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Abstract 
An excellent catalyst with a large number of weak acid centers and highly dispersed copper nanoparticles embedded in 
mesoporous SBA-15 carrier was successfully constructed for the purpose of efficient conversion of aniline with biomass-
derived glycerin to the high value-added 3-methylindole, in which the catalyst of Cu/SBA-15 was modified with  Al2O3,  La2O3 
and CoO in sequence. The modified carrier and the copper-based catalysts were studied by scanning electron microscopy 
and energy-dispersive X-ray (SEM–EDX) spectroscopy, nitrogen physical adsorption, ammonia temperature programmed 
desorption  (NH3-TPD), hydrogen temperature programmed reduction  (H2-TPR), powder X-ray diffraction (XRD), transmis-
sion electron microscopy (TEM), thermogravimetric and differential thermal analysis (TG–DTA) and inductively coupled 
plasma (ICP) emission spectroscopy. The research found that the Cu/CoO/La2O3/Al2O3/SBA-15 catalyst exhibited a very 
good catalytic performance with 3-methylindole yield up to 73.3% and selectivity reaching 86.4%. Besides, only a 3.9% yield 
decreased after the catalyst was circulated seven times. The characterizations revealed that  Al2O3 could enhance the polar-
ity of the carrier, thereby the interaction between the active component and the composite carrier was strengthened and the 
dispersion of copper was increased significantly. Adding  La2O3 to Cu/SBA-15-Al2O3 could weaken the acidity and inhibit 
the formation of carbon deposits. CoO promoter could increase the number of weak acid centers, which was conducive to a 
good dispersion of active component and the high selectivity of 3-methylindole. Furthermore, the reaction pathway of gas-
phase synthesis of 3-methylindole from glycerin and aniline on Cu/CoO/La2O3/Al2O3/SBA-15 was explored.
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1 Introduction

With the continuous development of economy and industrial 
production, the shortage of fossil fuels has become more 
and more serious. So the efficient use of renewable bio-
mass resources to partially replace fossil fuels has received 
widespread attention [1–3]. Biodiesel, as one of the typical 
representatives of biofuels and a green energy source, has 
the advantages of renewable, degradable and low pollution, 
thereby the research about biodiesel production has attracted 
most of the attention in recent years [4, 5]. However, the 
production of biodiesel would emerge a large amount of by-
product glycerin [6]. How to effectively convert glycerin 
to high value-added chemicals is a topic of great concern 
to chemical researchers [7–9], which can improve the sus-
tainability and economic viability of biodiesel production. 
And by now, a lot of high value-added chemicals have been 
gained through various methods such as dehydration [8], 
hydrogenolysis [9], etherification [10], carboxylation [11], 
oxidation [12], transesterification [13], steam reforming of 
glycerin [6] and, etc. [14].

In our recent research, it was discovered that glycerin 
and aniline could be used to synthesize the high value-
added chemical of 3-methylindole (3-MI), in which Cu/
SiO2-Al2O3 was the catalyst and a 40% 3-MI yield was 
obtained [15]. 3-MI is a crucial nitrogen-containing het-
erocyclic compound and has a wide range of application 
in industry, medicine and agriculture, such as used as a 
spices [16] and synthesizing dyes, feed additives, plant 
growth agents, pesticides, herbicides, fungicides and anti-
inflammatory drugs, stimulants, antihypertensive drugs, 

vasodilator, anti-amine, anti-typhoid, anti-radiation and 
anti-cancer drugs, etc. [17, 18]. So important that 3-MI 
is, its synthesis methods, therefore, are widely concerned 
[19, 20].

Considering 3-MI synthesis methods, it can be known 
that gas-phase syntheses [21–24] and liquid-phase syn-
theses [25–27] are the most commonly used methods. For 
example, Campanati et al. [21] carried out the catalytic 
reaction with aniline and 1,2-propanediol as raw materi-
als in a fixed bed at atmospheric pressure over  ZrO2/SiO2, 
however, 3-MI yield was merely 12%. Our research group 
[22] used Ag/SiO2 as a catalyst for the reaction, and the 
3-MI yield increased to 35%. Gopal et al. [23] gained a 
30% 3-MI yield over CeHZ zeolite catalyst using indole 
and methanol (1:6 molar ratio) as raw materials. Simoneau 
et al. [25] reported the Fischer cyclization of allylamine 
and 1-bromo-2-iodine-benzene catalyzed by  Pd2dba3 with 
Nao–(tBu) and  PhCH3 as solvents, and a 85% yield of tar-
get product was obtained. For the liquid-phase syntheses, 
the 3-MI yield is relatively high, but some disadvantages 
exist such as complicated reagents, harsh reaction condi-
tions, expensive catalysts and high cost of product sepa-
ration [25–27]. Correspondingly, although the catalytic 
efficiency is not as good as that of the liquid-phase synthe-
ses, the gas-phase syntheses have the advantages of envi-
ronmental protection of raw materials, simple operation 
conditions and easy separation of products, etc. Thereinto, 
the gas-phase synthesis by using glycerin and aniline as 
raw materials is currently the most promising method and 
has attracted much attention because the reaction not only 
can convert the biomass-derived glycerin into the high 
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value-added chemical of 3-MI, which reduces the produc-
tion cost of 3-MI remarkably, but also could promote the 
production of biodiesel [28].

According to the in-depth research of our research group, 
it has been found that Cu-based catalysts are active in this 
reaction. And in order to make the activity and selectivity 
of the catalyst as superior as possible, the catalyst carrier 
should have a high specific surface area and a large amount 
of weak acid centers [29–31].

