InBF₄, das erste komplexe Fluorid mit Indium(I)

H. Fitz und B. G. Müller*

Gießen, Institut für Anorganische und Analytische Chemie I der Justus-Liebig-Universität

Bei der Redaktion eingegangen am 6. Oktober 1996.

Inhaltsübersicht. InBF₄ wurde erstmals durch Umsetzung von metallischem Indium mit BF_3 und wasserfreier HF in Form farbloser, transparenter Einkristalle erhalten. Es kri-

stallisiert orthorhombisch, R. G. Pnma – D_{2h}^{16} (Nr. 62) mit a = 919,1(2), b = 577,1(1) und c = 737,0(2) pm, Z = 4 und ist isotyp zu KBF₄ bzw. damit dem Baryt-Typ.

InBF₄, the First Complex Fluoride with Indium(I)

Abstract. InBF₄ has been obtained for the first time by reaction of indium metal with anhydrous HF and BF₃ in form of colourless, transparent single crystals. It crystallizes orthorhombic, space group Pnma – D_{2h}^{16} (Nr. 62) with a = 919.1(2), b = 577.1(1) and c = 737.0(2) pm, Z = 4 and it is isotypic to KBF₄ respectively to baryt-typ.

1 Einleitung

Während zahlreiche Fluoride mit TI^{I} seit langem bekannt sind, fehlen bislang derartige Angaben über die entsprechenden Verbindungen mit In^{I} oder Ga^{I} . Dies entspricht der eher allgemeinen Beobachtung, daß Fluorverbindungen – anders als die Verbindungen der übrigen Halogene – in hohen Oxidationsstufen meist leicht zugänglich sind, die Synthese solcher in niederen Valenzzuständen dagegen ausgesprochen schwierig ist oder bis heute gar erfolglos blieb. So kennt man beispielsweise noch immer keine binären oder komplexen Fluoride mit Cu^I, Au^I, In^I, Ga^I u. a.

Im Anschluß an die Darstellung einiger Fluorokomplexe mit V²⁺ und Ti²⁺ [1] wurden ähnliche Versuche, (d. h. die Stabilisierung niederer Valenzzustände durch Einbau der betreffenden Kationen in vorgegebene, stabile Strukturtypen mit schwer reduzierbaren Partnern) zur Synthese von Verbindungen mit In^I bzw. Ga^I unternommen.

Prof. Dr. B. G. Müller Institut für Anorganische und Analytische Chemie I der Justus-Liebig-Universität Heinrich-Buff-Ring 58 D-35392 Gießen Keywords: Indium(I) tetrafluoroborate; single crystal structure

2 Darstellung von InBF₄

Auf Indiummetall (99,99%, Alfa Products) wurden unter trockenem Argon zunächst HF (über K_2NiF_6 getrocknet) und dann durch Tieftemperaturdestillation gereinigtes BF_3 bei T = -196 °C in einen PFA-Finger kondensiert. Beim langsamen Erwärmen auf Raumtemperatur bildete sich unter Gasentwicklung (H₂) ein farbloses Reaktionsprodukt. Nach Abpumpen von überschüssiger HF bzw. BF_3 erhielt man farbloses, teils mikrokristallines, teils einkristallines InBF₄. Nach Guinierdaten sind diese Proben einheitlich. InBF₄ ist luftempfindlich, es muß daher unter trockenem Schutzgas gehandhabt werden.

3 Röntgenographische Untersuchungen

Nach Präzessionsaufnahmen (hk0, hk1, 0kl, 1kl) kristallisiert InBF₄ orthorhombisch. Die Auslöschungen 0kl (k + l = 2 n), hk0 (h = 2 n) verweisen auf die R.G. Pnma – D_{2h}^{16} (Nr. 62) bzw. Pna2₁ – C_{2v}^{9} (Nr. 33) mit a = 919,1(2), b = 577,1(1) und c = 737,0(2) pm, Z = 4. Die anschließenden Strukturberechnungen mittels zweier Datensätze (Raumtemperaturmessung, Tieftemperaturmessung bei T = -120 °C) bestätigen die zentrosymmetrische Aufstellung und damit die Isotypie zu KBF₄ bzw. BaSO₄. Die kristallographischen Daten bzw. Meßdaten sind in Tab. 1 zusammengefaßt; den Abstandsrechnungen wurden die aus Guinier-de Wolff-

