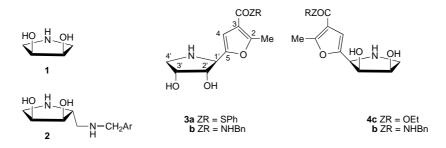
Synthesis and Glycosidase Inhibitory Activities of 5-(1',4'-Dideoxy-1',4'imino-D-erythrosyl)-2-methyl-3-furoic Acid (= 5-[(3S,4R)-3,4-Dihydroxypyrrolidin-2-yl]-2-methylfuran-3-carboxylic Acid) Derivatives: New Leads as Selective α-L-Fucosidase and β-Galactosidase Inhibitors


by Antonio J. Moreno-Vargas^a), Inmaculada Robina*^a), Raynald Demange^b), and Pierre Vogel*^b)

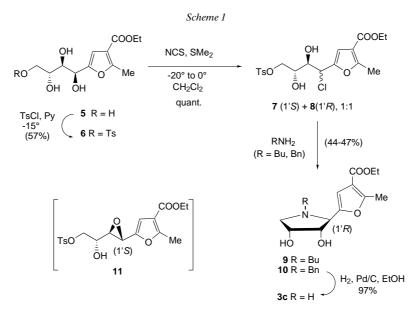
^a) Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, E-41071 Sevilla (fax: +34954624960; e-mail: robina@us.es)

^b) Institut de Chimie Moléculaire et Biologique, Ecole Polytechnique Fédérale de Lausanne (EPFL), BCH, CH-1015 Lausanne (fax: +41216939375; e-mail: Pierre.Vogel@epfl.ch)

The *García-González* reaction of D-glucose and ethyl acetoacetate generated ethyl 5-[(1'S)-D-erythrosyl]-2-methyl-3-furoate (**5**), which was converted to ethyl 5-[(1'R)-1',4'-dideoxy-1',4'-imino-D-erythrosyl]-2-methyl-3-furoate (**3c**) and to ethyl 5-[(1'S)-1',4'-dideoxy-1',4'-imino-D-erythrosyl]-2-methyl-3-furoate (**4c**). Similar methods were developed to generate other carboxylic acid derivatives such as methyl (see **3e** and **4e**), isopropyl (see **3f**), and butyl esters (see **3g**), S-phenyl (see **3a**) and S-ethyl thioesters (see **3m**), N-benzylcarboxamides **3b** and **4b**, glycine-derived amide **3h**, and N-phenyl (see **3i**), N-isopropyl (see **3j** and **4j**), N,N-diethyl- (see **3k** and **4k**), and N-ethyl-carboxamides (see **3l**). All the new 5-(1',4'-dideoxy-1',4'-imino-D-erythrosyl)-3-furoic acid (=5-[(3S,4R)-3,4-dihydroxypyrrolidin-2-yl)furan-3-carboxylic acid) derivatives **3** and **4** were assayed for inhibitory activity towards 25 commercially available glycosidases. Derivative **3a** with a S-phenyl thioester group is a good and selective α -L-fucosidase inhibitor ($K_i = 2 - 4 \mu M$), whereas **4b** (with a N-benzylcarboxamide group) is a good β -galactosidase inhibitor.

Introduction. – Derivatives of pyrrolidine-3,4-diols (=1,4-dideoxy-1,4-iminoalditols) constitute an important class of glycosidase inhibitors [1] although, in some cases, there is a lack of selectivity due to the higher conformational flexibility compared to 1,5-dideoxy-1,5-iminoalditols and other imino-bicyclic structures. For instance, simple *meso*-pyrrolidine-3,4-diol (1) is a weak and nonselective inhibitor [2] that presents activity towards several glycosidases.

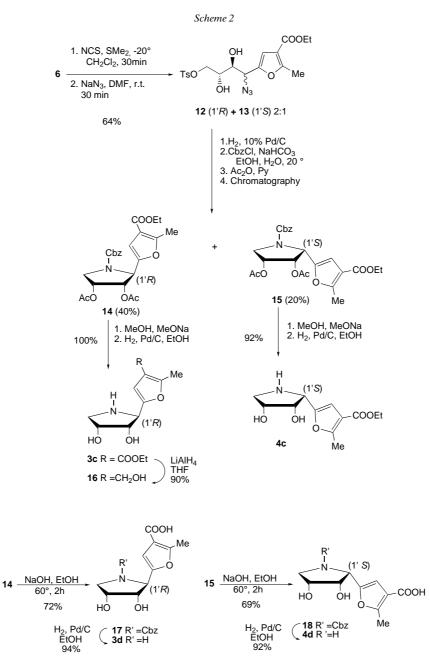
Approaches have been developed to increase selectivity in enzyme inhibition that consist of providing the dideoxy-iminosugar with some information about the shape and charge of the glycosyl moiety cleaved in the enzymatic hydrolysis and also that of the aglycon itself. Dideoxy-imino-*C*-disaccharide mimetics fulfill these requirements, and several syntheses of this type of compounds have been reported [3]. Nevertheless, the use of these inhibitors present some inconveniences, such as critical reaction conditions and multiple-step sequences needed for their preparation. Furthermore, their preparation does not allow for the required molecular and configurational diversity needed for drug development.


