

Article

Multicomponent Dipolar Cycloaddition Strategy: Combinatorial Synthesis of Novel Spiro Tethered Pyrazolo[3,4-b]quinoline Hybrid Heterocycles

Remani Vasudevan Sumesh, Muthumani Muthu, Abdulrahman I Almansour, Raju Suresh Kumar, Natarajan Arumugam, S Athimoolam, E. Arockia Jeya Yasmi Prabha, and Raju Ranjith Kumar

ACS Comb. Sci., Just Accepted Manuscript • DOI: 10.1021/acscombsci.6b00003 • Publication Date (Web): 30 Mar 2016 Downloaded from http://pubs.acs.org on March 31, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Combinatorial Science is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Multicomponent Dipolar Cycloaddition Strategy: Combinatorial Synthesis of Novel Spiro Tethered Pyrazolo[3,4-*b*]quinoline Hybrid Heterocycles

Remani Vasudevan Sumesh,[†] Muthumani Muthu,[†] Abdulrahman I. Almansour,[§] Raju Suresh Kumar,[§] Natarajan Arumugam,[§] S. Athimoolam,[‡] E. Arockia Jeya Yasmi Prabha[‡] and Raju Ranjith Kumar^{*,†}

[†]Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India

[§]Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

[‡]Department of Physics, University College of Engineering, Anna University Constituent College, Nagercoil 629 004, Tamil Nadu, India

ABSTRACT:

The stereoselective syntheses of a library of novel spiro tethered pyrazolo[3,4b]quinoline–pyrrolidine/pyrrolothiazole/indolizine–oxindole/acenaphthene hybrid heterocycles have been achieved through the 1,3-dipolar cycloaddition of azomethine ylides generated *in situ* from α -amino acids and 1,2-diketones to dipolarophiles derived from pyrazolo[3,4-*b*]quinoline derivatives.

Keywords: 1,3-Dipolar cycloaddition, Azomethine ylide, α -Amino acid, Isatin, Pyrazolo[3,4b]quinoline, Spiro-oxindole, Spiro-pyrrolidine

INTRODUCTION

Pyrazolo[3,4-b]quinoline ring systems are privileged class of nitrogen containing heterocycles endowed with profound biological activities. For instance pyrazolo[3,4-b]quinoline derivatives have been investigated for their antimicrobial,¹ antimycobacterial² and antiviral³ activities. Among the several methods available for the synthesis of pyrazolo[3,4-b]quinolines, the three-component reactions of 1,3-diketones, 5-aminopyrazoles and aromatic aldehydes or isatins have received much attention.⁴ Moreover, in spite of their significances pyrazolo[3,4b]quinoline derivatives have been less explored as precursors for further transformations. To the best of our knowledge these compounds have been used in the Vilsmeier-Haack formylation reaction and for the synthesis of bispyrazolo[3,4-b:4,3-f] guinolines⁵ and pyrazolo[3,4-b:4,3-f] guinoline gu b]quinoline ribofuranosides.⁶ Further, the analogous derivatives have been used to synthesize quinoxaline-fused benzo[h]isoxazolo[5,4-b]quinolines⁷ and benzo[a]pyrazolo[4',3':5,6]pyrido-[2,3-c] phenazine.⁸ In this context, we envisaged to investigate the feasibility of pyrazolo[3,4-b]quinoline derivatives as dipolarophiles in the 1,3-dipolar cycloadditions of azomethine ylides with a view to construct spiro tethered pyrazolo[3,4-b]quinoline-pyrrolidine/pyrrolothiazole/ indolizine-oxindole/acenaphthene hybrids.

The syntheses of spiro compounds have received much attention in view of their wide range of applications.⁹ For example spiro compounds have been shown to inhibit cholesteryl ester transfer protein, aspartyl proteases BACE1, acetylcholinesterase, bacterial type-II topoisomerase and kinesin spindle protein.¹⁰ These compounds have also been investigated for their anticancer and antimicrobial activities apart from being identified as histamine-3 receptor and TRPM8 antagonists.¹¹ Among the various protocols reported for the synthesis of spiro compounds, the 1,3-dipolar cycloadditions involving dipolarophiles with exoyclic olefins have

occupied an eminent position.¹² This strategy allows the stereoselective construction of complex spiro heterocyclic hybrids in a single transformation with ease.¹² In particular the cycloaddition of azomethine ylides generated *in situ* from the decarboxylative condensation of α -amino acids and isatins, acenaphthenequinone or ninhydrin with dipolarophiles with exocyclic olefins have received substantial amount of attention as they lead to the synthesis of spiro oxindole/acenaphthene/indanone and pyrrolidine/pyrrolizine/pyrrolothiazole/indolizine hybrid heterocycles. It is noteworthy that spiro oxindole-pyrrolidine or pyrrolizine hybrids form the core of several bioactive natural products such as horsfiline¹³ and elacomine,¹⁴ whereas rhynchophylline¹⁵ comprises spiro oxindole-indolizine unit and spirotryprostatins comprise spiro oxindole-pyrrolopyrazine motif.¹⁶

RESULTS AND DISCUSSION

Initially, the precursors 2-((dimethylamino)methylene)cyclohexane-1,3-dione $3\{1\}$ and 2-((dimethylamino)methylene)-5,5-dimethylcyclohexane-1,3-dione $3\{2\}$ were synthesized from the reaction of 1,3-cyclohexanedione $1\{1\}$ or dimedone $1\{2\}$ with DMF-DMA 2, respectively following literature procedure (Scheme 1).¹⁷

Seheme 1. Synthesis of precursors 3

Subsequently, the pyrazolo[3,4-*b*]quinolin-5-ones 7 were synthesized *via* a one-pot threecomponent sequential procedure in water (Scheme 2). First of all, 3-aminocrotononitrile **4** and the appropriate arylhydrazines $5\{1-6\}$ were refluxed in water for 1 h in the presence of L-proline (40 mol%) to obtain 3-methyl-1-aryl-1*H*-5-pyrazolamines $6\{1-6\}$. Then without isolating **6**, the previously synthesized $3\{1\}$ or $3\{2\}$ was added and the reflux continued for another 1 h, which resulted in quantitative yields of $7\{1-6\}$ or $7\{2-5\}$, respectively. The formation of 7 presumably occurred *via* a similar pathway as depicted by Perumal *et al.*⁸ It is to be noted that Zheng *et al.* reported the synthesis of $7\{2,1\}$ in 15% yield from a two-step reaction.^{4b} Later, Dzvinchuk *et al.*^{4c} synthesized $7\{1,1\}$ in 87% yield from the reaction of 1,3-cyclohexanedione 1, 3-methyl-1-phenyl-1*H*-5-pyrazolamine **6** and 4-(dimethylamino)-benzaldehyde in boiling acetic acid for 2 h. In this reaction *N*,*N*-dimenthylaniline was obtained as a by-product. Moreover, the protocol employed by us for the synthesis of 7 is more advantageous than the literature reports in terms of several green chemical aspects. The structure of all the pyrazolo[3,4-*b*]quinolin-5-ones 7 was elucidated using NMR spectroscopy. In addition, in two cases, $7\{1,1\}$ and $7\{2,5\}$, the structure was also confirmed from their single crystal X-ray studies (Figure 1).¹⁸