The mesoporous SBA-15 is a good alternative as a carrier 
of heterogeneous catalyst because of its long-range ordered 
channels, high specific surface area, good hydrothermal sta-
bility and adjustable mesopore size [32–37]. And the unique 
hexagonal arrangement makes it be very suitable for sup-
porting nano-scale metals [38, 39]. Therefore, in this paper, 
we select SBA-15 as the catalyst carrier to construct an effi-
cient and inexpensive Cu-based catalyst. Considering the 
polarity of SBA-15 is very small, the interaction between 
SBA-15 and active components is very weak, which would 
make copper particles move and aggregate easily on the 
surface of the carrier, therefore, in this paper, the promot-
ers of  Al2O3,  La2O3 and CoO were added to the catalyst of 
Cu/SBA-15 in order to improve the dispersion of the active 
component and increase the activity and selectivity of the 
catalyst. At the same time, SEM–EDX,  N2 physical adsorp-
tion,  NH3-TPD,  H2-TPR, XRD, TEM, TG–DTA and ICP 
characterization methods were used to explore the structure 
and performance of the catalysts. Furthermore, the synthesis 
mechanism of 3-MI by glycerin and aniline on Cu/CoO/
La2O3/Al2O3/SBA-15 was studied profoundly and a reason-
able pathway was proposed.

2  Experimental

2.1  Materials

Copper nitrate (Cu(NO3)2·3H2O, ≥ 99.0%), alu-
minium  nitrate (Al(NO3)3·9H2O, ≥ 99.0%), lantha-
num nitrate (La(NO3)2·6H2O, ≥ 99.0%), cobalt nitrate 
(Co(NO3)3·6H2O, ≥ 99.0%), aniline  (C6H5NH2, ≥ 99.5%), 
and n-hexanol  (C6H13OH, ≥ 95.0%) were obtained from 
Tianjin Damao Chemical Reagent Co., Ltd. (China). 
Glycerin  (C3H8O3, ≥ 99.0%) was obtained from Zhao-
qing Zhaolifang Trading Co., Ltd. Tetraethyl orthosili-
cate (TEOS,  (C2H5O)4Si, ≥ 98.0%), hydrochloric acid 
(HCl, 36% ~ 38%), acetol  (C3H6O2, > 99.0%), 1,2-propan-
ediol  (C3H8O2, > 99.0%) and 3-MI  (C9H9N, > 98.0%) were 
obtained from Tianjin Kemiou Chemical Reagent Co., Ltd. 
(China). Pluronic P123 (Mn = 5800,  EO20PO70EO20) were 
obtained from Beijing Reagent Co., Ltd. (China). The above 
chemicals were not purified before use.

2.2  Preparation of SBA‑15 Carrier 
and Copper‑Based Catalysts

SBA-15 carrier was hydrothermally prepared based on 
the literature [40, 41] with a minor modification. A 4 g of 
P123  (EO20PO70EO20) was dispersed in 160 mL (1.5 M) 
hydrochloric acid solution. After the solution was stirred 
thoroughly by the magnetic stirrer until the surfactant was 
wholly dissolved and uniformly dispersed, a 8.5 g TEOS 
was added into the above solution, and it was also stirred at 
313 K for 24.0 h using a magnetic stirrer. Then the miscible 
liquid underwent an additional aging at 353 K for 24.0 h, 
and the suspension was filtered, washed. The sample was 
calcined in a muffle furnace at 773 K for 6.0 h after air-dried. 
Finally, the carrier of SBA-15 was obtained.

The catalyst of Cu/SBA-15 was obtained by equal volume 
impregnation method. At room temperature, take a certain 
amount of SBA-15 and immerse it in a suitable amount of 
copper nitrate aqueous solution. After 15.0 h of impregna-
tion, dry it in a water bath of 368 K and next in an oven of 
493 K for 4.0 h. Finally, place it in a muffle furnace, where 
it was calcined at the temperature of 773 K for 4.0 h. Then 
the catalyst precursor was prepared.

The catalyst of Cu/Al2O3/SBA-15 was acquired by 
sequential impregnation. The SBA-15 carrier was first 
soaked in a certain concentration of aqueous solution of 
Al(NO3)3 for 15.0 h. The mixture was then dried and cal-
cined using the above method to obtain the modified carrier 
of  Al2O3/SBA-15. Finally, the active component was loaded 
on the composite carrier of  Al2O3/SBA-15 and the loading 
process was the same as the previous step.

The catalysts of Cu/La2O3/Al2O3/SBA-15 and Cu/CoO/
La2O3/Al2O3/SBA-15 were also prepared by the same 
method as above and the loading sequence was  Al2O3, 
 La2O3, CoO in order, in which the active component was 
last loaded. For every SBA-15 supported copper-based cata-
lyst, the loading of copper was 6.53 wt%. Before the cata-
lytic reaction, the catalyst precursor (1.5 mL) was reduced at 
513 K for 2.0 h with a mixture flow of  H2 (15 mL min−1)-N2 
(15 mL min−1), which was the optimum reduction condition 
obtained by optimizing the reduction temperature, reduction 
time and reduction gas ratio.

2.3  Evaluation of Catalysts

The active measurement of catalyst was carried out in a 
glass reactor of fixed-bed with the inside diameter of 12 mm, 
which the reactor was placed vertically inside a tubular fur-
nace and the temperature was monitored by a thermocou-
ple with its tip located at the catalyst bed and connected 
to a temperature indicator controller. The reactant solution 
with glycerin/aniline molar ratio of 1:3 was pumped and 
vaporized by the preheater and then entered the reactor, 
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meanwhile a certain flow rate of hydrogen, nitrogen or steam 
was also introduced into the reaction system. The liquid 
products were hourly collected from the reactor exit. The 
space velocity (SV) of the reaction was 1700 h−1, and the 
liquid hourly space velocity (LHSV) of aniline and glycerin 
was 0.4 h−1.

2.4  Analysis of Products

In this paper, the products for the reaction of glycerin and 
aniline were qualitatively detected by using a QP2010 
GC–MS instrument (Shimadzu Corporation, Japan) with 
DB-5MS column, in which the temperature was changed 
from 373 to 533 K at a 15 K  min−1 heating rate. The qualita-
tive analysis of 3-MI was proceeded on a 500 superconduct-
ing NMR spectrometer of Bruker and the result was shown 
in Fig. S1.