^{*} Korrespondenzadresse:

Tabelle 1 Kristallographische Daten von InBF4

	Raumtemperaturmessung	Tieftemperaturmessung
Kristallsystem	orthorhombisch	orthorhombisch
Raumgruppe	$Pnma - D_{2h}^{16}$ (Nr. 62)	$Pnma - D_{2h}^{16}$ (Nr. 62)
Gitterkonstanten		,
1) Guinier-Simon-Daten	a = 919,1(2) pm	
	b = 577,1(1) pm	
	c = 737,0(2) pm	
2) Vierkreisdiffraktometer	a = 921,4(8) pm	a = 913,7(3) pm
	b = 579,0(3) pm	b = 572,7(2) pm
	c = 739,7(6) pm	c = 734,9(2) pm
Röntgenographische Dichte	$3,394 \text{ g/cm}^3$	$3,482 \text{ g/cm}^3$
Zahl der Formeleinheiten	4	4
F (0 0 0)	360	360
Molares Volumen (röntgenographisch)	$59,41 \text{ cm}^{3}/\text{mol}$	57,90 cm ³ /mol
Kristallform, -farbe	unregelmäßig, farblos	unregelmäßig, farblos
Diffraktometer	Vierkreisdiffraktometer (Siemens	Vierkreisdiffraktometer (Siemens
	AED 2)	AED 2) $T = -120 ^{\circ}C$
Linearer Absorptionskoeffizient μ (Mo _{Kα})	$5,98 \text{ mm}^{-1}$	$5,98 \text{ mm}^{-1}$
Strahlung	MoK α ; $\lambda = 71,073 \text{ pm}$	MoK α ; $\lambda = 71,073 \text{ pm}$
Korrektur der Intensitäten	Polarisations- und Lorentzkorrektur	Polarisations- und Lorentzkorrektur
Meßbereich	$4,4 \le 2 \ \Theta \le 60,29$	$4,4 \le 2 \Theta \le 59,82$
	$-12 \le h \le 12$	$-12 \le h \le 12$
	$-8 \le k \le 8$	$-8 \le k \le 6$
	$-10 \le l \le 10$	$-10 \le l \le 10$
Anzahl der gemessenen I _o (hkl)	5510	3719
Interner R-Wert	10,08%	15,19%
Lösungsverfahren	Patterson- und Differenzfourier-	Patterson- und Differenzfourier-
	synthese	synthese
Nicht berücksichtigte Reflexe I _o (hkl)	0	0
Anzahl der symmetrieunabhängigen Reflexe	636	619
Anzahl der freien Parameter	34	34
Absorptionskorrektur	empirische Absorptionskorrektur	keine
	$(\psi$ -Scans)	2
Gütefaktor	$wR(F^2) = 10,39\%$	$wR(F^2) = 10,88\%$
	R(F) = 4,55%	R(F) = 5.45%
Max. und min. Restelektronendichte	1,52/–1,68 e/A ³	1,72/–4,18 e/A ³

Aufnahmen (Raumtemperaturmessung) bzw. Diffraktometerdaten (Tieftemperaturmessung) abgeleiteten Gitterkonstanten zu Grunde gelegt (vgl. auch Tab. 1).

4 Strukturdiskussion

Der Baryt-Typ ist gut bekannt. Dennoch wurde er wiederholt an verschiedener Stelle ausführlich diskutiert, vgl. z. B. [2], eine erneute, eingehende Beschreibung erübrigt sich. In Abb. 1 ist daher lediglich die Struktur (Projektion [010]) wiedergegeben. Da es sich hier um den ersten definierten Fluorokomplex mit In^I handelt, seien einige Punkte jedoch kurz zusammengefaßt:

1. Die Tieftemperaturmessung belegt, daß die großen Auslenkungsparameter bei Raumtemperatur auf thermische Effekte, nicht aber auf Fehlordnung bzw. die Abwesenheit von Symmetrieelementen (Spiegelebenen) zurückzuführen sind. Wie auch die übrigen Ergebnisse von Strukturberechnungen in Pna2₁ zeigen, ist InBF₄ damit nicht isotyp zu SmBeF₄ [3].