In the next step we chose 3-methyl-1-phenyl-1,6,7,8-tetrahydro-5*H*-pyrazolo[3,4-*b*]quinolin-5-one $7\{1,1\}$ and 3,7,7-trimethyl-1-phenyl-1,6,7,8-tetrahydro-5*H*-pyrazolo[3,4-*b*]quinolin-5-one $7\{2,1\}$ to investigate the base-promoted Knoevenagel condensation with aromatic aldehydes $8\{1-7\}$ in order to induct an exocyclic alkene at position C-6 of the pyrazolo[3,4-*b*]quinolin-5-ones 7. In the case of $7\{1,1\}$, the reaction occurred at ambient temperature in the presence of KOH in ethanol affording novel (*E*)-3-methyl-6-(arylidene)-1phenyl-1,6,7,8-tetrahydro-5*H*-pyrazolo[3,4-*b*]quinolin-5-ones 9 in quantitative yields (Scheme 3). However, under these and several other conditions the reaction of $7\{2,1\}$ with aromatic aldehydes $8\{1-7\}$ failed to occur, presumably due to the steric hindrance exerted by the methyl

groups at C-7. Further, in both the cases of $7\{1,1\}$ and $7\{2,1\}$, the reaction failed to occur with aliphatic aldehydes.

$R^{2} \xrightarrow{NH_{2}} 5$	CN NH2 - NH	L-Proline H_2O reflux, 1 h	H ₂ N		3 { <i>1</i> } or 3 { <i>2</i> } reflux, 1 h quantitative	$R^{1} + R^{1} + R^{1$
-	Entry	Comp	\mathbf{R}^{1}	\mathbf{R}^2	Yield (%)	Mp ([°] C)
-	1	7 { <i>1</i> , <i>1</i> }	Н	Н	$98(87)^{4b}$	123–124
	2	7 { <i>1</i> , <i>2</i> }	Η	Cl	97	149–150
	3	7 { <i>1</i> , <i>3</i> }	Η	Br	98	153–154
	4	7 { <i>1</i> , <i>4</i> }	Н	F	96	165–166
	5	7 {1,5}	Н	CN	98	175–176
	6	7 {1,6}	Н	Me	97	128–129
	7	7 {2,1}	Me	Н	$98(15)^{4c}$	165–166
	8	7 {2,2}	Me	Cl	98	148–149
	9	7 {2,3}	Me	Br	97	140–141
	10	7 {2,4}	Me	F	96	164–165
	11	$7\{2,5\}$	Me	CN	96	208–209

Scheme 2. Synthesis of pyrazolo[3,4-*b*]quinolin-5-ones 7

Figure 1. ORTEP diagrams of $7\{1,1\}$ and $7\{2,5\}$

Scheme 3. Synthesis of 6-arylidene-pyrazolo[3,4-b]quinolin-5-ones 9

4-C1

4-Cl

4-C1

178-179

199-200

198–199

F

CN

Me

{1,4,3}

{1,5,3}

{1,6,3}

The structure of these 6-arylidene-pyrazolo[3,4-*b*]quinolin-5-ones **9** was elucidated with the help of FT-IR, ESI-mass and NMR spectroscopic techniques. In general, the NMR spectra of **9** was found to be similar to that of $7{1,1}$ apart from the presence of arylidene -CH and aromatic ring protons and the absence of one -CH₂ signal in the aliphatic region. The mass spectrum of $9{1,1,1}$ had a characteristic molecular ion peak at 380.18 [M+H]⁺. The IR spectrum of $9{1,1,1}$ showed strong absorption at 1686 cm⁻¹ due to the carbonyl group. In the ¹H NMR of $9{1,1,1}$, the methyl protons at C-3 and phenyl ring appeared as singlets at 2.70 and 2.41 ppm, respectively. The singlet at 3.26 ppm accounting for 4 protons was assigned to the 7- and 8-CH₂ protons. The arylidene CH and 4-CH protons appeared as singlets at 7.95 and 8.85 ppm, respectively while the remaining protons of the aromatic rings appeared as multiplets in the range 7.25–8.31 ppm.

ACS Combinatorial Science

Having synthesized the 6-arylidene-pyrazolo[3,4-*b*]quinolin-5-ones **9**, we then concentrated on the solvent optimization for the 1,3-dipolar cycloaddition of azomethine ylide generated *in situ* from the decarboxylative condensation of α -amino acids and non-enolizable 1,2-diketones to the above diplarophiles. For this we selected the reaction of **9**{*1*,*1*,*1*}, sarcosine **10**{*1*} and isatin **11**{*1*} that presumably affords 1',3-dimethyl-1-phenyl-4'-(*p*-tolyl))-7,8-dihydro-dispiro[indoline-3",2'-pyrrolidine-3',6-pyrazolo[3,4-*b*]quinoline]-2",5(1*H*)-dione **12**{*1*,*1*,*1*,*1*,*1*}, as a model reaction, under reflux in various solvents (Table 1). From the data in Table 1 we observed that either methanol or ethanol was the optimal solvent for this cycloaddition reaction, wherein quantitative yield of **12**{*1*,*1*,*1*,*1*,*1*} was obtained (>90%). After completion of the resultant precipitate was filtered and dried to obtain the product **12**{*1*,*1*,*1*,*1*,*1*}. It is noteworthy that the crude reaction product was clean enough to be purified just by crystallization, thereby obviating the need for column chromatography, which is the main source of waste.

Table 1. Solvent optimization for the cycloaddition

The structure of the isolated product was elucidated with the help of FT-IR, ESI-mass and NMR spectroscopic studies. The mass spectrum of $12\{1,1,1,1,1\}$ had a characteristic molecular ion peak at 554.22 [M+H]⁺. The IR spectrum of $12\{1,1,1,1,1\}$ showed strong absorptions at 1686 and 1670 cm⁻¹ due to the C-5 and C2" carbonyl groups, respectively. The ¹H and ¹³C NMR chemical shifts of $12\{1,1,1,1,1\}$ are shown in Figure 2. The discussion on the complete assignment of ¹H and ¹³C NMR chemical shifts of $12\{1,1,1,1,1\}$ are given in the supporting information.

Figure 2. ¹H and ¹³C chemical shifts of $12\{1,1,1,1,1\}$

The formation of $12\{1,1,1,1,1\}$ can be rationalized through the pathway depicted in Scheme 4. Initially, the condensation of sarcosine $10\{1\}$ and isatin $11\{1\}$ forms the azomethine ylide dipole 13 *via* spontaneous decarboxylation. Subsequently, the 1,3-dipole 13 undergoes cycloaddition with the exocyclic dipolarohile $9\{1,1,1\}$, which may be visualized in two different

pathways *viz*. path A and B. However, the exclusive formation of dispiro-oxindole-pyrrolidinepyrazoloquinoline $12\{1,1,1,1,1\}$ discloses that this cycloaddition occurs through Path A, wherein the carbonyls of the dipole and the dipolarophile are *trans* to each other. Path B, which leads to the formation of $14\{1,1,1,1,1\}$, is presumably less favored in view of the electrostatic repulsion between the *cis* carbonyls.

