546 © Thieme Stuttgart · New York

ArX + X = I, Br	FeCl ₃ (1 CuO (10 HN ^C R ³ R ⁴ Cs ₂ C	$\begin{array}{ccc} 0 \text{ mol\%} \\ 1 \text{ mol\%} \\ DL (20 \text{ mol\%}) \\ \hline O_{3}, \text{ DMF} \end{array} \qquad $			
1	4	5			
Entry	Aryl halide	Product	Temp (°C)	Time (h)	Yield (%) ^b
14	1e	NO_2	110	12	84
15	1a	5j Ph N	90	12	78
16	1a	Ph N	90	12	89
17	1c	51 Ph_N	110	24	75
18	1c	Ph N	110	24	82
19	O ₂ N		100	12	89
20	1h 1f	5m Br N	90	12	84

 Table 2
 Iron/Copper-Cocatalyzed Cross-Coupling of Aryl Halides with Arylamines^a (continued)

^a Reaction conditions: aryl halide (1.0 mmol), arylamine (1.2 mmol), ligand (0.2 mmol), Cs₂CO₃ (2 mmol), DMF (2 mL) under N₂. Amount of catalyst relative to aryl halide. ^b Isolated yield.

 Table 3
 Iron/Copper-Cocatalyzed Cross-Coupling of Aryl Halides with Phenols^a

ArX + X = L Br	Ar´OH —	FeCl ₃ (10 mol%) CuO (10 mol%) <i>rac</i> -BINOL (20 mol%) Cs ₂ CO ₃ , DMF	ArOAr´			
1	6		7			
Entry	Aryl hali	de Product		Temp (°C)	Time (h)	Yield (%) ^b
1	1 a		С	110	12	83
2	1a	7a	OMe	110	12	84
3	1g		≻o-√	110	24	87
		7a				

Synlett 2008, No. 16, 2540-2546 © Thieme Stuttgart · New York

 Table 3
 Iron/Copper-Cocatalyzed Cross-Coupling of Aryl Halides with Phenols^a (continued)

	Fe Cu rao	Cl ₃ (10 mol%) O (10 mol%) p-BINOL (20 mol%)			
ArX + X = I. Br	Ar'OH	Cs ₂ CO ₃ , DMF ArOA	r		
1	6	7			
Entry	Aryl halide	Product	Temp (°C)	Time (h)	Yield (%) ^b
4	lg	CI	110	12	78
5	lg	CI√O	120	24	71
6	1g		110	24	80
7	1g		110	12	80
8	1g		CI 110	12	84
9	1g		NO ₂ 100	12	89
10	lg		120	12	78
11	1c		CI 120	24	60
12	1c		CI 120	24	79°
13	1d	0 ₂ N-0-	-CI 120	24	63
14	1d	/n 0 ₂ N-0-	-Ci 120	24	82°
15	1d	7h 0 ₂ N	120	24	75°

Table 3 Iron/Copper-Cocatalyzed Cross-Coupling of Aryl Halides with Phenols^a (continued)

۵rX ــ	Ar´OH	FeCl ₃ (10 mol%) CuO (10 mol%) <i>rac</i> -BINOL (20 mol%)	ΔιΟΔι			
X = I, Br		Cs ₂ CO ₃ , DMF				
1	6		7			
Entry	Aryl h	alide Product		Temp (°C)	Time (h)	Yield (%) ^b
16	1e	O ₂ N		120	24	83°
17		→Br Notest Notest No		120	24	74°
	1i	71				

^a Reaction conditions: aryl halide (1.0 mmol), phenol (1.2 mmol), ligand (0.2 mmol), Cs_2CO_3 (2 mmol), DMF (2 mL) under N_2 . Amount of catalyst relative to aryl halide.

^b Isolated yield.

^c Addition of KI (2.0 mmol).

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 20672065), Chinese 863 Project (Grant No. 2007AA02Z160), Programs for New Century Excellent Talents in University (NCET-05-0062) and Changjiang Scholars and innovative Research Team in University (PCSIRT) (No. IRT0404) in China and the Key Subject Foundation from Beijing Department of Education (XK100030514).