The reaction products were quantitatively determined 
by gas chromatography with HP-5 capillary column and 
N-hexanol was the internal standard. The glycerin conver-
sion, 3-MI yield or selectivity was calculated as follows.

Glycerin conversion:

3-MI yield:

3-MI selectivity:

2.5  Characterization of Catalysts

The compositions and each element content of Cu/CoO/
La2O3/Al2O3/SBA-15 were examined using field-emis-
sion scanning electron microscopy of Germany Carl zeiss 
Supra55 with energy-dispersive X-ray spectroscopy (EDS) 
of UK Oxford X-MaxN. The acceleration voltage was 15 kV.

The N2 adsorption–desorption measurements of SBA-15 
or its loaded Cu-based catalysts were accomplished using 
a physical adsorption instrument of Micromeritics ASAP 
2010, where the sample was evacuated under 10–5 mmHg 
to purify at 573 K for 3.0 h.

The  NH3-TPD measurement was proceeded in a 
6 mm × 350 mm quartz tubular reactor. Under He (35 mL 
 min−1) gas flow, 150 mg catalyst to be tested was heated 
from 293 to 773 K at a 9.6 K  min−1 ramp rate, and impurities 
were removed. Then, the sample was absorbed by  NH3 at 
373 K for 1.0 h, and the physically adsorbed  NH3 was blown 

Conv.(%) =
nglycerin(initial) − nglycerin(final)

nglycerin(initial)
× 100%

Yield(%) =
n
3 −MI

nglycerin(initial)
× 100%

Sel.(%) =
Yield

Conv.
× 100%

away in 3.0 h at the same temperature in the helium flow 
(35 mL  min−1). Finally, the sample was heated to 973 K at a 
9.6 K  min−1 speed in a 35 mL  min−1 He flow and stayed at 
973 K for 0.5 h, in which the desorption data for the chem-
isorbed ammonia was collected.

H2-TPR experimental device is the same as the NH3-
TPD instrument. 100 mg catalyst precursor was filled and 
heated to 573 K in N2 (30 mL  min−1) flow and purged at the 
temperature for 1.0 h to remove surface moisture and impuri-
ties, then the temperature was lowered to 313 K. Finally the 
reduction was carried out in a mixed gas (30 mL  min−1) of 
H2-Ar (VH2/VAr of 1/9) from 313 to 873 K and maintained 
the final temperature for 0.5 h, in which the data of hydrogen 
consumption were collected.

The crystal structures of SBA-15 carrier and its supported 
copper-based catalysts were detected on the Rigaku Smart-
lab 9 instrument using Cu-Kα radiation. The scan rate was 
5°  min−1. A 200 mA tube current and a 45 kV tube voltage 
were used.

Use a JEM-2000EX microscope to obtain the TEM 
images of the catalysts, where the sample was ground down 
and put into ethanol solvent to uniformly be dispersed by 
ultrasonic treatment. The solution was then coated on a 
porous carbon copper mesh, and the transmission image of 
the sample was measured at 50 kV acceleration voltage.

The carbon deposits analyses for the used catalysts were 
carried out on a 6300 Diamond TG–DTA thermogravimetric 
instrument of PerkinElmer. A 7 mg sample was taken and 
purged at 573 K in a  N2 flow (20 mL  min−1), then it was 
dropped to 333 K. In the end, the sample was heated in 
an air flow of 20 mL  min−1 from 333 to 1073 K at a 10 K 
 min−1 rate.

The amounts of Cu component of the fresh or used SBA-
15 supported Cu-based catalysts were tested by a Perkin 
Elmer Optima 2100DV inductively coupled plasma (ICP) 
emission spectroscopy, in which the RF power was 1300 W 
and a nebulizer (sample) argon flow was 0.80 L/min.

2.6  Catalyst Regeneration

The deactivated catalyst sample of Cu/CoO/La2O3/Al2O3/
SBA-15 was regenerated at 773 K for 4.0 h in the mixed gas 
flow with oxygen (3 mL  min−1) and nitrogen (57 mL  min−1) 
after it was slowly heated to 773 K at 1 K  min−1. Then the 
cyclic activity test was conducted for the obtained sample.

3  Results and Discussion

3.1  Catalytic Performance

As is known to all, Cu-based catalysts are beneficial to the 
gas-phase synthesis of 3-MI by glycerin and aniline [15, 
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30, 31]. In addition, SBA-15 exhibits excellent performance 
as a catalyst carrier [32, 33, 42]. Hence, we use SBA-15 
supported Cu as the catalyst for this reaction, and added 
an appropriate amount of  Al2O3,  La2O3 and CoO promot-
ers to make the catalyst performance more superior. For 
the reaction, except the target product of 3-MI, many by-
products were also detected. Among them, N-methylani-
line (N-MA), N-ethylaniline (N-EA), N-isopropylaniline 
(N-IPA), 2,5-dimethyl-1-phenyl-pyrrole (2,5-DMPP) and 
2,3-dimethylindole (2,3-DMI) were the major by-prod-
ucts. In addition, there were other by-products with minor 
amounts such as ethylic acid, N-propylaniline, propylene 
glycol, indole, 3-ketoneindole, N-isopropylindole and N,N′-
dimethyl-N,N′-diphenyl-1,2-ethanediamine, etc. The activity 
and selectivity for the catalysts of  Al2O3,  La2O3 and CoO 
modified Cu/SBA-15 were shown in Tables 1, 2 and 3.