Scheme 4. Formation of **12**{*1*,*1*,*1*,*1*,*1*}

Furthermore, it is evident that the cycloaddition proceeded regioselectively involving the addition of electron rich carbon of the dipole **13** to the β-carbon of the α ,β-unsaturated dipolarophile **9**{*1,1,1*} (Scheme 4). This is also evident form ¹H NMR spectrum of **12**{*1,1,1,1,1*}, wherein three triplets appeared in the range between 3.52–4.99 ppm due to 4'-CH and 5'-CH₂ protons. If the other regioisomer **12'**{*1,1,1,1,1*} was formed (Figure 3), a singlet and

two doublets would have been expected for these protons. Moreover, this regiochemistry is in accord with the polarization of the C=C bond with a more electron-deficient β -carbon in $9\{1,1,1\}$, which could preferentially react with the electron-rich site of the approaching 1,3-dipole 13. In addition, the cycloaddition occurred diastereoselectively to afford a single diastereoisomer exclusively in quantitative yields, albeit more than one contiguous stereocentres are present in the cycloadduct $12\{1,1,1,1,1\}$.

Figure 3. The regioisomer of $12\{1,1,1,1,1\}$ not formed in the reaction

With the optimized reaction condition established and the structure arrived at for $12\{1,1,1,1,1\}$, we then explored the viability of this protocol for library generation. It is pertinent to note that forty-two novel spiro tethered pyrazolo[3,4-b]quinolinepyrrolidine/pyrrolothiazole/indolizine-oxindole/acenaphthene hybrids 12 and 15-19 were synthesized employing eleven 6-arylidene-pyrazolo[3,4-b]quinolin-5-ones 9, three α -amino acids 10 and two 1.2-diketones 11 (Figure 4, Scheme 5 and Table 2). From the data in Table 2 it is apparent that the cycloaddition works well with all the substrates affording quantitative yields of the products. The structure of all the dispiro hybrid heterocycles 12 and 15–19 was elucidated unambiguously as done for $12\{1,1,1,1,1\}$. In the case of $12\{1,1,7,1,1\}$ the structure was further confirmed from single crystal X-ray analysis (Figure 5).¹⁸ The ORTEP diagram of $12\{1, 1, 7, 1, 1\}$

ACS Combinatorial Science

discloses that C-5 and C2" carbonyls are *trans*, providing conclusive evidence to the proposed reaction pathway (Scheme 4). In addition, the C–N bond lengths of pyrazolo[3,4-*b*]quinoline ring varied from 1.312 (7) to 1.381 (8) Å. These distances were observed to be shorter than the relevant single bond length (1.443 Å) and longer than the double bond length (1.269 Å). The variation in bond length may be due to the electron delocalization around the ring. The pyrrolidine and the oxindole rings were oriented nearly perpendicular to each other at an angle of 87.01 (1)°. Further the pyrrolidine ring was making an angle of 75.22 (1)° with the dichlorophenyl plane.

CONCLUSIONS

We have developed an environmentally benign three-component sequential protocol for the synthesis of pyrazolo[3,4-*b*]quinolin-5-ones 7 in water. The base-promoted Knoevenagel reaction of 7 with aromatic aldehydes afforded novel 6-arylidene-pyrazolo[3,4-*b*]quinolin-5-ones **9**. Subsequently, the 1,3-dipolar cycloaddition of azomethine ylides generated *in situ* from the decarboxylative condensation of sarcosine, thiazolidine-4-carboxylic acid or piperidine-2carboxylic acid and isatin or acenaphthenequinone to these exocyclic alkenenic dipolarophiles **9** led to the stereoselective formation of novel structurally intriguing spiro tethered pyrazolo[3,4*b*]quinoline–pyrrolidine/pyrrolothiazole/indolizine–oxindole/acenaphthene hybrids **12** and **15– 19**, in quantitative yields. As the products were obtained in pure form just by filtration, additional purification steps such as column chromatography, which is the main source of waste generation, was avoided. The quantitative yield of the product in combination with the high atom economy observed (>90%) makes this protocol efficient and green. Ultimately, we have demonstrated that pyrazolo[3,4-*b*]quinoline derivatives are potential precursors for further transformations into complex heterocycles *via* 1,3-dipolar cycloaddition.

Figure 4. Diversity of reagents

Scheme 5. Synthesis of dispiro hybrid heterocycles

Entry	Comp	R ¹	\mathbf{R}^2	Yield (%)	mp (°C)
1	12 { <i>1</i> , <i>1</i> , <i>1</i> , <i>1</i> , <i>1</i> }	Н	4-Me	98	249-250
2	12 { <i>1,1,2,1,1</i> }	Н	4-MeO	96	230-231
3	12 { <i>1,1,3,1,1</i> }	Н	4-Cl	98	238-239
4	$12\{1, 1, 4, 1, 1\}$	Н	4-F	97	258-259
5	12 { <i>1,1,5,1,1</i> }	Н	2-Cl	95	209-210
6	12 { <i>1,1,6,1,1</i> }	Η	3-Br	96	258-259
7	12 { <i>1,1,7,1,1</i> }	Η	$2,4-Cl_2$	98	242-243
8	12 { <i>1,2,3,1,1</i> }	Cl	4-C1	94	250-251
9	12 { <i>1,5,3,1,1</i> }	CN	4-C1	92	250-251
10	12 { <i>1,6,3,1,1</i> }	Me	4-C1	93	228-229
11	15 { <i>1</i> , <i>1</i> , <i>1</i> , <i>2</i> , <i>1</i> }	Η	4-Me	96	242-243
12	15 { <i>1</i> , <i>1</i> , <i>2</i> , <i>2</i> , <i>1</i> }	Η	4-MeO	97	232–233
13	15 { <i>1,1,3,2,1</i> }	Η	4-C1	98	210-211
14	15 { <i>1,1,4,2,1</i> }	Η	4- F	96	233–234
15	15 { <i>1,1,5,2,1</i> }	Η	2-Cl	94	215–216
16	15 { <i>1,1,6,2,1</i> }	Η	3-Br	96	185–186
17	15 { <i>1,1,7,2,1</i> }	Η	$2,4-Cl_2$	95	238–239
18	16 { <i>1,1,3,3,1</i> }	Η	4-Cl	97	243–244
19	16 { <i>1,1,5,3,1</i> }	Η	2-Cl	95	236–237
20	16 { <i>1,1,6,3,1</i> }	Η	3-Br	93	254–256
21	16 { <i>1,1,7,3,1</i> }	Η	$2,4-Cl_2$	96	258–259
22	17 { <i>1,1,1,1,2</i> }	Н	4-Me	97	208–209
23	17 { <i>1,1,2,1,2</i> }	Н	4-MeO	95	105-106
24	17 { <i>1,1,3,1,2</i> }	Н	4-C1	96	210-211
25	17 { <i>1,1,4,1,2</i> }	Н	4- F	93	190–191
26	17 { <i>1,1,5,1,2</i> }	Н	2-C1	94	130–131
27	17 { <i>1,1,6,1,2</i> }	Н	3-Br	96	192–193
28	17 { <i>1,1,7,1,2</i> }	Н	$2,4-Cl_2$	93	158–159
29	18 { <i>1</i> , <i>1</i> , <i>1</i> , <i>2</i> , <i>2</i> }	Η	4-Me	98	168–169
30	18 { <i>1</i> , <i>1</i> , <i>2</i> , <i>2</i> , <i>2</i> }	Η	4-MeO	98	137–138
31	18 { <i>1</i> , <i>1</i> , <i>3</i> , <i>2</i> , <i>2</i> }	Η	4-Cl	97	138–139
32	18 { <i>1,1,4,2,2</i> }	Н	4-F	94	148–149
33	18 { <i>1</i> , <i>1</i> , <i>5</i> , <i>2</i> , <i>2</i> }	Η	2-Cl	96	160–161
34	18 { <i>1</i> , <i>1</i> , <i>6</i> , <i>2</i> , <i>2</i> }	Η	3-Br	93	162–163
35	18 { <i>1</i> , <i>1</i> , <i>7</i> , <i>2</i> , <i>2</i> }	Н	$2,4-Cl_2$	92	203–204
36	19 { <i>1</i> , <i>1</i> , <i>1</i> , <i>3</i> , <i>2</i> }	Н	4-Me	98	230–231
37	19 { <i>1</i> , <i>1</i> , <i>2</i> , <i>3</i> , <i>2</i> }	Н	4-MeO	97	205-206
38	19 { <i>1</i> , <i>1</i> , <i>3</i> , <i>3</i> , <i>2</i> }	H	4-Cl	98	220-221
39	19 { <i>1</i> , <i>1</i> , <i>4</i> , <i>3</i> , <i>2</i> }	Н	4-F	95	226-227
40	19 { <i>1</i> , <i>1</i> , <i>5</i> , <i>3</i> , <i>2</i> }	Н	2-Cl	94	215-216
41	19 { <i>1</i> , <i>1</i> , <i>6</i> , <i>3</i> , <i>2</i> }	Н	3-Br	96	210-211
42	19 { <i>1</i> , <i>1</i> , <i>7</i> , <i>3</i> , <i>2</i> }	Н	$2,4-Cl_2$	93	225-226