References and Notes

- (1) (a) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2389.
 (b) Ullmann, F. Ber. Dtsch. Chem. Ges. 1904, 37, 853.
- (2) Ley, S. V.; Thomas, A. W. Angew. Chem. Int. Ed. 2003, 42, 5400.
- (3) (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727. (b) Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684. (c) Antilla, J. C.; Baskin, J. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69, 5578.
- (4) (a) Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org. Lett. 2001, 3, 4315. (b) van Allen, D.; Venkataraman, D. J. Org. Chem. 2003, 68, 4590.
- (5) (a) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett.
 2002, 4, 581. (b) Chen, Y.-J.; Chen, H.-H. Org. Lett. 2006, 8, 5609. (c) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2003, 5, 793.
- (6) (a) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc. 1998, 120, 12459. (b) Ma, D.; Xia, C. Org. Lett. 2001, 3, 2583. (c) Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453. (d) Ma, D.; Cai, Q. Org. Lett. 2003, 5, 3799. (e) Ma, D.; Cai, Q. Synlett 2004, 128. (f) Pan, X.; Cai, Q.; Ma, D. Org. Lett. 2004, 6, 1809. (g) Zhu, W.; Ma, D. Chem. Commun. 2004, 888. (h) Ma, D.; Liu, F. Chem. Commun. 2004, 1934. (i) Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164. (j) Guo, X.; Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. Adv. Synth. Catal. 2006, 348, 2197.

- (7) (a) Cristau, H.-J.; Cellier, P. P.; Spindler, J.-F.; Taillefer, M. *Eur. J. Org. Chem.* 2004, 695. (b) Cristau, H.-J.; Cellier, P. P.; Spindler, J.-F.; Taillefer, M. *Chem. Eur. J.* 2004, *10*, 5607.
- (8) Zhang, S.; Zhang, D.; Liebeskind, L. S. J. Org. Chem. 1997, 62, 2312.
- (9) (a) Kelkar, A. A.; Patil, N. M.; Chaudhari, R. V. *Tetrahedron Lett.* 2002, 43, 7143. (b) Gajare, A. S.; Toyota, K.; Yoshifuji, M.; Yoshifuji, F. *Chem. Commun.* 2004, 1994.
- (10) Yang, M.; Liu, F. J. Org. Chem. 2007, 72, 8969.
- (11) (a) Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 8742. (b) Lv, X.; Bao, W. J. Org. Chem. 2007, 72, 3863.
- (12) (a) Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2005, 70, 8107. (b) Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem. Eur. J. 2006, 12, 3636. (c) Zhu, D.; Wang, R.; Mao, J.; Xu, L.; Wu, F.; Wan, B. J. Mol. Catal. A: Chem. 2006, 256, 256. (d) Jiang, D.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2007, 72, 672. (e) Tanimori, S.; Ura, H.; Kirihata, M. Eur. J. Org. Chem. 2007, 3977.
- (13) See some recent reports for O-arylation: (a) Marcoux, J.-F.; Doye, S.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 10539. (b) Buck, E.; Song, Z. J.; Tschaen, D.; Dormer, P. G.; Volante, R. P.; Reider, P. J. Org. Lett. 2002, 4, 1623.
 (c) Fagan, P. J.; Hauptman, E.; Shapiro, R.; Casalnuovo, A. J. Am. Chem. Soc. 2000, 122, 5043. (d) Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org. Lett. 2001, 3, 4135.
 (e) Cristau, H. J.; Cellier, P. P.; Hamada, S.; Spindler, J. F.; Tailefer, M. Org. Lett. 2004, 6, 913. (f) Jin, Y.; Liu, J.; Yin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Synlett 2006, 1564.
- (14) Bolm, C.; Legros, J.; Paih, J. L.; Zani, L. *Chem. Rev.* **2004**, *104*, 6217.
- (15) For recent work dealing with iron-mediated arylations concerning C–C bond formation, see: (a) Cahiez, G.; Avedissian, H. Synthesis 1998, 1199. (b) Dohle, W.; Kopp, F.; Cahiez, G.; Knochel, P. Synlett 2001, 1901. (c) Fürstner, A.; Leitner, A.; Mendez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124, 13856. (d) Bedford, R. B.; Bruce, D. W.; Frost, R. M.; Goodby, J. W.; Hird, M. Chem. Commun. 2004, 2822. (e) Martin, R.; Fürstner, A. Angew. Chem. Int. Ed. 2004, 43, 3955. (f) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 3686. (g) Shirakawa, E.; Yamafumi, T.; Kimura, T.; Yamaguchi,

Synlett 2008, No. 16, 2540-2546 © Thieme Stuttgart · New York

S.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 17164.
(h) Fürstner, A.; Martin, R. Chem. Lett. 2005, 5, 624.
(i) Fürstner, A.; Krause, H.; Lehmann, C. W. Angew. Chem. Int. Ed. 2006, 45, 440.