First at all, glycerin conversion, the selectivity for 3-MI 
and the by-products changed greatly when  Al2O3 promoter 
was added to Cu/SBA-15 (seen in Table 1). The glycerin 
conversion was proportional to the content of  Al2O3 added. 
The selectivity of 3-MI presented an earlier increase and 
later decreased trend with the increase of  Al2O3 content. 
For the generated by-products, the selectivity of N-MA, 2,5-
DMPP or 2,3-DMI increased with the increase of  Al2O3 con-
tent, while N-EA or N-IPA selectivity decreased. When the 
content of  Al2O3 was 11.03 wt%, 3-MI selectivity reached 
the better. From Table 2 it can be known that as the con-
tent of  La2O3 increased, glycerin conversion decreased little 
by little, and the target product selectivity also exhibited a 
trend of going up first and then declining. The selectivity 
change trend of the major by-products was opposite to that 
in Table 1. In Table 3, glycerin conversion, the selectivity 

Table 1  Effect of  Al2O3 content 
on the activity and selectivity of 
Cu/Al2O3/SBA-15 catalyst

Reaction conditions: 513 K,  H2 = 15 mL  min−1,  N2 = 25 mL  min−1. The third hour results

Al2O3 con-
tent (wt%)

Glycerin con-
version (%)

Product selectivity (%)

3-MI N-MA N-EA N-IPA 2,5-DMPP 2,3-DMI Others

0.00 42.8 27.6 6.8 8.4 9.8 3.8 0.6 43.0
7.90 80.2 42.8 7.4 7.6 9.0 4.5 1.7 27.0
9.49 84.4 43.9 8.0 6.9 8.2 5.2 2.8 25.0

11.03 86.9 45.2 8.6 6.3 7.5 5.9 3.9 22.6
12.51 89.3 40.4 9.2 5.8 6.9 6.7 5.1 25.9
13.95 91.4 36.1 9.9 5.3 6.3 7.5 6.3 28.6

Table 2  Effect of  La2O3 content 
on the activity and selectivity 
of Cu/La2O3/Al2O3/SBA-15 
catalyst

Reaction conditions: 513 K,  H2 = 15 mL  min−1,  N2 = 25 mL  min−1.  Al2O3 content of 11.03 wt%. The third 
hour results

La2O3 con-
tent (wt%)

Glycerin con-
version (%)

Product selectivity (%)

3-MI N-MA N-EA N-IPA 2,5-DMPP 2,3-DMI Others

0.00 86.9 45.2 8.6 6.3 7.5 5.9 3.9 22.6
0.54 85.4 51.4 6.9 6.4 7.6 4.7 3.1 19.9
0.81 83.9 56.2 5.1 6.6 7.8 3.3 2.2 17.8
1.07 82.6 63.1 3.8 6.8 8.0 2.3 1.5 14.5
1.34 80.3 59.7 3.3 7.4 8.5 1.8 1.2 18.1
1.60 77.2 57.5 3.0 7.9 9.0 1.5 0.8 20.3

Table 3  Effect of CoO content 
on the activity and selectivity of 
Cu/CoO/La2O3/Al2O3/SBA-15 
catalyst

Reaction conditions: 513 K,  H2 = 15 mL  min−1,  N2 = 25 mL  min−1.  Al2O3 content of 11.03 wt%,  La2O3 
content of 1.07 wt%. The fourth hour results

CoO con-
tent (wt%)

Glycerin con-
version (%)

Product selectivity (%)

3-MI N-MA N-EA N-IPA 2,5-DMPP 2,3-DMI Others

0.00 82.6 63.1 3.8 6.8 8.0 2.3 1.5 14.5
0.18 84.8 65.8 4.0 5.6 6.6 2.9 2.2 12.9
0.25 86.9 69.2 4.2 4.0 4.9 3.6 2.8 11.3
0.31 88.4 65.4 4.7 3.7 4.0 4.9 4.1 13.2
0.37 90.1 59.3 6.4 3.4 3.8 6.8 6.2 14.1
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for 3-MI and the major by-products showed the same change 
trend as that in Table 1 with the increase of CoO content. 
The optimal contents for  La2O3 and CoO were 1.07 wt% and 
0.25 wt%, respectively. And at this time, the activity and 
selectivity of Cu/CoO/La2O3/Al2O3/SBA-15 catalyst were 
optimal, which 3-MI yield reached 60.1%.

Figure 1 shows the glycerin conversion (A) and 3-MI 
yield (B) versus time on stream over Cu/SBA-15 and the 
catalyst modified with  Al2O3,  La2O3 and CoO promoter 
 (Al2O3 content: 11.03 wt%,  La2O3 content: 1.07 wt%, CoO 
content: 0.25 wt%). Over Cu/SBA-15, the conversion of 
glycerin was low and as the reaction proceeded, it decreased 
guadually. After adding the promoter of  Al2O3,  La2O3 and 
CoO to Cu/SBA-15 in order, glycerin conversion increased 
as a whole and it showed a slight downward trend versus 
time on stream, but the falling range became smaller.

The 3-MI yield versus time on stream over Cu/SBA-15 
and the catalyst modified with  Al2O3 or  La2O3 gave the same 
change trend, which the yield of target product showed an 
upward trend within 1 to 3 h of reaction, and then began 
to decline. Adding  Al2O3 and  La2O3 promoters increased 
the yield of 3-MI greatly. After adding CoO to Cu/La2O3/
Al2O3/SBA-15, 3-MI yield increased further and the highest 
yield of 60.1% was obtained at the fourth hour. It can clearly 
be seen that the deactivation of Cu/La2O3/Al2O3/SBA-15 
modified with CoO was effectively suppressed, revealing the 
stability of the catalyst was greatly improved.

3.2  Characterization of Catalysts

3.2.1  SEM–EDX

Figure 2 presents the SEM images of Cu/CoO/La2O3/Al2O3/
SBA-15 with the optimal content of  Al2O3,  La2O3 or CoO 
promoter, the content of each element and Si, O, Al, Cu, 
La and Co element mappings. It can be seen that the dis-
tribution of each element was relatively uniform. And as 
expected, the elements of silicon and oxygen were the most 
abundant, followed by the elements of aluminium, copper 
and lanthanum. The amount of cobalt element was least 
because Co content was only 0.25 wt%.