2. Alle interatomaren Abstände bzw. Winkel innerhalb des $[BF_4]^-$ Tetraeders (vgl. Tab. 2 und Tab. 3) sind mit d(B-F) = 138-140 pm bzw. Winkel von F-B-F =

Abb. 1 InBF₄, Projection entlang [010]

109–111° von etwa der gleichen Größe, wie sie für KBF_4 bzw. auch RbBF₄ gefunden werden [4].

Tabelle 2 Abstände (in pm) des $[BF_4]^-$ Tetraeders in $InBF_4$ der Tieftemperaturmessung, Werte in Klammern gelten für
Raumtemperaturmessung

Abstand d(B–F)	F1(1)	F2(2)	F3(3)	F3(4)
В	138,0	138,2	139,8	139,8
	(137,6)	(136,3)	(138,1)	(138,1)

Tabelle 3 Winkel des $[BF_4]^-$ Tetraeders in $InBF_4$ der Tief-
temperaturmessung, Werte in Klammern gelten für Raum-
temperaturmessung

Winkel F-B-F	F2(2)	F3(3)	F3(4)
F1(1)	111,3	108,9	108,9
F2(2)	(111,2)	(108,5) 109,6	109,6
F3(3)		(110,1)	(110,1) 108,3
			(108,8)

3. Indium(I) ist irregulär von 12 nächsten F⁻ in Abständen von d(In-F) = 291-346 pm umgeben (vgl. Abb 2). Allerdings belegt der ECoN-Wert von 10,8, daß die beiden F⁻ im Abstand von d(In-F) = 346 pm(ECoN-Beiträge 0,341) dabei eher willkürlich der Koordinationssphäre zugeordnet sind. Mit einem Ionen-

Abb. 2 Koordinationssphäre um In⁺

Tabelle 4 Lageparameter und "anisotrope Temperaturfaktoren" ($Å^2$) von InBF₄ der Tieftemperaturmessung, Standardabweichung zweite Zeile

Atom	Lage	x/a	y/b	z/c	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
In	4c	,18569 ,00004	¹ / ₄	,16638 ,00006	,0238 ,0004	,0279 ,0003	,0283 ,0004	0	-,0011 ,0002	0
В	4 c	,0622 ,0008	¹ / ₄	,6883 ,0009	,030 ,004	,023 ,003	,029 ,004	0	-,002 ,002	0
F1	4 c	,1728 ,0005	¹ / ₄	,5605 ,0007	,057 ,003	,039 ,002	,035 ,003	0	,016 ,002	0
F2	4 c	-,0740 ,0005	¹ / ₄	,6066 ,0008	,040 ,003	,057 ,003	,064 ,004	0	-,023 ,003	0
F3	8 d	,0766 ,0003	,0521 ,0005	,7982 ,0005	,043 ,002	,028 ,002	,043 ,002	,009 ,001	,003 ,002	,001 ,001

Der "anisotrope Temperaturfaktor" hat die Form: $T_{anis} = exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + ... + 2U_{12}hka^*b^*)]$

Tabelle 5 Motive der gegenseitigen Zuordnung, ECoN und MeFIR (pm), Koordinationszahlen (C.N.) und Abstände innerhalb der Koordinationspolyeder von InBF₄ der Tieftemperaturmessung

	F(1)	F(2)	F(3)	C. N.	ECoN ^a)	MeFIR ^a)
In	3/3 289,9 2×323,7	3/3 297,4 2×346,8	6/3 2×294,1 2×296,7 2×309.8	12	10,8	170,0
В	1/1 138.0	1/1 138.2	2/1 2×139.8	4	3,9	5,96
C. N. ECoN ^b) MeFIR ^b)	4 3,7 134,8	4 3,2 138,1	4 3,9 131,7			

