This paper is published as part of a Dalton Transactions theme issue:

Dalton Discussion 11: The Renaissance of Main Group Chemistry

Guest Editor: John Arnold University of California, Berkeley, CA, USA 23 - 25 June 2008

Published in issue 33, 2008, of Dalton Transactions

Image reproduced with permission of Manfred Scheer

Papers published in this issue include:

<u>The coordination chemistry of group 15 element ligand complexes—a developing area</u> Manfred Scheer, *Dalton Trans.*, 2008 DOI: <u>10.1039/b718179p</u>

Formation, structure and bonding of metalloid AI and Ga clusters. A challenge for chemical efforts in nanosciences Hansgeorg Schnöckel, *Dalton Trans.*, 2008 DOI: <u>10.1039/b718784j</u>

Polymeric materials based on main group elements: the recent development of ambient temperature and controlled routes to polyphosphazenes Vivienne Blackstone, Alejandro Presa Soto and Ian Manners, *Dalton Trans.*, 2008 DOI: 10.1039/b719361k

Recent developments in the chemistry of low valent Group 14 hydrides Eric Rivard and Philip P. Power, *Dalton Trans.*, 2008 DOI: <u>10.1039/b801400k</u>

<u>Chemistry and physics of silicon nanowire</u> Peidong Yang, *Dalton Trans.*, 2008 DOI: <u>10.1039/b801440j</u>

Visit the *Dalton Transactions* website for more cutting-edge inorganic and organometallic research <u>www.rsc.org/dalton</u>

6-Coordinate tungsten(VI) tris-*n*-isopropylanilide complexes: products of terminal oxo and nitrido transformations effected by main group electrophiles[†]‡

Christopher R. Clough, Peter Müller and Christopher C. Cummins*

Received 21st January 2008, Accepted 3rd March 2008 First published as an Advance Article on the web 1st July 2008 DOI: 10.1039/b801037d

The nitridotungsten(VI) complex NW(N[*i*-Pr]Ar)₃ (1-N, Ar = $3,5-Me_2C_6H_3$) reacts with (CF₃C(O))₂O followed by ClSiMe₃ to give the isolable trifluoroacetylimido-chloride complex 1-(NC(O)CF₃)Cl, with oxalyl chloride to give cyanate-dichloride 1-(OCN)(Cl)₂, and with PCl₅ to give trichlorophosphinimide-dichloride 1-(NPCl₃)(Cl)₂. The oxo-chloride complex 1-(O)Cl, obtained from

1-N upon treatment with pivaloyl chloride, reacts with PCl_5 to give trichloride 1-(Cl)₃. Synthetic and structural details are reported for the new tungsten trisanilide derivatives.

Introduction

Recently we showed that the nitridotungsten(VI) complex NW(N[*i*-Pr]Ar)₃ (1-N; Ar = 3,5-Me₂C₆H₃) can be used as a reagent for the transformation of acid chlorides into organic nitrides according to: 1-N + R¹C(O)Cl \rightarrow 1-(O)Cl + R¹CN (see Scheme 1).¹ For R¹ = *t*-Bu or 1-Ad, the latter reaction proceeds quantitatively at 25 °C in less than 1 h and is an intriguing example of an isovalent N for (O)Cl exchange process. Acylimido-chloride complexes 1-(NC(O)R¹)Cl are observable during the reaction as monitored by ¹H or ¹³C NMR spectroscopy, and they are kinetically competent to be intermediates.

The tungsten trifluoroacetylimido trifluoroacetate complex 1- $(NC(O)CF_3)(O_2CCF_3)$, was obtained previously by treatment of 1-N with trifluoroacetic anhydride (TFAA), and was the subject of an X-ray diffraction study.¹ One possible explanation for the failure of $1-(NC(O)CF_3)(O_2CCF_3)$ to thermally extrude CF₃CN was that bidentate trifluoroacetate coordination to W served to inhibit the formation of a metallacyclic acylimido complex similar to the proposed structure 2 (Scheme 1). This idea was rendered implausible by the observed structure of 1- $(NC(O)CF_3)(O_2CCF_3)$,¹ in which monodentate trifluoroacetate was observed and the coordination geometry at tungsten (including ancillary N[i-Pr]Ar substituent conformation) was essentially identical to that found for oxo-chloride 1-(O)Cl. It began to seem, therefore, that the electron-withdrawing nature of the CF₃ group in trifluoroacetylimido 1-(NC(O)CF₃)(O₂CCF₃) was principally responsible for the failure of this complex to mediate nitrile formation.

