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ABSTRACT: 

  The stereoselective syntheses of a library of novel spiro tethered pyrazolo[3,4-

b]quinoline–pyrrolidine/pyrrolothiazole/indolizine–oxindole/acenaphthene hybrid heterocycles 

have been achieved through the 1,3-dipolar cycloaddition of azomethine ylides generated in situ 

from α-amino acids and 1,2-diketones to dipolarophiles derived from pyrazolo[3,4-b]quinoline 

derivatives. 

 

 

Keywords: 1,3-Dipolar cycloaddition, Azomethine ylide, α-Amino acid, Isatin, Pyrazolo[3,4-

b]quinoline, Spiro-oxindole, Spiro-pyrrolidine   
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INTRODUCTION 

Pyrazolo[3,4-b]quinoline ring systems are privileged class of nitrogen containing 

heterocycles endowed with profound biological activities. For instance pyrazolo[3,4-b]quinoline 

derivatives have been investigated for their antimicrobial,1 antimycobacterial2 and antiviral3 

activities. Among the several methods available for the synthesis of pyrazolo[3,4-b]quinolines, 

the three-component reactions of 1,3-diketones, 5-aminopyrazoles and aromatic aldehydes or 

isatins have received much attention.4 Moreover, in spite of their significances pyrazolo[3,4-

b]quinoline derivatives have been less explored as precursors for further transformations. To the 

best of our knowledge these compounds have been used in the Vilsmeier-Haack formylation 

reaction and for the synthesis of bispyrazolo[3,4-b:4,3-f]quinolines5 and pyrazolo[3,4-

b]quinoline ribofuranosides.6 Further, the analogous derivatives have been used to synthesize 

quinoxaline-fused benzo[h]isoxazolo[5,4-b]quinolines7 and benzo[a]pyrazolo[4′,3′:5,6]pyrido-

[2,3-c]phenazine.8 In this context, we envisaged to investigate the feasibility of pyrazolo[3,4-b]-

quinoline derivatives as dipolarophiles in the 1,3-dipolar cycloadditions of azomethine ylides 

with a view to construct spiro tethered pyrazolo[3,4-b]quinoline–pyrrolidine/pyrrolothiazole/ 

indolizine–oxindole/acenaphthene hybrids. 

The syntheses of spiro compounds have received much attention in view of their wide 

range of applications.9 For example spiro compounds have been shown to inhibit cholesteryl 

ester transfer protein, aspartyl proteases BACE1, acetylcholinesterase, bacterial type-II 

topoisomerase and kinesin spindle protein.10 These compounds have also been investigated for 

their anticancer and antimicrobial activities apart from being identified as histamine-3 receptor 

and TRPM8 antagonists.11 Among the various protocols reported for the synthesis of spiro 

compounds, the 1,3-dipolar cycloadditions involving dipolarophiles with exoyclic olefins have 
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occupied an eminent position.12 This strategy allows the stereoselective construction of complex 

spiro heterocyclic hybrids in a single transformation with ease.12 In particular the cycloaddition 

of azomethine ylides generated in situ from the decarboxylative condensation of α-amino acids 

and isatins, acenaphthenequinone or ninhydrin with dipolarophiles with exocyclic olefins have 

received substantial amount of attention as they lead to the synthesis of spiro 

oxindole/acenaphthene/indanone and pyrrolidine/pyrrolizine/pyrrolothiazole/indolizine hybrid 

heterocycles. It is noteworthy that spiro oxindole-pyrrolidine or pyrrolizine hybrids form the core 

of several bioactive natural products such as horsfiline13 and elacomine,14 whereas 

rhynchophylline15 comprises spiro oxindole-indolizine unit and spirotryprostatins comprise spiro 

oxindole-pyrrolopyrazine motif.16 

RESULTS AND DISCUSSION 

Initially, the precursors 2-((dimethylamino)methylene)cyclohexane-1,3-dione 3{1} and 

2-((dimethylamino)methylene)-5,5-dimethylcyclohexane-1,3-dione 3{2} were synthesized from 

the reaction of 1,3-cyclohexanedione 1{1} or dimedone 1{2} with DMF-DMA 2, respectively 

following literature procedure (Scheme 1).17  

 

Seheme 1. Synthesis of precursors 3 

Subsequently, the pyrazolo[3,4-b]quinolin-5-ones 7 were synthesized via a one-pot three-

component sequential procedure in water (Scheme 2). First of all, 3-aminocrotononitrile 4 and 
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the appropriate arylhydrazines 5{1–6} were refluxed in water for 1 h in the presence of L-proline 

(40 mol%) to obtain 3-methyl-1-aryl-1H-5-pyrazolamines 6{1–6}. Then without isolating 6, the 

previously synthesized 3{1} or 3{2} was added and the reflux continued for another 1 h, which 

resulted in quantitative yields of 7{1–6} or 7{2–5}, respectively. The formation of 7 presumably 

occurred via a similar pathway as depicted by Perumal et al.8 It is to be noted that Zheng et al. 

reported the synthesis of 7{2,1} in 15% yield from a two-step reaction.4b Later, Dzvinchuk et 

al.4c synthesized 7{1,1} in 87% yield from the reaction of 1,3-cyclohexanedione 1, 3-methyl-1-

phenyl-1H-5-pyrazolamine 6 and 4-(dimethylamino)-benzaldehyde in boiling acetic acid for 2 h. 