^a) nur F⁻ als Liganden; ^b) nur Kationen als Liganden

Als Startwerte dienten $r(F^-) = 133 \text{ pm}, r(In^+) = 132 \text{ pm}; r(B^{3+}) = 23 \text{ pm}.$

Tabelle 6MAPLE-Werte für InBF4

	MAPLE (binär) [kcal/mol]	MAPLE (ternär) [kcal/mol]	Abweichung
InBF ₄	2150,6	2143,7 ^a)	0,32%

^a) MAPLE-Wert der InBF₄-Tieftemperaturparameter

Die MAPLE-Werte wurden unter der Annahme berechnet, daß das noch unbekannte "InF" dem NaCl-Typ entspricht (R.G. Fm3m, a = 604 pm, MAPLE-Wert: 190,4 kcal/mol), während der Wert für BF₃ (1960,2 kcal/mol) aus der Differenz der MAPLE-Werte von RbBF₄ (2165,4 kcal/mol) und RbF (205,2 kcal/mol) erhalten wurde. Die daraus resultierende Abweichung von 0,32% belegt die Güte der Strukturbestimmung.

radius von r = 166 pm ist In⁺ bemerkenswert groß und damit zwischen Cs⁺ (mit r = 187 pm), Tl⁺ (mit r = 167 pm) einerseits und Rb⁺ (r = 164 pm) einzuordnen (alle Werte wurden für die entsprechenden Tetrafluoroborate für Raumtemperatur nach dem Konzept MeFIR [5] berechnet). Ähnlich wie in komplexen Fluoriden mit Pb²⁺ (Schrägbeziehung) ist auch hier ein sterischer Einfluß des freien Elektronenpaares nicht zu beobachten.

5 Schlußbemerkung

Im Anschluß an die gezielte Synthese von $InBF_4$ lag es nahe:

1. $InBF_4$ thermisch abzubauen, um so noch unbekanntes InF zu erhalten. Erste Versuche hierzu (einmal mittels DTA und Thermogravimetrie, zum anderen im offenen Ta-Rohr bei $p \approx 10^{-3}$ bar, $T \approx 100$ °C, $t \approx 6$ d) führten bislang nicht zu eindeutigen Ergebnissen. Die grauen Produkte enthielten nach Guinier-Aufnahmen metallisches Indium. Daneben aber konnten weder InF₃ noch ein der Hochoder Raumtemperaturform von TIF oder dem NaCl-Typ entsprechendes Indium(I)fluorid eindeutig nachgewiesen werden. Ferner ließen sich die Reflexe in ihrer Abfolge auch nicht den zu TIF₂ (= TITIF₄) bzw. Tl₂F₃ (= Tl₃TIF₆) isotypen Varianten "InF₂" bzw. "In₂F₃" zuordnen.

2. Entsprechende Versuche mit Gallium durchzuführen. Das unter vergleichbaren Bedingungen isolierte farblose Produkt enthielt neben Resten von metallischem Gallium sowie GaF₃ noch zusätzliche, bislang nicht identifizierbare Produkte (Guinieraufnahmen). Mit weiteren Untersuchungen hierzu sowie Versuchen zu Synthesen von InMF₆ (M = Nb, Ta) unter ähnlichen Bedingungen sind wir z. Z. noch beschäftigt.

Literatur

- H. Bialowons, B. G. Müller, Z. Anorg. Allg. Chem. 1996, 622, 1187.
- [2] J. Arlt, M. Jansen, Chem. Ber. 1991, 124, 321.
- [3] J. Köhler, J.-H. Chang, Z. Anorg. Allg. Chem. 1996, 622, 179.
- [4] M. J. R. Clark, H. Lynton, Can. J. Chem. 1969, 47, 2579.
- [5] R. Hoppe, Z. Kristallogr. 1979, 150, 23.