Results and discussion

Probing the stability of 1-(NC(O)CF₃)Cl

To investigate the effect of electron withdrawing groups in the conversion of $1-(NC(O)CF_3)Cl$ to 1-(O)Cl, we treated $1-(NC(O)CF_3)(O_2CCF_3)$ with excess $ClSiMe_3$ to provide trifluoroacetylimido chloride $1-(NC(O)CF_3)Cl$. As was the case for its synthetic precursor we find $1-(NC(O)CF_3)Cl$ to be thermally stable, and now report an X-ray structural study of this complex (Fig. 1). Like oxo-chloride 1-(O)Cl, and like its precursor $1-(NC(O)CF_3)(O_2CCF_3)$, the trifluoroacetylimido chloride complex $1-(NC(O)CF_3)(Cl)$ incorporates trigonal-bipyramidal coordination at W, with an equatorial metal–ligand multiple bond.

If the mechanism of nitrile formation as effected by 1-N indeed involves metallacycles such as 2 in Scheme 1, then either the specific choice of $R^1 = CF_3$ obviates metallacycle formation, or else it renders the reaction thermodynamically uphill.² Either way, CF_3CN is a nitrile not available when using the 1-N reagent.

Since our utilization of sterically demanding ancillary anilide ligands (here, N[*i*-Pr]Ar) is motivated by a desire to foster low coordination number and low nuclearity, it was with some trepidation that we proposed the intermediacy of 6-coordinate metallacycles **2**. For this reason, we were fascinated to find examples of *bona fide* 6-coordinate, octahedral complexes supported by platform **1**. This occurred in the course of surveying the reactivity of **1**-N with a variety of acid chlorides.

Isolation of 6-coordinate complexes

Treatment of 1-N with 0.5 equiv of oxalyl chloride was intended to provide cyanogen. Instead, only 0.5 equiv of the initial 1-N was consumed, indicating that a 1:1 reaction was preferred. Accordingly, treatment of 1-N with 1.0 equiv of oxalyl chloride was found to provide, with effervescence attributed to CO liberation, the cyanato-dichloride complex 1-(OCN)(Cl)₂. The latter has interesting NMR spectroscopic properties. It is C_1 chiral as indicated by (i) the presence of three distinct N[*i*-Pr]Ar ligand environments in a 1:1:1 ratio, and (ii) the diastereotopic nature of each of the three N[*i*-Pr]Ar ligand environments. From this combination

Room 6-435, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307, United States of America

[†] Based on the presentation given at Dalton Discussion No. 11, 23–25 June 2008, University of California, Berkeley, USA.

[‡] Electronic supplementary information (ESI) available: Details of crystal structures of all prepared complexes. CCDC reference numbers 675710– 675713. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b801037d

Fig. 1 Selected interatomic distances (Å) and angles (°) for $1-(NC(O)CF_3)Cl: W1-N4, 1.791(3); N4-C41, 1.329(5); O1-C41, 1.199(5); C41-N4-W1, 156.8(3).$

of facts, we can infer that the combination of a *fac* and C_s arrangement of the (OCN)(Cl)₂ substituents, combined with a *fac* and frozen-out C_3 three-bladed propellor of *N*-isopropylanilide residues, leads to a chiral metal environment with overall C_1 symmetry. This is consistent with an X-ray structural study of **1**-(OCN)(Cl)₂ (Fig. 2). It is from the X-ray study that we tentatively assign **1**-(OCN)(Cl)₂ as equipped with an O-coordinated cyanate ligand, the IR data ($v_{\text{NCO}} = 2200 \text{ cm}^{-1}$, vs) being insufficient information to make the distinction.³

Normally, molecules with three N(*i*-Pr)Ar ligands, *e.g.* **1**-N or **1**-(O)Cl, are not at 25 °C frozen out into a static C_3 configuration. Such complexes typically evince a single, non-diastereotopic ligand environment. That **1**-(OCN)(Cl)₂ is frozen out at room temperature signifies substantial steric crowding.