In this reaction N,N-dimenthylaniline was obtained as a by-product. Moreover, the protocol 

employed by us for the synthesis of 7 is more advantageous than the literature reports in terms of 

several green chemical aspects. The structure of all the pyrazolo[3,4-b]quinolin-5-ones 7 was 

elucidated using NMR spectroscopy. In addition, in two cases, 7{1,1} and 7{2,5}, the structure 

was also confirmed from their single crystal X-ray studies (Figure 1).18 

In the next step we chose 3-methyl-1-phenyl-1,6,7,8-tetrahydro-5H-pyrazolo[3,4-b]-

quinolin-5-one 7{1,1} and 3,7,7-trimethyl-1-phenyl-1,6,7,8-tetrahydro-5H-pyrazolo[3,4-b]-

quinolin-5-one 7{2,1} to investigate the base-promoted Knoevenagel condensation with 

aromatic aldehydes 8{1–7} in order to induct an exocyclic alkene at position C-6 of the 

pyrazolo[3,4-b]quinolin-5-ones 7. In the case of 7{1,1}, the reaction occurred at ambient 

temperature in the presence of KOH in ethanol affording novel (E)-3-methyl-6-(arylidene)-1-

phenyl-1,6,7,8-tetrahydro-5H-pyrazolo[3,4-b]quinolin-5-ones 9 in quantitative yields (Scheme 

3). However, under these and several other conditions the reaction of 7{2,1} with aromatic 

aldehydes 8{1–7} failed to occur, presumably due to the steric hindrance exerted by the methyl 
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groups at C-7. Further, in both the cases of 7{1,1} and 7{2,1}, the reaction failed to occur with 

aliphatic aldehydes. 

NH2

CN

NH

NH2

O

N
N

N

7

L-Proline

H2O 

reflux, 1 h

4

5

R2

R2

N

N

R2

H2N
reflux, 1 h
quantitative

6

1

2

33a
4

4a
5

6

7

8
8a

9
9aR1

R1
3{1} or 3{2}

 

Entry Comp R
1
 R

2
 Yield (%) Mp (

o
C) 

1 7{1,1} H H 98 (87)4b 123–124 
2 7{1,2} H Cl 97 149–150 
3 7{1,3} H Br 98 153–154 
4 7{1,4} H F 96 165–166 
5 7{1,5} H CN 98 175–176 
6 7{1,6} H Me 97 128–129 
7 7{2,1} Me H 98 (15)4c 165–166 
8 7{2,2} Me Cl 98  148–149 
9 7{2,3} Me Br 97  140–141 

10 7{2,4} Me F 96  164–165 
11 7{2,5} Me CN 96  208–209 

  

Scheme 2. Synthesis of pyrazolo[3,4-b]quinolin-5-ones 7 

 

  
7{1,1} 7{2,5} 

 

Figure 1. ORTEP diagrams of 7{1,1} and 7{2,5}  
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Entry Comp R
1
 R

2
 Yield (%) mp (

o
C) 

1 9{1,1,1} H 4-Me 98 182–183 
2 9{1,1,2} H 4-MeO 97 158–159 
3 9{1,1,3} H 4-Cl 98 179–180 
4 9{1,1,4} H 4-F 96 159–160 
5 9{1,1,5} H 2-Cl 98 180–181 
6 9{1,1,6} H 3-Br 96 207–208 
7 9{1,1,7} H 2,4-Cl2 96 192–193 
8 9{1,2,3} Cl 4-Cl 98 183–184 
9 9{1,4,3} F 4-Cl 97 178–179 
10 9{1,5,3} CN 4-Cl 98 199–200 
11 9{1,6,3} Me 4-Cl 98 198–199 

 

Scheme 3. Synthesis of 6-arylidene-pyrazolo[3,4-b]quinolin-5-ones 9 

The structure of these 6-arylidene-pyrazolo[3,4-b]quinolin-5-ones 9 was elucidated with 

the help of FT-IR, ESI-mass and NMR spectroscopic techniques. In general, the NMR spectra of 

9 was found to be similar to that of 7{1,1} apart from the presence of arylidene -CH and 

aromatic ring protons and the absence of one -CH2 signal in the aliphatic region. The mass 

spectrum of 9{1,1,1} had a characteristic molecular ion peak at 380.18 [M+H]+. The IR spectrum 

of 9{1,1,1} showed strong absorption at 1686 cm-1 due to the carbonyl group. In the 1H NMR of 