To design more-active and more-specific enzyme inhibitors, we envisaged other alternatives like attaching to the pyrrolidine ring several moieties through hydrolytically stable C-C bonds, using easy and high-yielding reactions. We have found that pyrrolidinediols of type **2** with (benzylamino)methyl side chains [2] can be highly selective and competitive inhibitors of α -mannosidases, and we have presented a quick combinatorial approach for their preparation [4].

In a preliminary communication [5], we have reported that $5 - \frac{1}{4'} - \frac{$ 1',4'-imino-D-erythrosyl]-2-methyl-3-furoic acid ester and amide derivatives¹) (=5-[(2R,3S,4R)-3,4-dihydroxypyrrolidin-2-yl]-2-methylfuran-3-carboxylic acid esters and -3-carboxamides) of type 3 are selective and competitive inhibitors of α -L-fucosidase from bovine epididymis and from human placenta. We have also found [6] that stereoisomeric derivatives of type 4 are specific inhibitors of various β -galactosidases. We describe here the details of the synthesis of these inhibitors that can be viewed as a new type of dideoxy-iminosugar-derived C-nucleoside analogue. We also prepared further derivatives and tested them for inhibitory activity towards 25 commercially available glycosidases. It appears that thioester 3a and N-benzylcarboxamide 3b are the most-potent α -L-fucosidase inhibitors found for this series ($K_i = 2 - 3 \mu M$) and **4b** and **4c** the most-potent β -galactosidase inhibitors ($K_i = 6-7 \mu M$). These compounds are leads in the search for better α -L-fucosidase and β -galactosidase inhibitors, a search that must probably involve changes of the furan-ring substitution and the introduction of a Me group at C(4') of **3** generating (4'S) configuration and hydroxylated side chains at C(4')of **4** if inhibitors as potent as deoxyfuconojirimycin and 1-deoxygalactonojirimycin (low nM range) are to be found [7].

Synthesis of the New Inhibitors. – For the synthesis of dideoxy-iminosugar-derived *C*-glycosides of heterocylces, we applied a methodology that implies a double functionalization of (polyhydroxyalkyl)-substituted heterocycles with appropriate leaving groups, followed by nucleophilic internal displacements. Thus, starting from the known furan derivative **5** obtained in a single step from D-glucose [8], selective tosylation of the primary-alcohol function (TsCl/pyridine, -15° , 2 h) provided tosyloxy derivative **6** in 57% yield (*Scheme 1*). Treatment of **6** with *N*-chlorosuccinimide (NCS) and dimethyl sulfide [9] (CH₂Cl₂, -20°) gave a mixture of chloro compounds **7** and **8** in a ratio of 1:1 that reacted with butylamine or benzylamine to give **9** or **10**, with the (1'*R*) (= β -D) configuration at the pseudoanomeric center, in 47% and 44% yield respectively. This result can be explained by the formation of an oxirane intermediate **11**

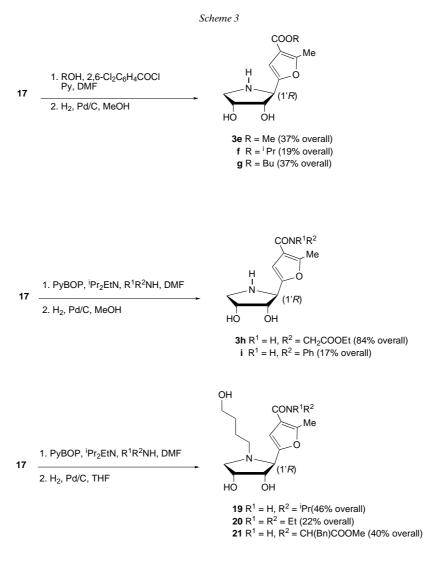
¹) For convenience, *C*-glycoside names are used in the *General Part* and for the characterization of NMR spectra; for systematic names, see *Exper. Part*.


by 1,3-elimination of HCl. Debenzylation (H_2 , Pd/C, EtOH) of **10** gave **3c** in 98% yield. Its structure was established by spectral data and confirmed by NOE experiments.