(16) (a) Taillefer, M.; Xia, N.; Ouali, A. Angew. Chem. Int. Ed. 2007, 46, 934. (b) Song, R.-J.; Deng, C.-L.; Xie, Y.-X.; Li, J.-H. Tetrahedron Lett. 2007, 48, 7845. (c) Correa, A.; Bolm, C. Angew. Chem. Int. Ed. 2007, 46, 8862.
(d) Correa, A.; Garcia Mancheno, O.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108. (e) Correa, A.; Elmore, S.; Bolm, C. Chem. Eur. J. 2008, 14, 3527. (f) Correa, A.; Bolm, C. Adv. Synth. Catal. 2008, 350, 391.

(17) General Procedure A: Coupling of Aryl Halides with Amines

A flask was charged with FeCl₃ (16 mg, 0.1 mmol), CuO (8 mg, 0.1 mmol), Cs₂CO₃ (651 mg, 2 mmol), BINOL (57 mg, 0.2 mmol), and any remaining solids (amine and/or aryl halide). The flask was evacuated and backfilled with nitrogen (this procedure was repeated five times). Aryl halide (1 mmol, if liquid), amine (1.2 mmol, if liquid), and DMF (2 mL) were added to the flask under nitrogen atmosphere. The mixture was allowed to stir under nitrogen atmosphere at the shown temperature for the indicated period of time in the text (see Tables 1 and 2). After cooling to r.t., the mixture was diluted with CH₂Cl₂ (ca. 20 mL), the solution was filtered, and the filter cake was further washed with CH₂Cl₂ (ca. 5 mL). The filtrate was washed with 1 M NaOH (ca. 10 mL). The combined aqueous phase was extracted with CH_2Cl_2 (2 × 10 mL). Organic layers were combined and dried over anhyd Na₂SO₄. The solvent of the filtrate was removed with the aid of a rotary evaporator, and the residue was purified by column chromatography on SiO_2 using PE-EtOAc (60:1 to 10:1) as eluent to provide the

desired product.

1-Phenyl-1H-indole (51):^{16a} yellow oil, yield 88%. ¹H NMR (300 MHz, CDCl₃): δ = 7.61 (d, 1 H, *J* = 7.56 Hz), 7.42–7.51 (m, 5 H), 7.25–7.30 (m, 2 H), 7.13 (dd, 2 H, *J* = 9.60, 1.74 Hz), 6.61 (t, 1 H, *J* = 3.45 Hz). ¹³C NMR (75 MHz, CDCl₃): δ = 139.9, 135.9, 129.7, 129.4, 128.1, 126.5, 124.5, 122.5, 121.2, 120.5, 110.6, 103.7. MS (EI): m/z = 193.23 [M⁺].

(18) General Procedure B: Coupling of Aryl Halides with Phenols

A flask was charged with FeCl₃ (16 mg, 0.1 mmol), CuO (8 mg, 0.1 mmol), Cs₂CO₃ (651 mg, 2 mmol), 1,1'-binaphthyl-2,2'-diol (57 mg, 0.2 mmol), and any remaining solids (phenol and/or aryl halide). The flask was evacuated and backfilled with nitrogen (this procedure was repeated five times). Aryl halide (1 mmol, if liquid), phenol (1.2 mmol, if liquid), and DMF (2 mL) were added to the flask under nitrogen atmosphere. The flask mixture was allowed to stir under nitrogen atmosphere at the shown temperature for the indicated period of time in the text (see Table 3). After cooling to r.t., the mixture was diluted with CH₂Cl₂ (ca. 20 mL), the solution was filtered, and the filter cake was further washed with CH_2Cl_2 (ca. 5 mL). The solvent of the filtrate was removed with the aid of a rotary evaporator, and the residue was purified by column chromatography on SiO₂ using PE or PE-EtOAc (60:1 to 100:1) as eluent to provide the desired product.

1-(4-Chlorophenoxy)-3-methylbenzene (7f):^{6d} colorless oil, yield 79%. ¹H NMR (300 MHz, CDCl₃): δ = 7.25 (dd, 2 H, *J* = 6.87, 2.07 Hz), 7.18 (d, 1 H, *J* = 7.53 Hz), 6.91 (dd, 3 H, *J* = 6.84, 2.04 Hz), 6.78 (s, 2 H), 2.31 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ = 157.0, 156.2, 140.2, 129.8, 129.7, 128.2, 124.6, 120.1, 119.8, 116.1, 21.5. MS (EI): *m*/*z* = 218.22 [M⁺].