Table 2. Yield and melting point of 12, 15–19

Figure 5. ORTEP diagram of **12**{*1,1,7,1,1*}

EXPERIMENTAL SECTION

General

The melting points were measured in open capillary tubes and are uncorrected. Electronspray ionization mass spectrometry (ESI-MS) analyses were recorded in LCQ Fleet, Thermo Fisher Instrument in negative or positive ion mode. The collision voltage and ionization voltage were +35 V and +5 kV, respectively, using nitrogen as atomization and desolvation gas. The desolvation temperature was set at 300° C. The scan range of mass spectrum was 300-2000 *m/z*. The relative amount of each component was determined from the LC-MS chromatogram, using the area normalization method. Infrared spectra were recorded on a Thermo Scientific FT-IR instrument by ATR method. The ¹H, ¹³C and the 2D NMR spectra were recorded on a Bruker (Avance) 300 MHz NMR instrument (¹H: 300 MHz, ¹³C: 75 MHz) using TMS as internal standard and CDCl₃ as solvent. Standard Bruker software was used throughout the spectral

analysis. Chemical shifts are given in parts per million (δ -scale) and the coupling constants are given in Hertz. Elemental analyses were performed on Perkin Elmer 2400 Series II CHNS analyzer. The single crystal X-ray data set for compounds 7{1,1}, 7{2,5} and 12{1,1,7,1,1} was collected on Bruker AXS KAPPA APEX-2 diffractometer equipped with graphite monochromator. The structure was solved by direct methods and refined by full-matrix least-squares calculations using SHELXL–2014.¹⁹ Silica gel-G plates (Merck) were used for TLC analysis with a mixture of *n*-hexane and ethyl acetate as eluent. All the chemicals were purchased from commercial sources and used without any further purification.

General procedure for the synthesis of 7

A mixture of 3-aminocrotononitrile **4** (1 mmol), arylhydrazine **5** (1 mmol) and L-proline (0.4 mmol) was taken in water (10 mL) and heated to reflux. After 1 h of continuous reflux, methylene-cyclohexane-1,3-dione **3** (1 mmol) was added and the reflux continued for another 1 h. Upon addition of **3** the mixture turns homogeneous. The completion of the reaction was evident from the formation of precipitate, which was filtered, washed with water and dried under vacuum to obtain pure **7**.

Compound 7{*1,2*}. Obtained as Pale yellow solid; Yield 97%; m.p. 149–150°C; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.25 (qui, *J* = 5.0 Hz, 2H), 2.65 (s, 3H), 2.77 (t, *J* = 6.5 Hz, 2H), 3.28 (t, *J* = 6.1 Hz, 2H), 7.47 (dd, *J* = 6.9, 2.1 Hz, 2H), 8.30 (d, *J* = 9.0 Hz, 2H), 8.74 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 12.4, 21.8, 33.6, 36.7, 116.7, 121.4, 123.0, 128.9, 130.3, 130.8, 137.7, 145.2, 150.9, 163.8, 197.2 ppm.

General procedure for the synthesis of 9

To an equimolar mixture of 7 (1 mmol) and aromatic aldehyde (8, 1 mmol) in ethanol (5 mL) was added 10 mL of ethanolic solution of KOH (5%). The mixture was stirred at ambient temperature for about 1 h. The completion of the reaction was noted when the product **9** precipitated out of the reaction mixture, which was filtered, washed with water and dried.

Compound 9{*1,1,1*}. Obtained as pale yellow solid; Yield 98%; m.p. 182–183°C; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 2.41 (s, 3H), 2.70 (s, 3H), 3.26 (s, 4H), 7.26 (d, *J* = 8.1 Hz, 3H), 7.32 (dt, *J* = 8.4, 1.2 Hz, 1H), 7.40 (d, *J* = 8.1 Hz, 2H), 7.53 (tt, *J* = 8.4, 1.2 Hz, 2H), 7.95 (s, 1H), 8.30 (dt, *J* = 7.5, 1.2 Hz, 2H), 8.85 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 12.5, 21.4, 26.2, 32.7, 116.9, 120.8, 123.7, 125.8, 129.0, 129.2, 130.1, 131.2, 132.6, 133.6, 137.6, 139.0, 139.1, 145.0, 150.9, 162.5, 187.0 ppm. Anal. Calcd. for C₂₅H₂₁N₃O: C, 79.13; H, 5.58; N, 11.07. Found: C, 79.22; H, 5.48; N, 11.19. ESI-MS m/z calcd [M + H]⁺ 379.17, found 380.18. FT IR (cm⁻¹): 1686, 3022.

General procedure for the synthesis of dispiro hybrid heterocycles 12 and 15–19.

A mixture of **9** (1 mmol), sarcosine/thiazolidine-4-carboxylic acid/piperidine-2carboxylic acid (**10**, 1.1 mmol) and isatin/acenaphthenequinone (**11**, 1.1 mmol) was taken in 10 mL of ethanol in a 50 mL round bottom flask and heated to reflux on a boiling water bath for 1–4 h. After completion of the reaction as evident from TLC, the reaction mixture was poured into ice cold water (50 mL). The precipitated solid was filtered, washed with water and dried to get the dispiro hybrid heterocycles **12** or **15–19**. The crude product was purified through crystallization from ethanol.