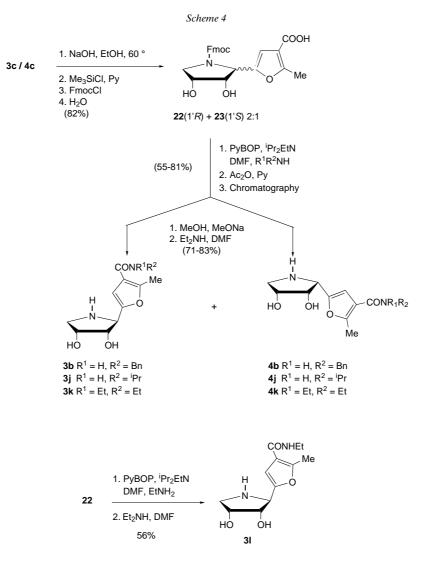
When azide anion was used as the nucleophile, a mixture **12/13** was obtained in 64% overall yield with a product ratio of 2:1 (*Scheme 2*). This result can be interpreted in terms of competing S_N1 and S_N2 azidolyses together with the intermediacy of oxirane **11**. Hydrogenation (H₂, Pd/C, EtOH, 20°) of **12/13** gave the corresponding primary-amine derivatives. The latter underwent displacement of the tosyloxy group furnishing a 2:1 mixture of (1'*R*)- and (1'*S*)-1',4'-dideoxy-1',4'-imino-D-erythrosyl derivatives (β -D and α -D configuration, resp.) that could be separated by chromatography on silica gel after protection of the amino group as benzyl carbamate (Cbz = (benzyloxy)carbonyl) and the OH groups as acetates. This provided **14** and **15** in 40 and 20% yield, respectively. Their structures were established by analytical and spectral data (see *Exper. Part*) and were confirmed by NOE experiments in their ¹H-NMR spectra.

Compound **15** showed a strong NOE (10%) between proton pairs H-C(1') (δ 5.14)/H-C(2') (δ 5.44) that was not observed for **14**, indicating (1'*R*) and (1'*S*) configuration in **14** and **15**, respectively. Noteworthy is the observation of coupling constants ${}^{3}J(1',2')$ for both *N*-protected compounds that are markedly different: ${}^{3}J(1',2') = 3.3$ H for **14** and ${}^{3}J(1',2') = 7.2$ Hz for **15**. In the case of the corresponding *N*-unprotected targets **3c** and **4c**, ${}^{3}J(1',2') = 7.5$ and 4.3 Hz, respectively, were found. This is in accordance with the data reported for derivatives of dideoxy-imino-D-ribitols [10] and dideoxy-imino-L-lyxitols [11]. A modification in the average conformation of the pyrrolidine moiety explains this change.

Alkaline methanolysis of 14 and 15 followed by hydrogenolysis gave 3c and 4c in 100 and 92% yields, respectively (*Scheme 2*). Reduction of 3c with LiAlH₄ afforded alcohol 16 in 90% yield. Saponification of 14 and 15 gave 17 and 18, respectively, that, after hydrogenolysis on Pd/C, provided the corresponding *N*-unprotected furoic acids 3d and 4d, respectively, in good yields (*Scheme 2*).

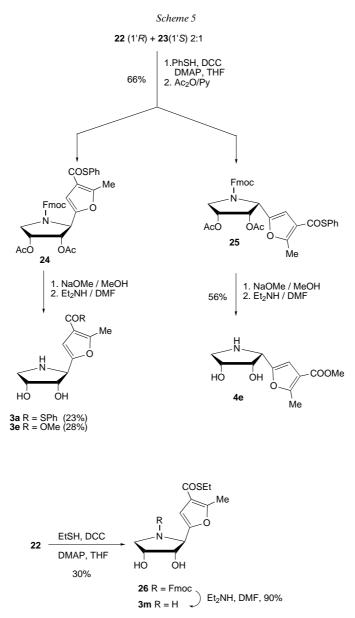

Acid **17** was transformed into a small library of esters and amides (*Scheme 3*). Esterification with MeOH, ⁱPrOH, or BuOH was achieved in the presence of 2,6-dichlorobenzoyl chloride as the activating agent that, after hydrogenolysis in MeOH or