9{1,1,1}, the methyl protons at C-3 and phenyl ring appeared as singlets at 2.70 and 2.41 ppm, 

respectively. The singlet at 3.26 ppm accounting for 4 protons was assigned to the 7- and 8-CH2 

protons. The arylidene CH and 4-CH protons appeared as singlets at 7.95 and 8.85 ppm, 

respectively while the remaining protons of the aromatic rings appeared as multiplets in the 

range 7.25–8.31 ppm.  
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Having synthesized the 6-arylidene-pyrazolo[3,4-b]quinolin-5-ones 9, we then 

concentrated on the solvent optimization for the 1,3-dipolar cycloaddition of azomethine ylide 

generated in situ from the decarboxylative condensation of α-amino acids and non-enolizable 

1,2-diketones to the above diplarophiles. For this we selected the reaction of 9{1,1,1}, sarcosine 

10{1} and isatin 11{1} that presumably affords 1',3-dimethyl-1-phenyl-4'-(p-tolyl)-7,8-dihydro-

dispiro[indoline-3'',2'-pyrrolidine-3',6-pyrazolo[3,4-b]quinoline]-2'',5(1H)-dione 12{1,1,1,1,1}, 

as a model reaction, under reflux in various solvents (Table 1). From the data in Table 1 we 

observed that either methanol or ethanol was the optimal solvent for this cycloaddition reaction, 

wherein quantitative yield of 12{1,1,1,1,1} was obtained (>90%). After completion of the 

reaction as evident from the TLC, the reaction mixture was poured into ice cold water and the 

resultant precipitate was filtered and dried to obtain the product 12{1,1,1,1,1}. It is noteworthy 

that the crude reaction product was clean enough to be purified just by crystallization, thereby 

obviating the need for column chromatography, which is the main source of waste.  

 

Table 1. Solvent optimization for the cycloaddition 

 

Entry Solvent Time (h) Yield (%)
a
 

1 MeOH 4 >90 
2 EtOH 3 >90 
3 i-PrOH 6 40b 
4 1,4-Dioxane 6 55b 
5 MeCN 8 40b 

 aIsolated yield; bYield after column chromatography  
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The structure of the isolated product was elucidated with the help of FT-IR, ESI-mass 

and NMR spectroscopic studies. The mass spectrum of 12{1,1,1,1,1} had a characteristic 

molecular ion peak at 554.22 [M+H]+. The IR spectrum of 12{1,1,1,1,1} showed strong 

absorptions at 1686 and 1670 cm-1 due to the C-5 and C2'' carbonyl groups, respectively. The 1H 

and 13C NMR chemical shifts of 12{1,1,1,1,1} are shown in Figure 2. The discussion on the 

complete assignment of 1H and 13C NMR chemical shifts of 12{1,1,1,1,1} are given in the 

supporting information. 

N N

N

O CH3

N

H3C

NH

O

2.65, s,12.5

8.74, s, 131.8

7.38-7.43, m, 130.2

8.05, d, J = 8.7Hz, 121.1

7.20, t, J = 7.4Hz, 126.1

2.82-3.03, m, 29.6

145.0

138.6

162.6

123.3

1.43, td, J = 5.1, 14.1Hz
2.50, br dt, J = 15.0Hz, 29.4

7.13, d, J = 7.8Hz, 128.9

136.5

7.38-7.43, m, 130.2

135.5

4.99, t, J = 9.1Hz, 47.7

3.52, t, J = 8.5Hz,
4.01, t, J = 9.7Hz, 57.7

2.11, s, 34.6

116.6

150.3

197.7

61.0

177.4141.1

8.32, s
6.45, d, J = 7.5Hz, 109.5

6.87, t, J = 7.7Hz, 129.3

6.62, t, J = 7.6Hz, 122.3

6.96, d, J = 7.8Hz, 127.2

125.9

76.2

2.37, s, 21.0

H

H

H

H3C

H

H

H

H

H

H

H
H

 

Figure 2. 1H and 13C chemical shifts of 12{1,1,1,1,1} 

 

The formation of 12{1,1,1,1,1} can be rationalized through the pathway depicted in 

Scheme 4. Initially, the condensation of sarcosine 10{1} and isatin 11{1} forms the azomethine 

ylide dipole 13 via spontaneous decarboxylation. Subsequently, the 1,3-dipole 13 undergoes 

cycloaddition with the exocyclic dipolarohile 9{1,1,1}, which may be visualized in two different 
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pathways viz. path A and B. However, the exclusive formation of dispiro-oxindole-pyrrolidine-

pyrazoloquinoline 12{1,1,1,1,1} discloses that this cycloaddition occurs through Path A, wherein 

the carbonyls of the dipole and the dipolarophile are trans to each other. Path B, which leads to 

the formation of 14{1,1,1,1,1}, is presumably less favored in view of the electrostatic repulsion 

between the cis carbonyls. 