3.2.2  N2 Physical Adsorption

The  N2 adsorption–desorption isothermals and the pore 
size distribution curves of SBA-15 and four copper-based 
catalysts with the optimal content of  Al2O3,  La2O3 or CoO 
promoter were shown in Fig. 3. It can be found from Fig. 3a 
that all the five samples have the same typical IV isotherm, 
which was the representative feature of mesoporous mate-
rial [43, 44]. In the relative pressure of 0.4–0.7, the four 
Cu-based catalysts had the H-1 hysteresis ring as well as 
SBA-15 did, suggesting that the feature pore channels of the 
SBA-15 carriers of the Cu-based catalysts were not dam-
aged after loaded the active component and promoters. The 
hysteresis loops were deformed and migrated downward 
slightly, indicating that their mesoporous sizes and ranges 
had changed [45].

From Fig. 3b, two kinds of pore size distribution can 
be seen on SBA-15, one was micropore at 1.9 nm, the 
other was mesopore at 2.2 nm. When the active component 
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Fig. 1  The glycerin conversion (A) and 3-MI yield (B) versus time on stream over the catalysts of Cu/SBA-15 (a), Cu/Al2O3/SBA-15 (b), Cu/
La2O3/Al2O3/SBA-15 (c) and Cu/CoO/La2O3/Al2O3/SBA-15(d)
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Cu was loaded on SBA-15, the amount of the mesopore 
increased, while the number of the micropore decreased. 
With the sequential addition of  Al2O3,  La2O3 and CoO 
promoters, the number of the micropore remarkably went 

down and the amount of the mesopore obviously aug-
mented. This may be because a part of aluminum in the 
SBA-15 skeleton reacted with aluminum nitrate or cobalt 
nitrate with certain acidity, while a part of silicon in the 
SBA-15 skeleton reacted with lanthanum nitrate with 

Fig. 2  SEM images (a), content 
of each element (b), elemental 
mappings of Si (c), O (d), Al 
(e), Cu (f), La (g) and Co (h) on 
Cu/CoO/La2O3/Al2O3/SBA-15 
with  Al2O3 content of 11.03 
wt%,  La2O3 content of 1.07 wt% 
and CoO content of 0.25 wt%
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certain basicity after immersing SBA-15 in the solution 
of aluminum nitrate, cobalt nitrate or lanthanum nitrate 
for a period of time (15 h), which resulted in the increase 
of pore size [46].

3.2.3  NH3‑TPD

The presence of acid centers is good for the adsorption of 
reactants of aniline and glycerin on the catalyst, but too 
strong acidity is not conducive to the desorption of 3-MI, 
which would cause a decrease in the yield and selectivity of 
3-MI [30]. What’s more, for the reaction of carbon-contain-
ing compounds, the strong acid centers will cause the forma-
tion of a large amount of carbon deposits, while the carbon 
deposits produced by weak acid centers are less. Therefore, 
this reaction requires a large number of weak acid centers. 
Figure 4 displays the  NH3-TPD profiles of Cu/SBA-15 and 
the modified catalysts with the optimal content of  Al2O3, 
 La2O3 and CoO. On Cu/SBA-15, only a broad desorption 
peak corresponding to medium-strong acid existed, no weak 
acid center appeared. After the promoter of  Al2O3 was added 
into Cu/SBA-15, two large desorption peaks pertained to 
weak acid centers appeared, which was very beneficial to the 
high selectivity of target product [15, 31]. With the addition 
of  La2O3, the acidity of the catalyst weakened and the num-
ber of weak acid centers declined, which could cut down the 
formation of carbon deposits. It’s gratifying that the addition 
of CoO could also greatly increase the number of weak acid 
centers, which was beneficial to the further improvement for 
the selectivity of the target product.

3.2.4  H2‑TPR

The mutual effect between active component and carrier is 
one of many factors that affect the catalyst performance and 
 H2-TPR profile of the catalyst is a good proof to reveal the 
interaction. Figure 5 shows  H2-TPR profiles of CuO/SBA-
15, CuO/Al2O3/SBA-15, CuO/La2O3/Al2O3/SBA-15, CuO/
CoO/La2O3/Al2O3/SBA-15 and the composite carriers with-
out CuO  (Al2O3 content: 11.03 wt%,  La2O3 content: 1.07 
wt%, CoO content: 0.25 wt%). There was no reduction peak 
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on the curve of a, b or c, only a reduction peak appeared 
on the curve of d, e, f or g, indicating that the reduction 
peak belonged to the reduction of CuO. CuO reduction 
peak shifted to the direction of high temperature after add-
ing  Al2O3, revealing that CuO was difficult to be reduced. 
This indicated that the promoter of  Al2O3 could enhance the 
interaction force between CuO and the composite carrier. 
Adding the promoter of  La2O3, however, brought about the 
reduction peak to shift to a low temperature, illustrating that 
the addition of  La2O3 made CuO acquire electrons more 
easily and be reduced with easy. When CoO was added into 
CuO/La2O3/Al2O3/SBA-15, the reduction temperature of 
CuO increased from 509 to 517 K, meaning that the inter-
action between the carrier and CuO enhanced again. The 
above reduction phenomenon can be explained by the result 
of  NH3-TPD. Since the acidity of the catalyst raised after 
adding the promoter of  Al2O3 or CoO, that is, the polarity of 
the catalyst molecule increased, which made the interaction 
force between CuO and the composite carrier enhanced, so 
CuO was difficult to be reduced. On the contrary, the acidity 
of the catalyst weakened after adding the promoter of  La2O3, 
that is, the polarity of the catalyst molecule decreased, which 
brought about the force between CuO and the composite 
support weakened, therefore CuO was reduced easily.