Another example of a C_1 -symmetric derivative with an octahedral coordination environment at tungsten is that obtained by reaction of 1-N with PCl₅. It is known that PCl₅ has a propensity to react with N-containing compounds to give products with 4-coordinate P and P–N multiple bonding.⁴ As in the case of the oxalyl chloride reaction, tungsten accepts two chloride

Fig. 2 View of 1-(OCN)(Cl)₂ normal to the 001 plane (space group $R\overline{3}$). The OCN and two Cl ligands are positionally disordered about the crystallographic C_3 axis passing through W1.

ligands while expanding to 6-coordination. The product molecule, **1**-(N=PCl₃)(Cl)₂, incorporating a rare trichlorophosphinimide ligand (³¹P NMR: $\delta = -49.8$ ppm, ²J_{WP} = 85 Hz), is an orangered compound soluble in THF or benzene, but of limited ether or pentane solubility. An X-ray structural study of the complex revealed a moderately bent phosphinimide nitrogen, together with overall conformational attributes very much reminiscent of **1**-(OCN)(Cl)₂ (Fig. 3). The related trichlorophosphinimide complex Cl₃W(N=PCl₃) has been prepared by treatment of WCl₆ with Cl₃P=NSiMe₃.^{5,6} Also, Ph₄P[Cl₅Mo(N=PCl₃)] has been prepared by treatment of nitride Ph₄P[Cl₄MoN] with PCl₃/PCl₅, in what appears to be the closest precedent for our synthesis of **1**-(N=PCl₃)(Cl)₂.⁷

Since oxo-chloride **1**-(O)Cl is the ultimate product in the reaction of **1**-N with acid chlorides, we are interested in methods

Fig. 3 Selected interatomic distances (Å) and angles (°) for 1-(NPCl₃)(Cl₂: W1–N4, 2.047(4); P1–N4, 1.449(4); P1–N4–W1, 155.9(2).

for the recycling of 1-(O)Cl back to the nitride reagent 1-N. This objective is similar to another realized recently, namely the activation of terminal oxo product ONb(N[Np]Ar)₃ by reaction with triflic anhydride to give bistriflate (TfO)₂Nb(N[Np]Ar)₃; the latter is then reduced to its P₄-activating niobaziridine-hydride form in our synthesis of phosphaalkyne (RC=P) molecules.⁸ Activation of the oxo in 1-(O)Cl with triflic anhydride was not successful, this reaction giving oxo triflate 1-(O)(OTf) instead. On the other hand, we find that PCl₅ serves smoothly to transform oxo chloride 1-(O)Cl into trichloride 1-(Cl)₃, with POCl₃ as the sole byproduct.9 We had expected that a fac arrangement of three chloride ligands together with a fac and C_3 frozen out arrangement of three N[i-Pr]Ar ligands would provide trichloride 1-(Cl)₃ with a single yet diasterotopic set of N[i-Pr]Ar ligand ¹H NMR resonances at 25 °C. That expectation was borne out in full: the ¹H NMR spectrum of 1-(Cl)₃ has a pair of aryl methyl resonances, three aryl proton signals in a 1:1:1 ratio, and a pair of isopropyl methyl doublets. The other example of a fac trisamide tungsten trichloride complex that is potentially C_3 with diastereotopic ligand environments (based on its crystal structure) is WCl₃(NEt₂)₃.¹⁰ This molecule shows a single ethyl group triplet and quartet in its ¹H NMR spectrum, indicative of free rotation about its W-N linkages.

An X-ray structural study of trichloride $1-(Cl)_3$ (space-filling diagram in Fig. 4) validates our formulation of this molecule while illustrating the severe inter-ligand steric interactions present in 6-coordinate tungsten systems based on the trisanilide platform 1. Such interactions are expected to be a destabilizing influence on proposed metallacycles 2.

Experimental

General

Unless stated otherwise, all operations were performed in a Vacuum Atmospheres drybox under an atmosphere of purified nitrogen or using Schlenk techniques under an argon atmosphere. $N \equiv W(N[i-Pr]Ar)_3$ (1-N, $Ar = 3,5-Me_2C_6H_3$), $(Ar[i-Pr]N)_3W(O)Cl$ (1-(O)Cl), and $(Ar[i-Pr]N)_3W(NC(O)CF_3)(O_2CCF_3)$ (1-(NC(O)-CF₃)(O₂CCF₃)) were prepared as previously published.¹ Oxalyl

Fig. 4 Space filling model of 1-(Cl)₃.