Compound 12 {*1,1,1,1,1*}: Obtained as pale yellow solid; Yield 98%; m.p. 249–250°C; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 1.43 (td, *J* = 14.0, 5.1 Hz, 1H), 2.12 (s, 3H), 2.32 (s, 3H), 2.50 (d, *J* = 14.9 Hz, 1H), 2.65 (s, 3H), 2.81–3.00 (m, 2H), 3.52 (t, *J* = 8.5 Hz, 1H), 4.01 (t, *J* = 9.7 Hz, 1H), 4.92–5.05 (m, 1H), 6.45 (d, *J* = 7.7 Hz, 1H), 6.62 (t, *J* = 7.6 Hz, 1H), 6.87 (t, *J* = 7.7 Hz, 1H), 6.96 (d, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 7.8 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 4H), 8.05 (d, *J* = 8.4 Hz, 2H), 8.32 (s, 1H), 8.74 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 12.5, 21.0, 29.4, 29.6, 34.6, 47.7, 57.7, 61.0, 76.2, 109.5, 116.6, 121.1, 122.3, 123.3, 126.0, 126.1, 127.2, 129.0, 129.2, 130.3, 131.8, 135.6, 136.5, 138.7, 141.1, 145.0, 150.3, 162.7, 177.4, 197.8 ppm. Anal. Calcd. for C₃₅H₃₁N₅O₂: C, 75.93; H, 5.64; N, 12.65. Found: C, 75.83; H, 5.52; N, 12.54. ESI-MS m/z calcd [M + H]⁺ 553.67, found 554.22. FT IR (cm⁻¹): 3735, 2864, 1688, 1591.

15{*1*,*1*,*1*,*2*,*1*}: Obtained as yellow solid; Yield 96%; m.p. 242–243°C; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 1.51 (td, *J* = 13.5, 5Hz, 1H), 2.32 (s, 3H), 2.60 (s, 3H), 2.77 (d, *J* = 12.3 Hz, 1H), 2.87–2.03 (m,3H), 3.15 (td, *J* = 15.8, 5 Hz, 1H), 3.45 (d, *J* = 6.1 Hz, 1H), 3.57 (d, *J* = 6.1 Hz, 1H), 4.64 (d, *J* = 10.0 Hz, 1H), 4.83 (ddd, *J* = 10.0, 7.7, 5.5 Hz, 1H), 6.46 (d, *J* = 7.7 Hz, 1H), 6.76 (t, *J* = 7.6 Hz, 1H), 6.93 (t, *J* = 7.7 Hz, 1H), 7.14 (d, *J* = 7.8 Hz, 2H), 7.18–7.25(m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.40–7.47 (m, 2H), 7.55 (s, 1H), 8.12 (d, *J* = 7.6 Hz, 2H), 8.45 (s, 1H) pm. ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 12.3, 20.9, 27.8, 33.0, 46.8, 51.0, 66.7, 66.9, 69.1, 71.7, 109.8, 116.3, 120.6, 120.8, 121.8, 123.1, 125.0, 125.7, 127.4, 128.8, 128.9, 129.0, 129.3, 129.8, 134.1, 136.7, 141.1, 144.8, 162.2, 177.4, 196.1 ppm. Anal. Calcd. for C₃₆H₃₁N₅O₂S: C, 72.34; H, 5.23; N, 11.72. Found: C, 72.20; H, 5.10; N, 11.61. ESI-MS m/z calcd [M + H]⁺ 597.74, found 554.22.

ACS Combinatorial Science

16{*1,1,3,3,1*}: Pale yellow solid; Yield 97%; m.p 243–244°C; ¹H NMR (300 MHz, CDCl₃) δ 1.18–1.57 (m, 6H), 1.77 (s, 2H), 2.20 (s, 2H), 2.63 (s, 3H), 2.91–3.04 (m, 2H), 3.85 (t, *J* = 9.1 Hz, 1H), 4.49 (d, *J* = 9.8 Hz, 1H), 6.46 (d, *J* = 7.7 Hz, 1H), 6.62 (t, *J* = 7.5 Hz, 1H), 6.85 (t, *J* = 7.4 Hz, 1H), 6.95 (d, *J* = 7.5 Hz, 1H), 7.17–7.25 (m, 2H), 7.29–7.56 (m, 5H), 7.98 (s, 1H), 8.07 (d, *J* = 7.9 Hz, 2H), 8.63 (s, 1H) ppm. ¹C NMR (300 MHz, CDCl₃) δ_C : 12.1, 23.6, 25.1, 28.8, 29.5, 30.6, 44.9, 53.9, 59.3, 62.4, 75.3, 109.3, 116.1, 120.3, 121.4, 123.1, 125.4, 125.9, 126.6, 127.9, 128.5, 131.0, 132.0, 137.0, 138.6, 141.7, 144.5, 150.1, 162.2, 177.2, 196.8 ppm. Anal. Calcd. for C₃₇H₃₂ClN₅O₂: C, 72.36; H, 5.25; N, 11.40. Found: C, 72.27; H, 5.13; N, 11.30.

17{*1,1,1,1,2*}: Obtained as yellow solid; Yield 97%; m.p. 208–209°C; ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$: 1.40 (td, *J* = 14.3, 4 Hz, 1H), 2.04 (s, 3H), 2.24 (td, *J* = 15.0, 5.0 Hz, 1H), 2.33 (s, 3H), 2.40 (s, 1H), 2.54 (s, 1H), 2.63 (s, 3H), 3.59 (t, *J* = 8.5 Hz, 1H), 4.10 (t, *J* = 9.8 Hz, 1H), 5.09 (t, *J* = 9.0 Hz, 1H), 7.18 (t, *J* = 8.7 Hz, 3H), 7.28–7.43 (m, 4H), 7.50 (dd, *J* = 16.7, 7.6 Hz, 3H), 7.60–7.68 (m, 1H), 7.81–8.05 (m, 4H), 8.67 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$: 12.5, 21.0, 29.2, 30.4, 34.5, 48.1, 58.3, 62.5, 79.2, 116.4, 120.6, 123.4, 124.1, 125.1, 125.7, 127.9, 128.2, 128.8, 129.0, 130.1, 130.2, 131.3, 131.7, 131.9, 135.7, 136.4, 136.5, 138.7, 142.0, 144.8, 150.3, 162.4, 198.1, 206.7 ppm. Anal. Calcd. for C₃₉H₃₂N₄O₂: C, 79.57; H, 5.48; N, 9.52. Found: C, 79.61; H, 5.36; N, 9.42. ESI-MS m/z calcd [M + H]⁺ 588.71, found 589.24. FT IR (cm⁻¹): 2843, 2162, 1703, 1678, 1596.

18{*1,1,1,2,2*}: Obtained as pale orange solid; Yield 98%; m.p. 168–169°C; ¹H NMR (300 MHz, CDCl₃) δ_{H} : 1.51–1.62 (m, 1H), 2.33 (s, 3H), 2.53 (s, 3H), 2.66–2.72 (m, 2H), 2.8 (dt, *J* = 15.0, 3.0 Hz, 1H), 2.96 (dd, *J* = 9.8, 6.5 Hz, 1H), 3.10 (dd, *J* = 9.9, 5.8 Hz, 1H), 3.44 (d, *J* = 6.8 Hz, 1H), 3.60 (d, *J* = 6.8 Hz, 1H), 4.73 (d, *J* = 10.1 Hz, 1H), 4.89–4.98 (m, 1H), 7.17 (d, *J* = 7.9 Hz, 2H), 7.23 (d, *J* = 7.4 Hz, 1H), 7.38 (s, 1H), 7.43 (d, *J* = 8.2 Hz, 3H), 7.45–7.51 (m, 2H), 7.58 (s,

1H), 7.60–7.69 (m, 2H), 7.79 (d, J = 4.9 Hz, 1H), 7.81 (d, J = 6.3 Hz, 1H), 7.99 (d, J = 7.8 Hz, 2H), 8.12 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ_{C} : 12.3, 21.0, 26.8, 29.8, 33.9, 48.3, 52.1, 67.8, 69.8, 76.4, 116.1, 120.6, 121.3, 123.5, 124.8, 125.3, 125.8, 127.7, 128.1, 128.9, 129.2, 129.9, 130.0, 130.4, 131.1, 131.7, 134.1, 134.9, 136.9, 138.7, 141.2, 144.5, 150.5, 161.6, 196.6, 205.0 ppm. Anal. Calcd. for C₄₀H₃₂N₄O₂S: C, 75.93; H, 5.10; N, 8.85. Found: C, 75.83; H, 5.03; N, 8.79. ESI-MS m/z calcd. [M + H]⁺ 632.78, found 633.18. FT IR (cm⁻¹): 3040, 2035, 1701, 1590.