 

Scheme 4. Formation of 12{1,1,1,1,1} 

 

Furthermore, it is evident that the cycloaddition proceeded regioselectively involving the 

addition of electron rich carbon of the dipole 13 to the β-carbon of the α,β-unsaturated 

dipolarophile 9{1,1,1} (Scheme 4). This is also evident form 1H NMR spectrum of 

12{1,1,1,1,1}, wherein three triplets appeared in the range between 3.52–4.99 ppm due to 4′-CH 

and 5′-CH2 protons. If the other regioisomer 12′{1,1,1,1,1} was formed (Figure 3), a singlet and 
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two doublets would have been expected for these protons. Moreover, this regiochemistry is in 

accord with the polarization of the C=C bond with a more electron-deficient β-carbon in 

9{1,1,1}, which could preferentially react with the electron-rich site of the approaching 1,3-

dipole 13. In addition, the cycloaddition occurred diastereoselectively to afford a single 

diastereoisomer exclusively in quantitative yields, albeit more than one contiguous stereocentres 

are present in the cycloadduct 12{1,1,1,1,1}.  

 

Figure 3. The regioisomer of 12{1,1,1,1,1} not formed in the reaction 

  

With the optimized reaction condition established and the structure arrived at for 

12{1,1,1,1,1}, we then explored the viability of this protocol for library generation. It is pertinent 

to note that forty-two novel spiro tethered pyrazolo[3,4-b]quinoline– 

pyrrolidine/pyrrolothiazole/indolizine–oxindole/acenaphthene hybrids 12 and 15–19 were 

synthesized employing eleven 6-arylidene-pyrazolo[3,4-b]quinolin-5-ones 9, three α-amino 

acids 10 and two 1,2-diketones 11 (Figure 4, Scheme 5 and Table 2). From the data in Table 2 it 

is apparent that the cycloaddition works well with all the substrates affording quantitative yields 

of the products. The structure of all the dispiro hybrid heterocycles 12 and 15–19 was elucidated 

unambiguously as done for 12{1,1,1,1,1}. In the case of 12{1,1,7,1,1} the structure was further 

confirmed from single crystal X-ray analysis (Figure 5).18 The ORTEP diagram of 12{1,1,7,1,1} 
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discloses that C-5 and C2′′ carbonyls are trans, providing conclusive evidence to the proposed 

reaction pathway (Scheme 4). In addition, the C–N bond lengths of pyrazolo[3,4-b]quinoline 

ring varied from 1.312 (7) to 1.381 (8) Å. These distances were observed to be shorter than the 

relevant single bond length (1.443 Å) and longer than the double bond length (1.269 Å). The 

variation in bond length may be due to the electron delocalization around the ring. The 

pyrrolidine and the oxindole rings were oriented nearly perpendicular to each other at an angle of 

87.01 (1)°. Further the pyrrolidine ring was making an angle of 75.22 (1)° with the 

dichlorophenyl plane.  

CONCLUSIONS  

We have developed an environmentally benign three-component sequential protocol for 

the synthesis of pyrazolo[3,4-b]quinolin-5-ones 7 in water. The base-promoted Knoevenagel 

reaction of 7 with aromatic aldehydes afforded novel 6-arylidene-pyrazolo[3,4-b]quinolin-5-ones 

9. Subsequently, the 1,3-dipolar cycloaddition of azomethine ylides generated in situ from the 

decarboxylative condensation of sarcosine, thiazolidine-4-carboxylic acid or piperidine-2-

carboxylic acid and isatin or acenaphthenequinone to these exocyclic alkenenic dipolarophiles 9 

led to the stereoselective formation of novel structurally intriguing spiro tethered pyrazolo[3,4-

b]quinoline–pyrrolidine/pyrrolothiazole/indolizine–oxindole/acenaphthene hybrids 12 and 15–

19, in quantitative yields. As the products were obtained in pure form just by filtration, additional 

purification steps such as column chromatography, which is the main source of waste generation, 

was avoided. The quantitative yield of the product in combination with the high atom economy 

observed (>90%) makes this protocol efficient and green. Ultimately, we have demonstrated that 

pyrazolo[3,4-b]quinoline derivatives are potential precursors for further transformations into 

complex heterocycles via 1,3-dipolar cycloaddition. 
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Figure 4. Diversity of reagents 
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Scheme 5. Synthesis of dispiro hybrid heterocycles 

  

Page 13 of 30

ACS Paragon Plus Environment

ACS Combinatorial Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14 

 

Table 2. Yield and melting point of 12, 15–19 

Entry Comp R
1
 R

2
 Yield (%) mp (

o
C) 