3.2.5  XRD

In order to further explore the effect of  Al2O3,  La2O3 and 
CoO on the Cu dispersity, we performed the XRD measure-
ment of the catalysts and Fig. 6 shows the patterns of the 
fresh and used copper-based catalysts. It can be observed 

that three typical diffraction peaks appeared at 2θ of 43.3, 
50.5 and 74.5° on Cu/SBA-15 catalyst, pertained to the char-
acteristic diffraction reflection of (111), (200) and (220) of 
copper crystal [47]. When  Al2O3 promoter was added, the 
diffraction peaks of copper crystal had completely disap-
peared. This was due to the fact discussed in  NH3-TPD 
and  H2-TPR that the addition of promoter  Al2O3 enhanced 
the force of copper and composite carrier, which hindered 
the aggregation of copper particles and made them be 
dispersed on the carrier. After adding  La2O3 promoter to 
Cu/Al2O3/SBA-15, the intensity of the diffraction peak of 
copper increased a little, which can be explained from the 
fact that the interaction between Cu and the composite car-
rier reduced a bit as the addition of  La2O3, so Cu particles 
aggregated slightly. The addition of CoO made the diffrac-
tion peak of Cu disappear again, illustrated the Cu particles 
were highly dispersed once more. The reason was naturally 
related to the increase of the force between Cu and the com-
posite carrier.

Comparing the XRD patterns of fresh Cu-based catalysts, 
the intensity of the diffraction peaks of Cu crystal obviously 
enhanced on every used catalyst, which was attributed to 
the Cu sintering during the reaction. And on Cu/SBA-15, 
the sintering of Cu particles was most severe. Adding the 
promoter  Al2O3 or CoO could significantly inhibit the sin-
tering of Cu particles, while  La2O3 promoter could not play 
the role. It was still due to the increase and decrease of the 
force of copper with the carrier after the addition of the three 
promoters.
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 P. Sun et al.

1 3

3.2.6  TEM

For the sake of knowing the Cu particles size and the chan-
nel of SBA-15 carrier after loaded copper and three pro-
moters on SBA-15 before and after the reaction, the TEM 
measurement (Fig. 7) of the fresh and the used Cu-based 
catalysts were proceeded  (Al2O3 content: 11.03 wt%,  La2O3 
content: 1.07 wt%, CoO content: 0.25 wt%). The long-range 
uniform ordered strip channels can be observed after SBA-
15 was loaded the active component Cu and three promot-
ers. The Cu particles average diameter was 18.4 nm on the 
fresh Cu/SBA-15. The addition of  Al2O3 reduced the average 
diameter of Cu particles to 4.8 nm, indicating that the pro-
moter of  Al2O3 improved the dispersion of Cu particles obvi-
ously. After adding  La2O3 promoter to Cu/Al2O3/SBA-15, 
however, the average diameter of Cu particles augmented to 
8.3 nm. After CoO promoter was doped to Cu/La2O3/Al2O3/
SBA-15, the average diameter of Cu particles declined to 
5.4 nm. The change of the average diameter of Cu particles 
is consistent with the aggregation of copper particles shown 
in XRD patterns.

From the image a′ it can be known that the average diam-
eter of Cu particles on the used Cu/SBA-15 catalyst aggre-
gated to 30.7 nm, illustrating that Cu particles were severely 
sintered. With the sequential addition of  Al2O3,  La2O3 and 
CoO promoters, the average diameters of Cu particles on 
the used catalysts were 9.2, 13.1 and 10.0 nm, respectively, 

manifesting that the sintering of Cu particles was effectively 
inhibited. Among them,  Al2O3 and CoO played a very good 
role in improving the dispersion of Cu particles and inhibit-
ing their sintering, which was also identified with the results 
of XRD. It’s interesting, it can be seen in images b′, c′ and 
d′, a considerable part of the Cu particles were restricted in 
the SBA-15 strip-shaped channels, where they presented a 
channel streamline shape. So, it can be concluded that the 
composite SBA-15 carrier could limit the aggregation and 
sintering of active component to a certain extent.

3.2.7  TG–DTA

For the reaction with carbon compounds as raw materials, 
the acid centers will cause the formation of carbon deposits, 
which would reduce the catalyst activity until it is deac-
tivated [48]. From the weight loss of the used Cu-based 
catalysts in Fig. 8, we can know the carbon deposits of the 
catalysts happened during the reaction. There was an obvi-
ous mass loss on Cu/SBA-15. After adding the promoter 
of  Al2O3, the weight loss enhanced distinctly, revealed that 
 Al2O3 facilitated the formation of carbon deposits. After 
adding  La2O3 promoter to Cu/Al2O3/SBA-15, the weight 
loss decreased significantly. And the addition of CoO, how-
ever, increased the weightlessness again, indicating that CoO 
could not inhibit the formation of carbon deposits. The phe-
nomenon was related to the acidity of catalyst. When  Al2O3 

Fig. 7  TEM images of the fresh and used Cu/SBA-15 (a, a′), Cu/Al2O3/SBA-15 (b, b′), Cu/La2O3/Al2O3/SBA-15 (c, c′) and Cu/CoO/La2O3/
Al2O3/SBA-15 (d, d′) with  Al2O3 content of 11.03 wt%,  La2O3 content of 1.07 wt% and CoO content of 0.25 wt%
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or CoO was added, the acidity of the catalyst increased, so 
more carbon deposits were formed. On the contrary, when 
 La2O3 was added, the acidity of the catalyst was weakened, 
therefore the amount of the carbon deposition was less.