19{*1*, *1*, *1*, *3*, *2*}: Obtained as brown solid; Yield 98%; m.p. 230–231°C¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$: 1.20–1.52 (m, 6H), 1.74 (d, *J* = 12.7 Hz, 1H), 1.86 (d, *J* = 13.1 Hz, 1H), 2.02–2.19 (m, 2H), 2.33 (s, 3H), 2.38–2.51 (m, 2H), 2.60 (s, 3H), 3.99 (t, *J* = 9.1 Hz, 1H), 4.58 (d, *J* = 10.0 Hz, 1H), 7.09–7.23 (m, 3H), 7.28–7.43 (m, 5H), 7.48 (d, *J* = 7.7 Hz, 2H), 7.57–7.64 (m, 1H), 7.86 (t, *J* = 7.5 Hz, 2H), 7.94 (d, *J* = 7.9 Hz, 2H), 8.54 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$: 12.4, 21.0, 24.0, 25.7, 28.8, 30.6, 31.2, 45.4, 55.0, 61.5, 63.0, 79.1, 116.3, 120.4, 120.6, 123.7, 123.9, 124.8, 125.7, 127.9, 128.2, 128.9, 129.0, 129.9, 131.0, 131.7, 131.8, 135.4, 136.3, 137.2, 138.8, 141.9, 144.7, 150.3, 162.3, 197.7, 206.6 ppm. Anal. Calcd. for C₄₂H₃₆N₄O₂: C, 80.23; H, 5.77; N, 8.91. Found: C, 80.11; H, 5.68; N, 8.82. ESI-MS m/z calcd [M + H]⁺ 628.78, found 629.22.

AUTHOR INFORMATION

Corresponding Author

*E-mail: raju.ranjithkumar@gmail.com. Phone: +919655591445

FUNDING

R.R.K., R.V.S and M.M. thank the University Grants Commission, New Delhi, for funds through Major Research Project F. No. 42-242/2013 (SR) and Department of Science and Technology, New Delhi, for funds under IRHPA program for the high resolution NMR facility and PURSE programme. The authors acknowledge the Deanship of Scientific Research at King Saud University for the Research Grant No. RGP-VPP-026.

ASSOCIATED CONTENT

Supporting Information

Experimental details and spectroscopic characterization of all the compounds. ¹H and ¹³C spectra for all products. This material is available free of charge via the Internet at <u>http://pubs.acs.org</u>.

REFERENCES

- Selvi, S. T.; Nadaraj, V.; Mohan, S.; Sasi, R.; Hema, M. Solvent free microwave synthesis and evaluation of antimicrobial activity of pyrimido[4,5-*b*]- and pyrazolo[3,4-*b*]quinolones. *Bioorg. Med. Chem.* 2006, *14*, 3896–3903.
- Quiroga, J.; Diaz Y.; Bueno J.; Insuasty B.; Abonia R.; Ortiz A.; Nogueras M.; Cobo J.
 Microwave induced three-component synthesis and antimycobacterial activity of benzopyrazolo[3,4-b]quinolindiones. *Eur. J. Med. Chem.* 2014, 74, 216–224.

[3] (a) Siminoff, P.; Bernard, A. M.; Hursky, V. S.; Price, K. E. A New, Low-Molecular-Weight Interferon Inducer. *Antimicrob. Agents Chemother.* 1973, *3*, 742–743.

(b) Crenshaw, R. R.; Luke, G. M.; Siminoff, P. Interferon Inducing Activities of Derivatives of 1,3-Dimethyl-4-(3-dimethy-1-aminopropylamino)-1*H*-pyrazolo[3,4-*b*]quinoline and Related Compounds. *J. Med. Chem.* 1976, *19*, 262–275.

(c) Siminoff, P.; Crenshaw, R. R. Stimulation of Interferon Production in Mice and in Mouse Spleen Leukocytes by Analogues of BL-20803. *Antimicrob. Agents Chemother*. 1977, *11*, 571–573.

 [4] (a) Quiroga, J.; Insuasty, B. Synthesis of 4-aryl-4,7,8,9-tetrahydro-6*H*-pyrazolo[3,4b]quinolin-5-ones. *J. Heterocycl. Chem.* 1998, 35, 575–578.

(b) Zheng, A.; Zhang, W.; Pan, J. One-Pot and Convenient Conversion of 5-Azido pyrazole-4-carboxaldehyde to pyrazolo[3,4-*b*]pyridines. *Synth. Commun.* **2006**, *36*, 1549–1556.

(c) Dzvinchuk. I. B.; Tolmachova. N. A.; Chernega. A. N.; Lozinskii. M. O. Recyclization of 1-alkyl-5-benzoyl- 3-ethoxycarbonyl-6-methylthio-1,2-dihydro- pyridin-2-ones into, 6-annelated derivatives of 3-alkylcarbamoyl-5-benzoylpyridin-2-one. *Chem. Heterocycl. Compd.* 2009, *45*, 194–200.

(d) Liqiang, Wu.; Yang, L.; Yan, F.; Yang, C.; Fang, L. Molecular Iodine: A Versatile Catalyst for the Synthesis of 4-Aryl-3-methyl-1-phenyl-1*H*-benzo[*h*]pyrazolo[3,4-*b*]quinoline-5,10-diones in Water. *Bull. Korean Chem. Soc.* **2010**, *31*, 1051–1054.

ACS Combinatorial Science

(e) Liqiang, Wu.; Suying, Ma.; Yan, F.; Yang, C. Sulfamic-acid-catalyzed simple and efficient synthesis of 4-aryl-3-methyl-1-phenyl-1*H*-benzo[*g*]pyrazolo[3,4-*b*]quinoline-5,10-diones under solvent-free conditions. *Monatsh. Chem.* **2010**, *141*, 565–568.

(f) Toche, R. B.; Bhavsar, R. B.; Kazi, M. A.; Bagul, S. M.; Jachak, M. N. Synthesis of pyrazolopyridine 3-carboxylates by Friedlander condensation. *J. Heterocycl. Chem.* **2010**, *47*, 287–291.

(g) Silva, D.; Chioua, M.; Samad, A.; Carreiras, M. C.; Jimeno, M. L.; Mendes, E.; Roios, C. de los.; Romero, A.; Villarroya, M.; Lopez, M. G.; Contelles, J. M. Synthesis and pharmacological assessment of diversely substituted pyrazolo[3,4-*b*]quinoline, and benzo[*b*]pyrazolo[4,3-*g*][1,8]naphthyridine derivatives. *Eur. J. Med. Chem.* **2011**, *46*, 4676–4681.