1 12{1,1,1,1,1} H 4-Me 98 249–250 
2 12{1,1,2,1,1} H 4-MeO 96 230–231 
3 12{1,1,3,1,1} H 4-Cl 98 238–239 
4 12{1,1,4,1,1} H 4-F 97 258–259 
5 12{1,1,5,1,1} H 2-Cl 95 209–210 
6 12{1,1,6,1,1} H 3-Br 96 258–259 
7 12{1,1,7,1,1} H 2,4-Cl2 98 242–243 
8 12{1,2,3,1,1} Cl 4-Cl 94 250–251 
9 12{1,5,3,1,1} CN 4-Cl 92 250–251 
10 12{1,6,3,1,1} Me 4-Cl 93 228–229 
11 15{1,1,1,2,1} H 4-Me 96 242–243 
12 15{1,1,2,2,1} H 4-MeO 97 232–233 
13 15{1,1,3,2,1} H 4-Cl 98 210–211 
14 15{1,1,4,2,1} H 4-F 96 233–234 
15 15{1,1,5,2,1} H 2-Cl 94 215–216 
16 15{1,1,6,2,1} H 3-Br 96 185–186 
17 15{1,1,7,2,1} H 2,4-Cl2 95 238–239 
18 16{1,1,3,3,1} H 4-Cl 97 243–244 
19 16{1,1,5,3,1} H 2-Cl 95 236–237 
20 16{1,1,6,3,1} H 3-Br 93 254–256 
21 16{1,1,7,3,1} H 2,4-Cl2 96 258–259 
22 17{1,1,1,1,2} H 4-Me 97 208–209 
23 17{1,1,2,1,2} H 4-MeO 95 105–106 
24 17{1,1,3,1,2} H 4-Cl 96 210–211 
25 17{1,1,4,1,2} H 4-F 93 190–191 
26 17{1,1,5,1,2} H 2-Cl 94 130–131 
27 17{1,1,6,1,2} H 3-Br 96 192–193 
28 17{1,1,7,1,2} H 2,4-Cl2 93 158–159 
29 18{1,1,1,2,2} H 4-Me 98 168–169 
30 18{1,1,2,2,2} H 4-MeO 98 137–138 
31 18{1,1,3,2,2} H 4-Cl 97 138–139 
32 18{1,1,4,2,2} H 4-F 94 148–149 
33 18{1,1,5,2,2} H 2-Cl 96 160–161 
34 18{1,1,6,2,2} H 3-Br 93 162–163 
35 18{1,1,7,2,2} H 2,4-Cl2 92 203–204 
36 19{1,1,1,3,2} H 4-Me 98 230–231 
37 19{1,1,2,3,2} H 4-MeO 97 205–206 
38 19{1,1,3,3,2} H 4-Cl 98 220–221 
39 19{1,1,4,3,2} H 4-F 95 226–227 
40 19{1,1,5,3,2} H 2-Cl 94 215–216 
41 19{1,1,6,3,2} H 3-Br 96 210–211 
42 19{1,1,7,3,2} H 2,4-Cl2 93 225–226 
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Figure 5. ORTEP diagram of 12{1,1,7,1,1}  

 

EXPERIMENTAL SECTION 

General 

The melting points were measured in open capillary tubes and are uncorrected. 

Electronspray ionization mass spectrometry (ESI-MS) analyses were recorded in LCQ Fleet, 

Thermo Fisher Instrument in negative or positive ion mode. The collision voltage and ionization 

voltage were +35 V and +5 kV, respectively, using nitrogen as atomization and desolvation gas. 

The desolvation temperature was set at 300o C. The scan range of mass spectrum was 300-2000 

m/z. The relative amount of each component was determined from the LC-MS chromatogram, 

using the area normalization method. Infrared spectra were recorded on a Thermo Scientific FT-

IR instrument by ATR method. The 1H, 13C and the 2D NMR spectra were recorded on a Bruker 

(Avance) 300 MHz NMR instrument (1H: 300 MHz, 13C: 75 MHz) using TMS as internal 

standard and CDCl3 as solvent. Standard Bruker software was used throughout the spectral 
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analysis. Chemical shifts are given in parts per million (δ-scale) and the coupling constants are 

given in Hertz. Elemental analyses were performed on Perkin Elmer 2400 Series II CHNS 

analyzer. The single crystal X-ray data set for compounds 7{1,1}, 7{2,5} and 12{1,1,7,1,1} was 

collected on Bruker AXS KAPPA APEX-2 diffractometer equipped with graphite 

monochromator. The structure was solved by direct methods and refined by full-matrix least-

squares calculations using SHELXL–2014.19 Silica gel-G plates (Merck) were used for TLC 

analysis with a mixture of n-hexane and ethyl acetate as eluent. All the chemicals were 

purchased from commercial sources and used without any further purification.  