Figure 9 is DTA profiles of the Cu-based catalysts after 
6 h of reaction. Obviously, after adding the promoter of 
 Al2O3 to Cu/SBA-15, the type of carbon deposit of the 
catalyst changed. Although the exothermic peak at 647 K 
still existed, a new exothermic peak at 773 K appeared, and 
the area of this exothermic peak was much larger than that 
at 647 K, indicating that the amount of the carbon deposit 

which was difficult to be oxidized was more. After adding 
 La2O3 to the catalyst of Cu/Al2O3/SBA-15, both exothermic 
peaks moved towards the lower temperature, meaning that 
the carbon deposition type of the catalyst changed from the 
coke which was difficult to be oxidized at a higher tempera-
ture to the coke which was easy to be oxidized at a lower 
temperature. When CoO was added to Cu/La2O3/Al2O3/
SBA-15, the exothermic peaks shifted to the high tempera-
ture again, demonstrating that the generated coke was more 
regular and more difficult to be oxidized.

3.2.8  ICP

Table 4 shows the copper amounts of the fresh or used SBA-
15 supported copper-based catalysts  (Al2O3 content: 11.03 
wt%,  La2O3 content: 1.07 wt%, CoO content: 0.25 wt%). 
0.58, 0.18, 0.29 and 0.22 wt% loss of copper component 
were tested by ICP on Cu/SBA-15, Cu/Al2O3/SBA-15, Cu/
La2O3/Al2O3/SBA-15 and Cu/CoO/La2O3/Al2O3/SBA-
15 after 6 h of reaction. Obviously, the result was closely 
related to the effect of  Al2O3,  La2O3 or CoO promoter and 
it was in good agreement with the above discussion result.

3.3  Optimization of Reaction Conditions

The reaction conditions such as reaction temperature, 
hydrogen flow rate and steam flow rate were optimized 
over Cu/CoO/La2O3/Al2O3/SBA-15  (Al2O3 content: 11.03 
wt%,  La2O3 content: 1.07 wt%, CoO content: 0.25 wt%). 
From the data in Table 5, as the reaction temperature grad-
ually augmented, the conversion of glycerin increased, the 
selectivity of 3-MI presented the trend of increasing first 
and decreasing. Among the by-products, N-MA, N-EA and 
N-IPA showed a downward trend, while 2,5-DMPP and 
2,3-DMI exhibited an upward trend. When the reaction 
temperature was 523 K, the selectivity of target product 
achieved 71.9%. In Table 6, with the increase of hydrogen 
flow rate, the variation trend of glycerin conversion and 
3-MI selectivity was the same as that in Table 5, while 
the selectivity change trend of the major by-products was 
opposite. When the flow rate of hydrogen was 10 mL 
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Fig. 9  DTA profiles of the used catalysts of Cu/SBA-15 (a), Cu/
Al2O3/SBA-15 (b), Cu/La2O3/Al2O3/SBA-15 (c) and Cu/CoO/La2O3/
Al2O3/SBA-15 (d) with  Al2O3 content of 11.03 wt%,  La2O3 content 
of 1.07 wt% and CoO content of 0.25 wt%

Table 4  Copper amount of the fresh or used SBA-15 supported Cu-
based catalysts

Catalyst Copper amount (wt%)

Fresh  
catalyst

Used 
catalyst

Cu/SBA-15 6.47 5.89
Cu/Al2O3/SBA-15 6.45 6.27
Cu/La2O3/Al2O3/SBA-15 6.51 6.22
Cu/CoO/La2O3/Al2O3/SBA-15 6.48 6.26
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 min−1, 3-MI selectivity reached 77.1%. Since an appro-
priate amount of steam is beneficial to removing carbon 
deposits generated during the reaction and improving 
the target product selectivity, the influence of the steam 
flow rate was explored. In Table 7, when the steam flow 
rate was 10 mL  min−1, 3-MI selectivity reached the top 
of 86.4% with the yield up to 73.3%. The excess steam 
resulted in a reduction for the target product selectivity 
because the chemical reaction equilibrium would shift to 
the direction of the reactants.

3.4  Reusability of Cu/CoO/La2O3/Al2O3/SBA‑15 
Catalyst

The reusability of Cu/CoO/La2O3/Al2O3/SBA-15  (Al2O3 
content: 11.03 wt%,  La2O3 content: 1.07 wt%, CoO con-
tent: 0.25 wt%) was tested. The catalyst underwent the 
regeneration after each run, and was reduced in  situ 
again prior to activity test. Figure 10 shows the seven 

Table 5  Effect of reaction 
temperature on the activity and 
selectivity of Cu/CoO/La2O3/
Al2O3/SBA-15

Reaction conditions:  H2 = 15 mL  min−1,  N2 = 25 mL  min−1.  Al2O3 content of 11.03 wt%,  La2O3 content of 
1.07 wt% and CoO content of 0.25 wt%. The fourth hour results

Reaction tem-
perature (K)

Glycerin con-
version (%)

Product selectivity (%)

3-MI N-MA N-EA N-IPA 2,5-DMPP 2,3-DMI Others

503 82.4 67.1 4.5 4.8 6.0 3.4 1.5 12.7
513 86.9 69.2 4.2 4.0 4.9 3.6 2.8 11.3
523 88.6 71.9 3.5 3.0 3.5 4.6 3.8 9.7
533 91.2 67.4 2.9 2.1 2.4 5.8 6.2 13.2

Table 6  Effect of  H2 flow rate 
in reaction mixed gases on the 
activity and selectivity of Cu/
CoO/La2O3/SBA-15-Al2O3 
catalyst

Reaction conditions: 523 K,  Al2O3 content of 11.03 wt%,  La2O3 content of 1.07 wt% and CoO content of 
0.25 wt%. The fourth hour results

V (H2)
(mL  min−1)

Glycerin con-
version (%)

Product selectivity (%)

3-MI N-MA N-EA N-IPA 2,5-DMPP 2,3-DMI Others

5 86.1 73.3 2.6 2.4 2.4 5.5 3.2 10.6
10 87.9 77.1 3.1 2.7 3.0 5.0 3.5 5.6
15 88.6 71.9 3.5 3.0 3.5 4.6 3.8 9.7
20 91.2 67.4 3.8 3.4 3.9 4.3 4.2 13.0