THF, gave esters $3\mathbf{e} - \mathbf{g}$ in moderate yields. The formation of amides by reaction of 17 with glycine ethyl ester, aniline, isopropylamine, diethylamine, and L-phenylalanine methyl ester was performed by means of PyBOP and *Hünig*'s base (ⁱPr₂EtN) as activating agents. Subsequent removal of the protecting *N*-[(benzyloxy)carbonyl] group was carried out in MeOH or THF. Hydrogenolysis in MeOH gave poor yields, except for compound **3h**, which was obtained in 84% overall yield under these conditions. Compound **3i** was obtained in 17% yield. The success of the hydrogenolysis in THF is strongly dependent on the nature of the substrate. While esters gave reasonable yields, in the case of amides, the pyrrolidine amino group, probably assisted by Pd, provoked the opening of the THF ring, and compounds **19–21** were obtained. There is only one recent precedent of this type of reaction in the literature reported by *Nicolaou* and co-workers [12] in the course of their total synthesis of balanol. As in the case of the latter synthesis, the presence of an amide moiety is required for this aminohydrogenolysis of tetrahydrofuran. Under similar conditions, pyrrolidinediol and pyrrolidine refused to react with THF.


With the goal in mind to avoid this side reaction during the deprotection step, another synthetic route was explored (*Scheme 4*). Saponification of mixture 3c/4c, followed by silylation of the diol moieties with Me₃SiCl/pyridine, followed by treatment with FmocCl (9*H*-fluoren-9-ylmethyl carbonochloridate) and H₂O [13], provided a 2:1 mixture of carboxylic acids 22 and 23, respectively, after aqueous workup. This mixture was directly submitted to the amidification conditions (PyBOP, P_1 EtN) with isopropylamine, benzylamine, and diethylamine to give the corresponding amide mixtures, which were separated by chromatography (silica gel). Alkaline methanolysis and Fmoc deprotection with Et₂NH in DMF liberated pure *N*-deprotected furyol amides 3b, 3j, and 3k derived from furoic acid 22 and 4b, 4j, and 4k derived from furoic acid 23. The same treatment (without acetylation) applied to 22 and ethylamine gave 3l after Fmoc deprotection.

Finally the reaction of 22 and 23 with thiophenol in the presence of dicyclohexylcarbodiimide (DCC) and *N*,*N*-dimethylpyridin-4-amine (DMAP), followed by acetylation gave a mixture of thioesters 24 and 25 that were separated by chromatography and, independently, deprotected upon basic methanolysis and treatment with Et₂NH, to give pure *N*-unprotected furancarbathioic acid *S*-ester 3a (*Scheme 5*). The products 3e and 4e resulting from a transesterification during the deprotection of 24 and 25 were also isolated (in the latter case, the *S*-ester 4a (=(1'S)epimer of 3a) was not observed. Pure 3m was obtained by a similar treatment applied to 22 and ethanethiol.

Inhibitory Studies Towards Glycosidases. – We assayed [14] all the new compounds 3, 4, and 19–21 as well as derivatives 9 and 1 towards two α -L-fucosidases (from bovine epididymis, human placenta), three α -galactosidases (from coffee beans, Aspergillus niger, E. coli), five β -galactosidases (from E. coli, bovine liver, Aspergillus niger, Aspergillus oryzae, jack beans), two α -glucosidases (from yeast, rice), one isomaltase (from bakers yeast), two amyloglucosidases (from Aspergillus niger, Rhizopus mold), two β -glucosidases (from almonds, Caldocellum saccharolyticum), two α -mannosidases (from jack beans, almonds), one β -mannosidase (from Helix pomatia), one β -xylosidase (from Aspergillus niger), one α -N-acetylgalactosaminidase (from chicken



liver), and three β -N-acetylglucosaminidases (from jack beans, bovine epididymis A and B). At 1 mM concentration, no inhibition was observed by all these 1',4'-dideoxy-1',4'-imino-D-erythrosyl or dihydroxypyrrolidine derivatives for α -galactosidases from Aspergillus niger and from E. coli, for α -glucosidases from yeast and from rice, for β -mannosidases from Helix pomatia, for β -xylosidase from Aspergillus niger, and for β -N-acetylglucosaminidases from jack beans, and from bovine epididymis A and B. At 1 mM, the simple meso-pyrrolidine-2,3-diol (1) was also assayed and proved to be a weak inhibitor of the following enzymes: α -galactosidase from coffee beans (50%, $IC_{50} = 1 \text{ mM}$), β -galactosidase from E. coli (41%), from bovine liver (25%), from Aspergillus niger (39%), from Aspergillus oryzae (53%, $IC_{50} = 790 \,\mu$ M), and from jack

beans (55%, $IC_{50} = 700 \,\mu\text{M}$), α -glucosidase (isomaltase) from bakers yeast (32%), amyloglucosidase from *Aspergillus niger* (24%), and from *Rhizopus mold* (47%), β glucosidase from almonds (60%, $IC_{50} = 600 \,\mu\text{M}$), α -mannosidase from jack beans (70%, $IC_{50} = 400 \,\mu\text{M}$), and from almonds (44%), and α -*N*-acetylgalactosaminidase from chicken liver (63%, $IC_{50} = 500 \,\mu\text{M}$).