General procedure for the synthesis of 7 

A mixture of 3-aminocrotononitrile 4 (1 mmol), arylhydrazine 5 (1 mmol) and L-proline 

(0.4 mmol) was taken in water (10 mL) and heated to reflux. After 1 h of continuous reflux, 

methylene-cyclohexane-1,3-dione 3 (1 mmol) was added and the reflux continued for another 1 

h. Upon addition of 3 the mixture turns homogeneous. The completion of the reaction was 

evident from the formation of precipitate, which was filtered, washed with water and dried under 

vacuum to obtain pure 7. 

Compound 7{1,2}. Obtained as Pale yellow solid; Yield 97%; m.p. 149–150°C; 1H NMR (300 

MHz, CDCl3) δH: 2.25 (qui, J = 5.0 Hz, 2H), 2.65 (s, 3H), 2.77 (t, J = 6.5 Hz, 2H), 3.28 (t, J = 

6.1 Hz, 2H), 7.47 (dd, J = 6.9, 2.1 Hz, 2H), 8.30 (d, J = 9.0 Hz, 2H), 8.74 (s, 1H) ppm. 13C NMR 

(75 MHz, CDCl3) δC: 12.4, 21.8, 33.6, 36.7, 116.7, 121.4, 123.0, 128.9, 130.3, 130.8, 137.7, 

145.2, 150.9, 163.8, 197.2 ppm. 
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General procedure for the synthesis of 9 

To an equimolar mixture of 7 (1 mmol) and aromatic aldehyde (8, 1 mmol) in ethanol (5 

mL) was added 10 mL of ethanolic solution of KOH (5%). The mixture was stirred at ambient 

temperature for about 1 h. The completion of the reaction was noted when the product 9 

precipitated out of the reaction mixture, which was filtered, washed with water and dried. 

Compound 9{1,1,1}. Obtained as pale yellow solid; Yield 98%; m.p. 182–183°C; 1H NMR (300 

MHz, CDCl3) δH: 2.41 (s, 3H), 2.70 (s, 3H), 3.26 (s, 4H), 7.26 (d, J = 8.1 Hz, 3H), 7.32 (dt, J = 

8.4, 1.2 Hz, 1H), 7.40 (d, J = 8.1 Hz, 2H), 7.53 (tt, J = 8.4, 1.2 Hz, 2H), 7.95 (s, 1H), 8.30 (dt, J 

= 7.5, 1.2 Hz, 2H), 8.85 (s, 1H) ppm. 13C NMR (75 MHz, CDCl3) δC: 12.5, 21.4, 26.2, 32.7, 

116.9, 120.8, 123.7, 125.8, 129.0, 129.2, 130.1, 131.2, 132.6, 133.6, 137.6, 139.0, 139.1, 145.0, 

150.9, 162.5, 187.0 ppm. Anal. Calcd. for C25H21N3O: C, 79.13; H, 5.58; N, 11.07. Found: C, 

79.22; H, 5.48; N, 11.19. ESI-MS m/z calcd [M + H]+ 379.17, found 380.18. FT IR (cm–1): 1686, 

3022. 

General procedure for the synthesis of dispiro hybrid heterocycles 12 and 15–19. 

A mixture of 9 (1 mmol), sarcosine/thiazolidine-4-carboxylic acid/piperidine-2-

carboxylic acid (10, 1.1 mmol) and isatin/acenaphthenequinone (11, 1.1 mmol) was taken in 10 

mL of ethanol in a 50 mL round bottom flask and heated to reflux on a boiling water bath for 1–4 

h. After completion of the reaction as evident from TLC, the reaction mixture was poured into 

ice cold water (50 mL). The precipitated solid was filtered, washed with water and dried to get 

the dispiro hybrid heterocycles 12 or 15–19. The crude product was purified through 

crystallization from ethanol. 
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Compound 12{1,1,1,1,1}: Obtained as pale yellow solid; Yield 98%; m.p. 249–250°C; 1H NMR 

(300 MHz, CDCl3) δH: 1.43 (td, J = 14.0, 5.1 Hz, 1H), 2.12 (s, 3H), 2.32 (s, 3H), 2.50 (d, J = 

14.9 Hz, 1H), 2.65 (s, 3H), 2.81–3.00 (m, 2H), 3.52 (t, J = 8.5 Hz, 1H), 4.01 (t, J = 9.7 Hz, 1H), 

4.92–5.05 (m, 1H), 6.45 (d, J = 7.7 Hz, 1H), 6.62 (t, J = 7.6 Hz, 1H), 6.87 (t, J = 7.7 Hz, 1H), 

6.96 (d, J = 7.6 Hz, 1H), 7.13 (d, J = 7.8 Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.5 Hz, 

4H), 8.05 (d, J = 8.4 Hz, 2H), 8.32 (s, 1H), 8.74 (s, 1H) ppm. 13C NMR (75 MHz, CDCl3) δC: 

12.5, 21.0, 29.4, 29.6, 34.6, 47.7, 57.7, 61.0, 76.2, 109.5, 116.6, 121.1, 122.3, 123.3, 126.0, 

126.1, 127.2, 129.0, 129.2, 130.3, 131.8, 135.6, 136.5, 138.7, 141.1, 145.0, 150.3, 162.7, 177.4, 

197.8 ppm. Anal. Calcd. for C35H31N5O2: C, 75.93; H, 5.64; N, 12.65. Found: C, 75.83; H, 5.52; 

N, 12.54. ESI-MS m/z calcd [M + H]+ 553.67, found 554.22. FT IR (cm–1): 3735, 2864, 1688, 

1591.  