chloride and t-BuC(O)Cl were purchased from Aldrich and distilled under N2. PCl5 was purchased from Aldrich and used as received. Diethyl ether, n-pentane, and toluene were dried and deoxygenated by the method of Grubbs.11 THF was distilled from purple Na/benzophenone and collected under nitrogen. C₆D₆ was degassed and dried over 4 Å molecular sieves. Other chemicals were purified and dried by standard procedures or were used as received. Celite® 545, alumina and 4 Å molecular sieves were dried in vacuo overnight at a temperature above 200 °C. 1H, 13C, 19F, and ³¹P NMR spectra were recorded on Varian Mercury-300, Varian INOVA-500, or Bruker AVANCE-400 spectrometers. ¹H and ¹³C chemical shifts are reported with respect to internal solvent (C_6D_6 , 7.16 and 128.39 ppm, respectively). ¹⁹F and ³¹P chemical shifts are reported with respect to external reference (CFCl₃, 0.0 ppm and 85% H₃PO₄, 0.0 ppm, respectively). Infrared spectra were recorded on a Bio-Rad 135 Series FTIR spectrometer.

Crystallography

X-ray data collections were carried out on a Siemens Platform three-circle diffractometer equipped with a Bruker-AXS Apex CCD detector and an Oxford Cryosystems CryoStream 700 lowtemperature device. Graphite-monochromated Mo-K_a radiation ($\lambda = 0.71073$ Å) was used in all cases. All software for diffraction data processing and crystal-structure solution and refinement are contained in the SHELXTL (v6.14) program suite (G. Sheldrick, Bruker AXS, Madison, WI).¹² Details of crystallographic data and refinement are given in Table 1 and in the ESI.[‡]

Syntheses

Synthesis of $(Ar[i-Pr]N)_3W(NC(O)CF_3)Cl (1-(NC(O)CF_3)Cl).$ 1-(C(O)CF₃)(O₂CCF₃) (525 mg, 0.767 mmol) was dissolved in minimal Me₃SiCl (~5 mL) and the resulting red solution was stirred for ~5 min, filtered through a bed of Celite[®] 545 and the filtrate cooled to -35 °C overnight. 1-(NC(O)CF₃)(Cl) was obtained as a red precipitate which was washed with cold pentane, and dried *in vacuo* (160 mg, 0.196 mmol, 25.5%). X-Ray quality crystals can also be grown by following the same procedure using smaller amounts of 1-(C(O)CF₃)(O₂CCF₃) (*ca.* 100 mg) in more dilute solutions of Me₃SiCl. ¹H NMR (500 MHz, C₆D₆): $\delta = 6.57$ (s, 3H, *para*), 6.52 (s, 6H, *ortho*), 5.33 (septet, 3H, *i*-Pr methine), 2.05 (s, 18H, ArCH₃), 1.14 (d, 18H, *i*-Pr methyl) ppm. ¹³C NMR (100 MHz, C₆D₆): $\delta = 149.3$ (*ipso*), 138.2 (*meta*), 129.1 (*para*), 126.3 (*ortho*), 65.6 (*i*-Pr methine), 23.0 (methyl), 21.6 (methyl)