Table 7  Effect of steam flow 
rate in reaction mixed gases on 
the activity and selectivity of 
Cu/CoO/La2O3/Al2O3/SBA-15 
catalyst

Reaction conditions: 523 K,  H2 = 10 mL  min−1,  Al2O3 content of 11.03 wt%,  La2O3 content of 1.07 wt% 
and CoO content of 0.25 wt%. The fourth hour results

Vsteam
(mL min−1)

Glycerin con-
version (%)

Product selectivity (%)

3-MI N-MA N-EA N-IPA 2,5-DMPP 2,3-DMI Others

0 87.9 77.1 3.1 2.7 3.0 5.0 3.5 5.6
8 86.2 83.3 2.8 2.3 2.3 4.1 3.0 2.2
10 84.8 86.4 2.5 1.9 1.8 3.2 2.6 1.6
12 83.6 83.4 2.2 1.6 1.5 2.6 2.2 6.5
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Fig. 10  Resuability study of Cu/CoO/La2O3/Al2O3/SBA-15 catalyst
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repeatability data about the fourth hour results of the reac-
tion under the optimum reaction conditions over Cu/CoO/
La2O3/Al2O3/SBA-15 catalyst. Only a 3.9% of 3-MI yield 
decreased when the catalyst was circulated seven times, 
indicating that it had a good practicality.

3.5  Reaction Pathway Research

To gain a clear idea of the reaction mechanism is what chem-
ical researchers devote to do. In order to make clear the reac-
tion pathway of the aniline with glycerin to 3-MI through 
gas-phase synthesis over the Cu/CoO/La2O3/Al2O3/SBA-15 
catalyst, we did a series of investigations. First of all, we per-
formed a GC–MS analysis to the reaction products. Except 
the target product of 3-MI, a 1.9% 1,2-propanediol (1,2-
PDO) yield was also obtained. According to the relevant 
literature [49–52], glycerin can form 1,2-PDO through the 
hydrogenolysis over Cu-based catalysts. To test this, we have 
specifically done the hydrogenolysis of glycerin over the cat-
alyst of Cu/CoO/La2O3/Al2O3/SBA-15. Only a 18.3% 1,2-
PDO yield was obtained, while a large amount of acetol with 
the yield of 74.2% was detected. It has been reported [53, 
54] that acetol could convert into 1,2-PDO, so the catalytic 
conversion of acetol was further proceeded on the catalyst, 
however, no 1,2-PDO was found. Since the related literature 
reported that 1,2-PDO can also be converted to 3-MI with 
aniline [55], the reaction of 1,2-PDO with aniline over Cu/
CoO/La2O3/Al2O3/SBA-15 was carried out and the result 
confirmed this view. Moreover, in order to know whether 
the large amount of acetol produced in the hydrogenolysis 
of glycerin can be reacted with aniline to form 3-MI, we also 
carried out the reaction of acetol and aniline over the Cu/
CoO/La2O3/Al2O3/SBA-15 catalyst. It was found that acetol 
was completely converted and a 80.6% 3-MI was produced.

Based on the above research, a possible pathway for 
the gas-phase synthesis of 3-MI by glycerin with aniline 
was proposed, as shown in Scheme 1. Acetol and 1,2-PDO 
were first produced through glycerin hydrogenolysis on the 
catalyst of Cu/CoO/La2O3/Al2O3/SBA-15. Then, acetol as 
well as 1,2-PDO reacted with aniline to generate the target 

product of 3-MI. Because the main product for the hydrog-
enolysis of glycerin was acetol and no acetol was tested in 
the reaction of glycerin with aniline, it can be deduced that 
the reaction of acetol with aniline was fast, while the conver-
sion reaction of 1,2-PDO with aniline was slow.

4  Conclusion

3-MI was efficiently synthesized in a low-cost and green way 
over Cu/SBA-15 modified with  Al2O3,  La2O3 and CoO using 
biomass-derived glycerin and aniline as raw materials. Dur-
ing the reaction, the Cu/CoO/La2O3/Al2O3/SBA-15 catalyst 
exhibited predominant activity and selectivity. Through a 
series of characterization results it can be clearly known 
that the promoters of  Al2O3 and CoO could enhance the 
acidity of the catalyst, thus the interaction force between 
Cu and the composite carrier increased, and thereby the Cu 
particles dispersity was higher and the sintering resistance 
was better. Moreover, the high selectivity of 3-MI benefited 
from a large number of weak acid centers after the addi-
tion of  Al2O3 and CoO. The promoter of  La2O3 weakened 
the acidity of the catalyst, which promoted the reduction of 
CuO and inhibited the formation of carbon deposits. Under 
the optimized reaction conditions with reaction temperature 
of 523 K and  H2 or steam flow rate of 10 mL  min−1, over 
Cu/CoO/La2O3/Al2O3/SBA-15  (Al2O3 content: 11.03 wt%, 
 La2O3 content: 1.07 wt%, CoO content: 0.25 wt%), the opti-
mum yield and selectivity of 3-MI were 73.3% and 86.4%, 
respectively. When the catalyst was reused 7 times, the yield 
of 3-MI still reached 69.4%, revealing the catalyst has excel-
lent stability. Through the study on the reaction pathway it 
was concluded that glycerin could produce acetol and 1,2-
PDO by hydrogenolysis on Cu/CoO/La2O3/Al2O3/SBA-15 
catalyst. Acetol could fast react with aniline to form 3-MI. 
Although 1,2-PDO could also react with aniline to produce 
the target product, the rate was a little slow.

Scheme 1  Reaction pathway for 
the gas–solid synthesis of 3-MI 
by glycerin and aniline on Cu/
CoO/La2O3/Al2O3/SBA-15
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