15{1,1,1,2,1}: Obtained as yellow solid; Yield 96%; m.p. 242–243°C; 1H NMR (300 MHz, 

CDCl3) δH: 1.51 (td, J = 13.5, 5Hz, 1H), 2.32 (s, 3H), 2.60 (s, 3H), 2.77 (d, J = 12.3 Hz, 1H), 

2.87–2.03 (m,3H), 3.15 (td, J = 15.8, 5 Hz, 1H), 3.45 (d, J = 6.1 Hz, 1H), 3.57 (d, J = 6.1 Hz, 

1H), 4.64 (d, J = 10.0 Hz, 1H), 4.83 (ddd, J = 10.0, 7.7, 5.5 Hz, 1H), 6.46 (d, J = 7.7 Hz, 1H), 

6.76 (t, J = 7.6 Hz, 1H), 6.93 (t, J = 7.7 Hz, 1H), 7.14 (d, J = 7.8 Hz, 2H), 7.18–7.25(m, 2H), 

7.34 (d, J = 8.0 Hz, 2H), 7.40–7.47 (m, 2H), 7.55 (s, 1H), 8.12 (d, J = 7.6 Hz, 2H), 8.45 (s, 1H) 

ppm. 13C NMR (75 MHz, CDCl3) δC: 12.3, 20.9, 27.8, 33.0, 46.8, 51.0, 66.7, 66.9, 69.1, 71.7, 

109.8, 116.3, 120.6, 120.8, 121.8, 123.1, 125.0, 125.7, 127.4, 128.8, 128.9, 129.0, 129.3, 129.8, 

134.1, 136.7, 141.1, 144.8, 162.2, 177.4, 196.1 ppm. Anal. Calcd. for C36H31N5O2S: C, 72.34; H, 

5.23; N, 11.72. Found: C, 72.20; H, 5.10; N, 11.61. ESI-MS m/z calcd [M + H]+ 597.74, found 

554.22. 

Page 18 of 30

ACS Paragon Plus Environment

ACS Combinatorial Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19 

 

16{1,1,3,3,1}: Pale yellow solid; Yield 97%; m.p 243–244oC; 1H NMR (300 MHz, CDCl3) δ 

1.18–1.57 (m, 6H), 1.77 (s, 2H), 2.20 (s, 2H), 2.63 (s, 3H), 2.91–3.04 (m, 2H), 3.85 (t, J = 9.1 

Hz, 1H), 4.49 (d, J = 9.8 Hz, 1H), 6.46 (d, J = 7.7 Hz, 1H), 6.62 (t, J = 7.5 Hz, 1H), 6.85 (t, J = 

7.4 Hz, 1H), 6.95 (d, J = 7.5 Hz, 1H), 7.17–7.25 (m, 2H), 7.29–7.56 (m, 5H), 7.98 (s, 1H), 8.07 

(d, J = 7.9 Hz, 2H), 8.63 (s, 1H) ppm. 1C NMR (300 MHz, CDCl3) δC: 12.1, 23.6, 25.1, 28.8, 

29.5, 30.6, 44.9, 53.9, 59.3, 62.4, 75.3, 109.3, 116.1, 120.3, 121.4, 123.1, 125.4, 125.9, 126.6, 

127.9, 128.5, 131.0, 132.0, 137.0, 138.6, 141.7, 144.5, 150.1, 162.2, 177.2, 196.8 ppm. Anal. 

Calcd. for C37H32ClN5O2: C, 72.36; H, 5.25; N, 11.40. Found: C, 72.27; H, 5.13; N, 11.30. 