	1-(NC(O)CF ₃)Cl	1-(OCN)(Cl) ₂	1-(NPCl ₃)(Cl) ₂	1- (Cl) ₃
Empirical formula	C ₃₅ H ₄₈ ClF ₃ N ₄ OW	$C_{42}H_{64}Cl_2N_4O_3W^{a}$	C ₃₇ H ₅₆ Cl ₅ N ₄ OPW ^b	$C_{33,50}H_{49}Cl_4N_3W^c$
Formula weight	817.07	927.72	964.93	819.41
Color	Dark red	Yellow	Orange	Yellow
Morphology	Plate	Plate	Shard	Shard
Crystal size/mm	$0.14 \times 0.08 \times 0.02$	$0.27 \times 0.23 \times 0.04$	$0.10 \times 0.09 \times 0.06$	$0.13 \times 0.10 \times 0.09$
T/K	100(2)	100(2)	100(2)	100(2)
Crystal system	Monoclinic	Rhombohedral	Monoclinic	Triclinic
Space group	$P2_1/n$	RĪ	$P2_1/c$	$P\overline{1}$
Unit cell dimensions:				
a/Å	18.1298(6)	13.3600(12)	15.9389(6)	10.7751(3)
b/Å	10.4918(3)	13.3600(12)	13.7357(5)	13.3987(3)
c/Å	19.4084(5)	39.556(8)	18.9527(6)	13.5032(4)
a/°	90	90	90	88.8520(10)
β/°	107.0410(10)	90	97.4620(10)	71.9870(10)
y/°	90	120	90	83.6570(10)
$V/Å^3$	3529.67(18)	6114.5(14)	4114.2(3)	1842.38(9)
Ζ	4	6	4	2
Density calc./Mg m ⁻³	1.538	1.512	1.558	1.477
Absorption coefficient/mm ⁻¹	3.397	3.008	3.206	3.451
F(000)	1648	2856	1952	826
Theta range for data collection/°	1.83 to 28.28	1.54 to 25.14	1.84 to 27.88	1.53 to 28.28
Reflections collected	73315	10803	81238	38272
Independent reflections, R_{int}	8736 (0.0907)	2442 (0.0634)	9806 (0.0533)	9143 (0.0321)
Completeness to theta (%)	100.0	100.0	100.0	99.9
Max. and min. transmission	0.9352 and 0.6477	0.8891 and 0.4972	0.8309 and 0.7399	0.7465 and 0.6626
Data/restraints/parameters	8736/0/412	2442/345/288	9806/74/452	9143/85/406
Goodness-of-fit on F^2	1.075	1.152	1.070	1.103
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0359$	$R_1 = 0.0450$	$R_1 = 0.0332$	$R_1 = 0.0293$
	$wR_2 = 0.0727$	$wR_2 = 0.1157$	$wR_2 = 0.0839$	$wR_2 = 0.0826$
R indices (all data)	$R_1 = 0.0522$	$R_1 = 0.0650$	$R_1 = 0.0436$	$R_1 = 0.0328$
	$wR_2 = 0.0791$	$wR_2 = 0.1394$	$wR_2 = 0.0895$	$wR_2 = 0.0847$
Largest diff. peak and hole/e $Å^{-3}$	1.302 and -1.122	2.017 and -1.728	2.006 and -0.720	2.061 and -0.416

^{*a*} Two heavily disordered molecules of tetrahydrofuran are present in the asymmetric unit. ^{*b*} A disordered molecule of tetrahydrofuran is present in the asymmetric unit. ^{*c*} One half of a heavily disordered molecule of methylene chloride is present in the asymmetric unit.

ppm. ¹⁹F NMR (376 MHz, C₆D₆): $\delta = -72.7$ (s, 3F, CF₃) ppm. Anal. calcd for C₃₅H₄₈ClF₃N₄OW: C, 51.45; H, 5.92; N, 6.86. Found: C, 50.95; H, 6.16; N, 6.73.

Synthesis of (Ar[*i*-Pr]N)₃W(OCN)(Cl)₂ (1-(OCN)(Cl)₂). Oxalyl chloride (39.0 µL, 0.447 mmol) was added to a colorless solution of 1-N (304 mg, 0.444 mmol) in Et₂O (10 mL) using a microliter syringe. The reaction mixture turned blood-red upon addition and shortly changed color to brown. The reaction mixture was stirred for 20 min at which point the volatiles were removed in vacuo giving a brownish-yellow solid. The crude material was scraped onto a fritted glass filter and washed with Et₂O revealing a bright yellow solid. The bright yellow solid was dissolved in minimal THF, the solution filtered through a plug of Celite[®] 545 and the filtrate cooled to -35 °C overnight. From the THF solution, small yellow crystals were harvested, washed with pentane and dried in vacuo (87 mg, 0.11 mmol, 25%). Recrystallized samples of 1-(OCN)(Cl)₂ contain ~0.5 equiv of THF that persists even after drying in vacuo as evidenced by the ¹H and ¹³C NMR spectra. X-Ray quality crystals of 1-(OCN)(Cl)₂ can be grown from a saturated THF solution layered with pentane and stored at -35 °C. ¹H NMR $(500 \text{ MHz}, C_6 D_6)$: $\delta = 7.65$ (s, 1H, para), 7.61 (s, 1H, para), 7.16 (s, 1H, para), 6.56 (s, 3H, ortho), 6.43 (septet, 1H, i-Pr methine), 6.36 (s, 3H, ortho), 6.26 (septet, 1H, i-Pr methine), 6.01 (septet, 1H, *i*-Pr methine), 2.15 (s, 9H, ArCH₃), 2.054 (s, 3H, ArCH₃), 2.049 (s, 3H, ArCH₃), 2.02 (s, 3H, ArCH₃), 1.56 (d, 3H, *i*-Pr methyl),