(h) Jiang, B.; Zhang, G.; Ning, Ma.; Shi, F.; Tu, S. J.; Kaur, P.; Li, G. A new rapid multicomponent domino reaction for the formation of functionalized benzo[*h*]pyrazolo[3,4-*b*]quinolones. *Org. Biomol. Chem.* **2011**, *9*, 3834–3838.

(i) Quiroga, J.; Portillo, S.; Perez, A.; Galvez, J.; Abonia, R.; Insuasty, B. An efficient synthesis of pyrazolo[3,4-*b*]pyridine-4-spiroindolinones by a three-component reaction of 5-aminopyrazoles, isatin, and cyclic β -diketones. *Tetrahedron Lett.* **2011**, *52*, 2664–2666.

(j) Shi, D.; Yang, F. An efficient synthesis of pyrazolo[3,4-b]quinolin-5(6H)-one derivatives in ionic liquid. *J. Heterocycl. Chem.* **2011**, *48*, 308–311.

(k) Karnakar, K.; Murthy, S. N.; Ramesh, K.; Satish, G.; Nanubolu, J. B.; Nageswar, Y.V. D. Polyethylene glycol (PEG-400): an efficient and recyclable reaction medium for

the synthesis of pyrazolo[3,4-*b*]quinoline derivatives. *Tetrahedron Lett.* **2012**, *53*, 2897–2903.

(l) Wang, H.; Shi, D. Three-component one-pot synthesis of pyrazolo[3,4-b]quinolin-5(6H)-one derivatives in aqueous media. *J. Heterocycl. Chem.* **2012**, *49*, 212–216.

(m) Hao, Y.; Xu, X.; Chen, T.; Zhao, L.; Ji, S. Multicomponent approaches to 8carboxylnaphthyl-functionalized pyrazolo[3,4-*b*]pyridine derivatives. *Org. Biomol. Chem.* **2012**, *10*, 724–728.

(n) Yin, Z.; Yang, L.; Wu, L. Synthesis of spiro[pyrazolo[3,4-*b*] pyridine-4,3-indoline] and spiro[benzo[*h*]pyrazolo[3,4-*b*]quinoline-4,3-indoline] derivatives using wet cyanuric chloride under solvent-free conditions. *J. Chem. Sci.* **2013**, *125*, 601–606.

(o) De, K.; Bhaumik, A.; Banerjee, B.; Mukhopadhyay, C. An expeditious and efficient synthesis of spiro-pyrazolo[3,4-*b*]pyridines catalysed by recyclable mesoporous aluminosilicate nanoparticles in aqueous-ethanol. *Tetrahedron Lett.* **2015**, *56*, 1614–1618.

[5] (a) Jachak, M. N.; Avhale, A. B.; Medhane, V. J.; Toche, R. B. A convenient route for the synthesis of pyrazolo[3,4-*d*]pyrimidine, pyrazolo[3,4-*b*][1,6]naphthyridine and pyrazolo[3,4-*b*]quinoline derivatives. *J. Heterocycl. Chem.* 2006, *43*, 1169–1175.

(b) Bhavsar, D. C.; Nikam, P. S.; Gangurde, S. A.; Toche, R. B. Synthesis of Polysubstituted Pyrazolo[3,4-*b*]pyridine-3-Carbohydrazide and Pyrazolo[3,4-*d*]pyridazine Derivatives. *J. Heterocycl. Chem.* **2014**, *51*, 635–641.

ACS Combinatorial Science

- [6] Wolin, R.; Wang, D.; Kelly, J.; Afonso, A.; James, L.; Kirschmeier, P.; McPhail, A. T.
 Synthesis and evaluation of pyrazolo[3,4-*b*]quinoline ribofuranosides and their derivatives as inhibitors of oncogenic *Ras. Bioorg. Med. Chem. Lett.* 1996, *6*, 195–200.
- [7] Jiang, B.; Zhang, G.; Ma, N.; Shi, F.; Tu, S-J.; Kaur, P.; Li, G. A new rapid multicomponent domino reaction for the formation of functionalized benzo[h]pyrazolo[3,4-b]quinolones. Org. Biomol. Chem. 2011, 9, 3834–3838.
- [8] Michael Rajesh, S.; Devi Bala, B.; Perumal, S.; Menendez, J. C. L-Proline-catalysed sequential four-component "on water" protocol for the synthesis of structurally complex heterocyclic *ortho*-quinones. *Green Chem.* 2011, 13, 3248–3254.
- [9] (a) Sagari, T. P. I.; Spehr, T.; Siebert, A.; Lieker, T. F.; Salbeck, J. Spiro Compounds for Organic Optoelectronics. *Chem. Rev.* 2007, 107, 1011–1065.
 - (b) Lashgari, N.; Ziarani, M. Synthesis of heterocyclic compounds based on isatin through 1, 3-dipolar cycloaddition reactions. *ARKIVOC*. **2012**, 1, 277–300.

(c) D'yakanov, V. A.; Trapeznikova, O. A.; Meijere, A. de.; Dzhemilev, U. M. Metal Complex Catalysis in the Synthesis of Spirocarbocycles. *Chem. Rev.* **2014**, *114*, 5775–5814.

- (d) Borad, M. A.; Bhoi, M. N.; Prajapati, N. P.; Patel, H. D. Review of synthesis of spiro heterocyclic compounds from isatin. *Synth. Commun.* **2014**, *44*, 897–922.
- [10] (a) Trieselmann, T.; Wagner, H.; Fuchs, K.; Hamprecht, D.; Berta, D.; Cremonesi, P.;
 Streicher, R.; Luippold, G.; Volz, A.; Markert, M.; Nar, H. Potent Cholesteryl Ester

Transfer Protein Inhibitors of Reduced Lipophilicity: 1,1'-Spiro-Substituted Hexahydrofuroquinoline Derivatives. J. Med. Chem. 2014, 57, 8766–8776.

(b) Dineen, T. A.; Chen, K.; Cheng, A. C.; Derakhchan, K.; Epstein, O.; Esmay, J.; Hickman, D.; Kreiman, C. E.; Marx, I. E.; Wahl, R. C.; Wen, P. H.; Weiss, M. M.;. Whittington, D. A.; Wood, S.; Fremeau, Jr. R. T.; White, R. D.; Patel, V. F. Inhibitors of β -Site Amyloid Precursor Protein Cleaving Enzyme (BACE1): Identification of (*S*)-7-(2-Fluoropyridin-3-yl)-3-((3-methyloxetan-3-yl)ethynyl)-5'*H*-spiro[chromeno [2,3*b*]pyridine-5,4'-oxazol]-2'-amine (AMG-8718). *J. Med. Chem.* **2014**, *57*, 9811–9831.

(c) Kia, Y.; Osman, H.; Suresh Kumar, R.; Basiri, A.; Murugaiyah, V. Synthesis and discovery of highly functionalized mono- and bis-spiro-pyrrolidines as potent cholinesterase enzyme inhibitors. *Bioorg. Med. Chem. Lett.* **2014**, *24*, 1815–1819.