17{1,1,1,1,2}: Obtained as yellow solid; Yield 97%; m.p. 208–209°C; 1H NMR (300 MHz, 

CDCl3) δH: 1.40 (td, J = 14.3, 4 Hz, 1H), 2.04 (s, 3H), 2.24 (td, J = 15.0, 5.0 Hz, 1H), 2.33 (s, 

3H), 2.40 (s, 1H), 2.54 (s, 1H), 2.63 (s, 3H), 3.59 (t, J = 8.5 Hz, 1H), 4.10 (t, J = 9.8 Hz, 1H), 

5.09 (t, J = 9.0 Hz, 1H), 7.18 (t, J = 8.7 Hz, 3H), 7.28–7.43 (m, 4H), 7.50 (dd, J = 16.7, 7.6 Hz, 

3H), 7.60–7.68 (m, 1H), 7.81–8.05 (m, 4H), 8.67 (s, 1H) ppm. 13C NMR (75 MHz, CDCl3) δC: 

12.5, 21.0, 29.2, 30.4, 34.5, 48.1, 58.3, 62.5, 79.2, 116.4, 120.6, 123.4, 124.1, 125.1, 125.7, 

127.9, 128.2, 128.8, 129.0, 130.1, 130.2, 131.3, 131.7, 131.9, 135.7, 136.4, 136.5, 138.7, 142.0, 

144.8, 150.3, 162.4, 198.1, 206.7 ppm. Anal. Calcd. for C39H32N4O2: C, 79.57; H, 5.48; N, 9.52. 

Found: C, 79.61; H, 5.36; N, 9.42. ESI-MS m/z calcd [M + H]+ 588.71, found 589.24. FT IR 

(cm–1): 2843, 2162, 1703, 1678, 1596. 

18{1,1,1,2,2}: Obtained as pale orange solid; Yield 98%; m.p. 168–169°C; 1H NMR (300 MHz, 

CDCl3) δH: 1.51–1.62 (m, 1H), 2.33 (s, 3H), 2.53 (s, 3H), 2.66–2.72 (m, 2H), 2.8 (dt, J = 15.0, 

3.0 Hz, 1H), 2.96 (dd, J = 9.8, 6.5 Hz, 1H), 3.10 (dd, J = 9.9, 5.8 Hz, 1H), 3.44 (d, J = 6.8 Hz, 

1H), 3.60 (d, J = 6.8 Hz, 1H), 4.73 (d, J = 10.1 Hz, 1H), 4.89–4.98 (m, 1H), 7.17 (d, J = 7.9 Hz, 

2H), 7.23 (d, J = 7.4 Hz, 1H), 7.38 (s, 1H), 7.43 (d, J = 8.2 Hz, 3H), 7.45–7.51 (m, 2H), 7.58 (s, 
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1H), 7.60–7.69 (m, 2H), 7.79 (d, J = 4.9 Hz, 1H), 7.81 (d, J = 6.3 Hz, 1H), 7.99 (d, J = 7.8 Hz, 

2H), 8.12 (s, 1H) ppm. 13C NMR (75 MHz, CDCl3) δC: 12.3, 21.0, 26.8, 29.8, 33.9, 48.3, 52.1, 

67.8, 69.8, 76.4, 116.1, 120.6, 121.3, 123.5, 124.8, 125.3, 125.8, 127.7, 128.1, 128.9, 129.2, 

129.9, 130.0, 130.4, 131.1, 131.7, 134.1, 134.9, 136.9, 138.7, 141.2, 144.5, 150.5, 161.6, 196.6, 

205.0 ppm. Anal. Calcd. for C40H32N4O2S: C, 75.93; H, 5.10; N, 8.85. Found: C, 75.83; H, 5.03; 

N, 8.79. ESI-MS m/z calcd. [M + H]+ 632.78, found 633.18. FT IR (cm–1): 3040, 2035, 1701, 

1590. 

19{1,1,1,3,2}: Obtained as brown solid; Yield 98%; m.p. 230–231°C1H NMR (300 MHz, 

CDCl3) δH: 1.20–1.52 (m, 6H), 1.74 (d, J = 12.7 Hz, 1H), 1.86 (d, J = 13.1 Hz, 1H), 2.02–2.19 

(m, 2H), 2.33 (s, 3H), 2.38–2.51 (m, 2H), 2.60 (s, 3H), 3.99 (t, J = 9.1 Hz, 1H), 4.58 (d, J = 10.0 

Hz, 1H), 7.09–7.23 (m, 3H), 7.28–7.43 (m, 5H), 7.48 (d, J = 7.7 Hz, 2H), 7.57–7.64 (m, 1H), 

7.86 (t, J = 7.5 Hz, 2H), 7.94 (d, J = 7.9 Hz, 2H), 8.54 (s, 1H) ppm. 13C NMR (75 MHz, CDCl3) 

δC: 12.4, 21.0, 24.0, 25.7, 28.8, 30.6, 31.2, 45.4, 55.0, 61.5, 63.0, 79.1, 116.3, 120.4, 120.6, 

123.7, 123.9, 124.8, 125.7, 127.9, 128.2, 128.9, 129.0, 129.9, 131.0, 131.7, 131.8, 135.4, 136.3, 

137.2, 138.8, 141.9, 144.7, 150.3, 162.3, 197.7, 206.6 ppm. Anal. Calcd. for C42H36N4O2: C, 

80.23; H, 5.77; N, 8.91. Found: C, 80.11; H, 5.68; N, 8.82. ESI-MS m/z calcd [M + H]+ 628.78, 

found 629.22. 
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