1.52 (d, 3H, *i*-Pr methyl), 1.39 (d, 3H, *i*-Pr methyl), -0.27 (d, 3H, *i*-Pr methyl), -0.30 (d, 3H, *i*-Pr methyl), -0.31 (d, 3H, *i*-Pr methyl) ppm. ¹³C NMR (125 MHz, C₆D₆): $\delta = 152.1$ (*ipso*), 151.9 (*ipso*), 151.7 (*ipso*), 138.51 (*meta*), 138.50 (*meta*), 138.4 (*meta*), 137.3 (*meta*), 137.1 (*meta*), 137.0 (*meta*), 136.8 (OCN), 129.04 (*ortho*), 129.00 (*ortho*), 128.8 (*ortho*), 124.2 (*ortho*), 124.01 (*ortho*), 123.92 (*para*), 123.85 (*para*), 123.82 (*ortho*), 123.6 (*para*), 68.0 (*i*-Pr methine), 67.7 (*i*-Pr methine), 67.1 (*i*-Pr methine), 23.4 (*i*-Pr methyl), 23.3 (*i*-Pr methyl), 23.2 (*i*-Pr methyl), 23.0 (*i*-Pr methyl), 21.72 (ArCH₃), 21.70 (ArCH₃), 21.5 (*i*-Pr methyl) ppm. FTIR (C₆D₆, KBr): $\nu_{NCO} = 2200$ cm⁻¹ (vs). Anal. calcd for C₃₄H₄₈Cl₂N₄OW: C, 52.12; H, 6.17; N, 7.15. Found: C, 51.75; H, 6.18; N, 6.93.

Synthesis of $(Ar[i-Pr]N)_3W(N=PCl_3)(Cl)_2$ $(1-(N=PCl_3)(Cl)_2)$. A thawing, colorless solution of 1-N (505 mg, 0.738 mmol) in Et₂O (5 mL) was added to a thawing suspension of PCl₅ (154 mg, 0.740 mmol) in Et₂O (5 mL) resulting in an orange-red reaction mixture upon addition. The reaction mixture was allowed to warm to room temperature and stirred for 1 h after which time the volatiles were removed *in vacuo* leaving an orange-yellow solid. The solid was collected on a fritted glass filter, washed with pentane, and dried under vacuum (505 mg, 0.566 mmol, 76.6%). The sample used to collect the NMR spectra was recrystallized from THF layered with Et₂O at -35 °C. The sample contains ~1 equiv of

THF of co-crystallization as seen in the ¹H and ¹³C NMR spectra. The THF remains in the sample even after prolonged periods of drying *in vacuo*. ¹H NMR (400 MHz, C_6D_6): $\delta = 7.74$ (s, 1H, *para*), 7.72 (s, 1H, para), 7.32 (s, 1H, para), 6.61 to 6.47 (7H, ortho and i-Pr methine), 6.19 (septet, 1H, i-Pr methine), 5.88 (septet, 1H, *i*-Pr methine), 2.20 (s, 9H, ArCH₃), 2.16 (s, 3H, ArCH₃), 2.09 (s, 3H, ArCH₃), 2.08 (s, 3H, ArCH₃), 1.65 (d, 3H, *i*-Pr methyl), 1.55 (d, 3H, *i*-Pr methyl), 1.44 (d, 3H, *i*-Pr methyl), -0.22 to -0.25 (9H, *i*-Pr methyl) ppm. ¹³C NMR (100 MHz, C_6D_6): $\delta = 153.0$ (ipso), 152.5 (ipso), 151.9 (ipso), 138.1 (meta), 137.9 (meta), 137.8 (meta), 137.1 (meta), 136.6 (meta), 136.4 (meta), 125.4 (2C, ortho), 125.2 (2C, ortho), 124.5 (2C, ortho), 124.3 (para), 124.2 (para), 124.1 (para), 68.9 (i-Pr methine), 68.1 (i-Pr methine), 66.1 (i-Pr methine), 23.7 (methyl), 23.4 (methyl), 23.2 (methyl), 23.1 (methyl), 23.0 (methyl), 22.7 (methyl), 22.02 (methyl), 21.95 (methyl), 21.70 (methyl), 21.66 (methyl) ppm. ³¹P NMR (162 MHz, C_6D_6): $\delta =$ -49.8 (² $J_{WP} = 85$ Hz) ppm. Anal. calcd for C₃₃H₄₈Cl₅N₄PW: C, 44.39; H, 5.42; N, 6.27. Calcd for C₃₇H₅₆Cl₅N₄OPW (1.0 equiv THF-as seen in the crystal structure): C, 46.05; H, 5.85; N, 5.81. Found: C, 45.95; H, 5.84; N, 5.72