(d) Basarab, G. S.; Doig, P.; Galullo, V.; Kern, G.; Kimzey, A.; Kutschke, A.; Newman,
J. P.; Morningstar, M.; Mueller, J.; Otterson, L.; Vishwanathan, K.; Zhou, F.;
Gowravaram, M. Discovery of Novel DNA Gyrase Inhibiting Spiropyrimidinetriones:
Benzisoxazole Fusion with *N*-Linked Oxazolidinone Substituents Leading to a Clinical
Candidate (ETX0914). *J. Med. Chem.* 2015, *58*, 6264–6282.

(e) Mansoor, U. F.; Angeles, A. R.; Dai, C.; Yang, L.; Vitharana, D.; Basso, A. D.; Gray, K.; Tang, H.; Liu, M.; Liang, L.; Allbritton, O.; Siddiqui, M. A. Discovery of novel spiro 1,3,4-thiadiazolines as potent, orally bioavailable and brain penetrant KSP inhibitors. *Bioorg. Med. Chem.* 2015, *23*, 2424–2434.

ACS Combinatorial Science

1
2
3
4
- 5
0
6
7
8
9
10
11
12
12
14
14
15
16
17
18
19
20
21
∠ I 22
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
45
16
40
41
48
49
50
51
52
53
54
55
55
20
5/
58
59
60

[11] (a) Shakuja, R.; Panda, S. S.; Khanna, L.; Khurana, S.; Jain, S. C. Design and synthesis of spiro[indole-thiazolidine]spiro[indole-pyrans] as antimicrobial agents. *Bioorg. Med. Chem. Lett.* 2011, 21, 5465–5469.

(b) Becknell, N. C.; Dandu, R. R.; Lyons, J. A.; Aimone, L. D.; Raddatz, R.; Hudkins, R.
L. Synthesis and evaluation of 4-alkoxy-[1'-cyclobutyl-spiro(3,4-dihydrobenzopyran-2,4'-piperidine)] analogues as histamine-3 receptor antagonists. *Bioorg. Med. Chem. Lett.*2012, 22, 186–189.

(c) Parthasarathy, K.; Praveen, C.; Balachandran, C.; Senthil kumar, P.; Ignacimuthu, S.; Perumal, P. T. Cu(OTf)₂ catalyzed three component reaction: Efficient synthesis of spiro[indoline-3,4'-pyrano[3,2-*b*]pyran derivatives and their anticancer potency towards A549 human lung cancer cell lines. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 2708–2713.

[12] (a) Padwa, A. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. 2002, John Wiley & Sons.

(b) Hashimoto, T.; Maruoka, K. Recent Advances of Catalytic Asymmetric 1,3-Dipolar Cycloadditions. *Chem. Rev.* **2015**, *115*, 5366–5412.

(c) Rodriguez, J.; Bonne, D. Seteroselective Multiple Bond-Forming Transformations in Organic Synthesis. *Wiley*, **2015**.

[13] (a) Jossang, A.; Jossang, P.; Hadi, H. A.; Sevenet, T.; Bodo, B. Horsfiline, an oxindole alkaloid from Horsfieldia superba. *J. Org. Chem.* **1991**, *56*, 6527–6530.

(b) Cravotto, G.; Giovenzana, G. B.; Pilati, T.; Sisti, M.; Palmisano, G. Azomethine Ylide Cycloaddition/Reductive Heterocyclization Approach to Oxindole Alkaloids: Asymmetric Synthesis of (–)-Horsfiline. *J. Org. Chem.* **2001**, *66*, 8447–8453.

[14] (a) James, M. N. G.; Williams, G. J. B. The Molecular and Crystal Structure of an Oxindole Alkaloid (6-Hydroxy-2'-(2-methylpropyl)-3,3'-spirotetrahydropyrrolidino-oxindole). *Can. J. Chem.* 1972, *50*, 2407–2412.

(b) Miyake, F. Y.; Yakushijin, K.; Horne, D. A. Preparation and Synthetic Applications of 2-Halotryptamines: Synthesis of Elacomine and Isoelacomine. *Org. Lett.* 2004, *6*, 711–713.

[15] (a) Kang, T. H.; Murakami, Y.; Matsumoto, K.; Takayama, H.; Kitajima, M.; Aimi, N.;
 Watanabe, H. Rhynchophylline and isorhynchophylline inhibit NMDA receptors expressed in *Xenopus* oocytes. *Eur. J. Pharmacol.* 2002, 455, 27–34.

(b) Kang, T. H.; Murakami, Y.; Takayama, H.; Kitajima, M.; Aimi, N.; Watanabe, H.; Matsumoto, K. Protective effect of rhynchophylline and isorhynchophylline on in vitro ischemia-induced neuronal damage in the hippocampus: putative neurotransmitter receptors involved in their action. *Life Sci.* **2004**, *76*, 331–343.

[16] (a) Cui, C. B.; Kakeya, H.; Okada, G.; Onose, R.; Osada, H. Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus. I. Taxonomy, fermentation, isolation and biological properties. *J. Antibiot.* **1996**, *40*, 527–533.

ACS Combinatorial Science

(b) Cui, C. B.; Kakeya, H.; Osada, H. Novel mammalian cell cycle inhibitors, cyclotroprostatins A–D, produced by *Aspergillus fumigatus*, which inhibit mammalian cell cycle at G2/M phase. *Tetrahedron* **1997**, *53*, 59–72.

(c) Usui, T.; Kondoh, M.; Cui, C. B.; Mayumi, T.; Osada, H. Tryprostatin A, a specific and novel inhibitor of microtubule assembly. *Biochem. J.* **1998**, *333*, 543–548.

(d) Edmondson, S.; Danishefsky, S. J.; Sepp-Lorenzino, L.; Rosen, N. Total Synthesis of Spirotryprostatin A, Leading to the Discovery of Some Biologically Promising Analogues. *J. Am. Chem. Soc.* **1999**, *121*, 2147–2155.

- [17] Claramunt, R. M.; Lopez, C.; Medina, C. P.; Pinilla, E.; Torres, M. R.; Elguero, J. Synthesis and structural study of tetrahydroindazolones, *Tetrahedron*. 2006, *62*, 11704–11713.
- [18] Crystallographic data (excluding structure factors) for compounds 7{1,1}, 7{2,5} and 12{1,1,7,1,1} have been deposited with the Cambridge Crystallographic Data Center as supplementary publication numbers CCDC 1445689, 1445690 and 1445688, respectively. Copy of these data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (0) 1223 762911 or e-mail: <u>deposit@ccdc.cam.ac.uk</u>].
- [19] Sheldrick, G. M. Crystal Structure refinement with SHELXL. *Acta Cryst.* 2015, *C71*, 3–8.

For Table of Contents Use Only

Multicomponent Dipolar Cycloaddition Strategy: Combinatorial Synthesis of Novel Spiro Tethered Pyrazolo[3,4-b]quinoline Hybrid Heterocycles

Remani Vasudevan Sumesh,[†] Muthumani Muthu,[†] Abdulrahman I. Almansour,[§] Raju Suresh Kumar,[§] Natarajan Arumugam,[§] S. Athimoolam,[‡] E. Arockia Jeya Yasmi Prabha[‡] and Raju Ranjith Kumar^{*,†}

[†]Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India

[§]Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

[‡]Department of Physics, University College of Engineering, Anna University Constituent College, Nagercoil 629 004, Tamil Nadu, India