Synthesis of (Ar[i-Pr]N)₃W(Cl)₃ (1-(Cl)₃). A thawing, red solution of 1-(O)Cl (794 mg, 1.10 mmol) in Et₂O (5 mL) was added to a thawing suspension of PCl₅ (228 mg, 1.10 mmol) in Et₂O (3 mL) resulting in an orange reaction mixture upon addition. The reaction mixture was allowed to warm to room temperature and was stirred for 0.5 h. A canary yellow solid precipitated out of solution and was collected on a fritted glass filter. The solids were washed with pentane $(3 \times 20 \text{ mL})$ and dried under vacuum (595 mg, 0.766 mmol, 69.6%). Samples contain ~1 equiv of Et₂O as evinced by ¹H and ¹³C NMR. The Et₂O remains even after prolonged periods of drying in vacuo. X-Ray quality crystals of 1-(Cl)₃ can be grown from a saturated methylene chloride solution layered with diethyl ether and stored at -35 °C. ¹H NMR $(300 \text{ MHz}, C_6 D_6): \delta = 7.77 \text{ (s, 3H, para)}, 6.55 \text{ (s, 3H, ortho)}, 6.44 \text{ (s)}$ coincident with septet, 6H, ortho and i-Pr methine, respectively), $2.15(s, 9H, ArCH_3), 2.05(s, 9H, ArCH_3), 1.16(d, 9H, i-Pr methyl),$ -0.27 (d, 9H, *i*-Pr methyl). ¹³C NMR (100 MHz, C₆D₆): $\delta = 152.3$ (ipso), 138.2 (meta), 136.8 (meta), 124.0 (2C, ortho), 123.9 (para), 68.5 (i-Pr methine), 23.4 (methyl), 22.1 (methyl), 22.0 (methyl), 21.6 (methyl) ppm. Anal. calcd for $C_{33}H_{48}Cl_3N_3W$: C, 51.01; H, 6.23; N, 5.41. Calcd for C_{33.5}H₄₉Cl₄N₃W (0.5 equiv methylene chloride—as seen in the crystal structure): C, 49.10; H, 6.04; N, 5.13. Found: C, 48.58; H, 6.38; N, 4.32.

Density functional calculations

All calculations were carried out using ADF 2004.01 from Scientific Computing and Modeling (http://www.scm.com).^{13,14} In all cases the LDA functional employed was that of Vosko, Wilk, and Nusair (VWN)¹⁵ while the GGA part was handled using the functionals of Becke and Perdew (BP86).^{16,17} In addition, all calculations were carried out using the Zero Order Regular Approximation (ZORA) for relativistic effects.^{18,19} In all cases the basis sets were triple-zeta with two polarization functions (TZ2P) as supplied with ADF. Frozen core approximations were utilized according to the following atom types: F, N, C, and O: 1 s frozen; Cl: core frozen through and including 2p; W: core frozen through and including 4f. Calculations were carried out on a four- or an eight-processor Quantum Cube workstation from

 Table 2
 Total bonding energies for molecules involved in the nitrile elimination reactions

Molecule	Total energy/kcal mol ^{-1a}
CH ₃ CN	-837.37
CF ₃ CN	-851.07
CH ₃ C(O)NW(NH ₂) ₃ Cl	-2417.45
CF ₃ C(O)NW(NH ₂) ₃ Cl	-2442.01
OW(NH ₂) ₃ Cl	-1579.16

" With respect to spherical atomic fragments.

Parallel Quantum Solutions (http://www.pqs-chem.com). All results reported are with reference to fully optimized geometries with no imaginary frequencies.^{20,21}

From the above total bonding energies (Table 2) we can compute ΔH_{rxn} for the two nitrile elimination reactions as follows:

$CH_3C(O)NW(NH_2)_3Cl \rightarrow OW(NH_2)_3Cl + CH_3CN$					
+2417.45	-1579.16	-837.37 = 0.92			
$CF_3C(O)NW(NH_2)_3Cl \rightarrow OW(NH_2)_3Cl + CF_3CN$					
+2442.01	-1579.16	-851.07 = 11.78			

Based on calculations with the above model complexes, extrusion of acetonitrile from $CH_3C(O)NW(NH_2)_3$ is essentially thermoneutral while formation of trifluoroacetonitrile from the analogous tungsten complex is significantly uphill.

Conclusions

Synthesis and characterization of 6-coordinate tungsten complexes $1-(N=PCl_3)(Cl)_2$, $1-(OCN)(Cl)_2$ and $1-(Cl)_3$ lends credence to the proposed intermediate **2**. Similar metallacycles have been proposed both by us²² and others,²³ but there had been some doubt as to whether the tungsten trisanilide platform **1** could adopt a pseudo-octahedral structure. Additionally, we have discovered a new mode of reactivity for **1**-N and **1**-(O)Cl that awaits further exploitation.

Acknowledgements

For stimulating discussions the authors thank Richard R. Schrock. We gratefully acknowledge for funding this work the U. S. National Science Foundation (CHE-0316823).

References

- 1 C. R. Clough, J. B. Greco, J. S. Figueroa, P. L. Diaconescu, W. M. Davis and C. C. Cummins, J. Am. Chem. Soc., 2004, 126, 7742–7743.
- 2 Density functional theory calculations (ADF 2004.01, ZORA TZ2P, BP86) have been carried out for the nitrile extrusion reaction: $(H_2N)_3W(NC(O)CR_3)Cl \rightarrow (H_2N)_3W(O)Cl + CR_3CN.$ For, R = H, $\Delta H_{rsn} = +1$ kcal mol⁻¹, while for R = F, $\Delta H_{rsn} = +12$ kcal mol⁻¹.
- 3 R. A. Bailey, S. L. Kozak, T. W. Michelsen and W. N. Mills, *Coord. Chem. Rev.*, 1971, 6, 407–445.
- 4 M. Becke-Goehring, Fortschr. Chem. Forsch., 1968, 10, 207-237.
- 5 C. H. Honeyman, A. J. Lough and I. Manners, *Inorg. Chem.*, 1994, **33**, 2988–2993.
- 6 E. Rivard, C. H. Honeyman, A. R. McWilliams, A. J. Lough and I. Manners, *Inorg. Chem.*, 2001, 40, 1489–1495.
- 7 I. Schmidt, U. Kynast, J. Hanich and K. Dehnicke, Z. Naturforsch., B: Anorg. Chem. Org. Chem., 1984, 39, 1248–1251.
- 8 J. S. Figueroa and C. C. Cummins, J. Am. Chem. Soc., 2004, 126, 13916–13917.
- 9 K. R. Seddon and V. H. Thomas, Inorg. Chem., 1978, 17, 749-751.

- 10 S. Dietz, V. Allured and M. R. Dubois, Inorg. Chem., 1993, 32, 5418-5420.
- 11 A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, Organometallics, 1996, 15, 1518-1520.
- 12 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
- 13 G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. van Gisbergen, J. G. Snijders and T. Ziegler, J. Comput. Chem., 2001, 22, 931-967.
- 14 C. F. Guerra, J. G. Snijders, G. te Velde and E. J. Baerends, Theor. Chem. Acc., 1998, 99, 391-403.
- 15 S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200-1211.

- 16 A. D. Becke, Phys. Rev. A, 1988, 38, 3098-3100.
- 17 J. P. Perdew, Phys. Rev. B: Condens. Matter Mater. Phys., 1986, 34, 7406-7406.
- 18 E. van Lenthe, E. J. Baerends and J. G. Snijders, J. Chem. Phys., 1993, 99, 4597-4610.
- 19 E. van Lenthe, A. Ehlers and E. J. Baerends, J. Chem. Phys., 1999, 110, 8943-8953.
- 20 L. Y. Fan and T. Ziegler, J. Chem. Phys., 1992, 96, 9005–9012.
 21 L. Y. Fan and T. Ziegler, J. Phys. Chem., 1992, 96, 6937–6941.
- 22 J. K. Brask, V. Dura-Vila, P. L. Diaconescu and C. C. Cummins, Chem. Commun., 2002, 902-903.
- 23 M. H. Chisholm, E. E. Delbridge, A. R. Kidwell and K. B. Quinlan, Chem. Commun., 2003, 126-127.