Coupling the pyrrolidine-2,3-diol moiety at C(5) of a 2-methyl-3-furoic acid moiety as in **3** and **4** generated more selective and more-potent glycosidase inhibitors. Most interesting is the observation that the [(1'R)-1',4'-dideoxy-1',4'-imino-D-erythrosyl]furoic acid derivatives **3** are selective α -L-fucosidase inhibitors (see *Table 1*), whereas the corresponding (1'S)-epimers **4** are selective β -galactosidase inhibitors (see *Table 2*).

The enzyme selectivity depends on the nature of the carboxylic acid derivative (COZR). In the case of compounds **3**, all COZR are recognized by β -galactosidases from bovine liver, but not by the other β -galactosidases, except for **3c** with the COOEt group (see *Table 3*). A general trend is that esters, *i.e.*, **3c**, **3e**, **3f**, and **3g**, are less selective than the other derivatives as they all inhibit amyloglucosidases and α -mannosidases to some extent. The *S*-ethyl thioester **3m** has a behavior similar to that of

O-alkyl esters. Interestingly, the *S*-phenyl thioester **3a** is not only one of the mostpotent α -L-fucosidase inhibitors (see K_i values in *Table 1*) but appears to be also the most selective. Amides **3b**, **3j**, **3k**, and **3l** are weak inhibitors of amyloglucosidase and α mannosidases. The ethyl glycinate derivative **3h** is more selective than other amides but not as potent as α -L-fucosidase inhibitor.

Table 1. Inhibitory Activities of [(1'R)-1',4'-Dideoxy-1',4'-imino-D-erythrosyl]furancarboxylic Acid Derivatives
3 and of 16 towards Two α -L-Fucosidases. Percentage of inhibition at 1 mM, IC_{50} (in parenthesis), and K_i (bold
and italic) in μM if measured. Optimal pH, $35^{\circ a})^{b})^{c}$).

	COZR	α -L-Fucosidase					
		from human placenta	from bovine epididymis				
3a	COSPh	89% (38) 2.9	90% (60) 3.8				
3b	CONHBn	94% (28) 2.2	95% (43) 3.4				
3c	COOEt	84% (200) 9	76% (300) 15				
3d	СООН	n.i.	n.i.				
3e	COOMe	80% (100) 6.5	88% (150) 13.8				
3f	COO- ⁱ Pr	91% (50) 4.9	92% (160) 8.6				
3g	COOBu	91% (35) 4.1	93% (75) 4.2				
3h	CONHCH ₂ COOEt	72% (360) 13	73% (360) 26				
3i	CONHPh	10%	51% (1000)				
3j	CONH ⁱ Pr	94% (40) 3	93% (80) 5.3				
3k	$CONEt_2$	85% (110) 9.1	86% (220) 20				
31	CONHEt	91% (40) 3.2	92% (80) 4.8				
3m	COSEt	92% (44) 3.1	94% (120) 5.7				
16		n.i.	n.i.				

^a) For conditions of measurements, see [14]. ^b) All inhibitors showed competitive inhibition from *Line-weaver-Burk* plots. ^c) n.i. = no inhibition at 1 mM.

Table 2. Inhibitory Activities of [(1'S)-1',4'-Dideoxy-1',4'-imino-D-erythrosyl]furancarboxylic Acid Derivatives
4 and of 1 towards β -Galactosidases. Percentage of inhibition at 1 mM, IC_{50} (in parenthesis), and K_i (bold and
italic) in μM if measured. Optimal pH, $35^{\circ a})^{b})^{c}$).

	COZR	β-Galactosidase from								
	E. coli	Bovine liver	Aspergillus niger	Aspergillus oryzae	Jack bean					
4b	CONHBn	81% (150)	88% (120)	94% (50)	89% (20)	66% (420)				
4c	COOEt	7 (m.) 83% (90)	20 (c.) 78% (250)	60 (non-c.) 99% (7.5)	20 (c.) 98% (12)	94% (12)				
		74 (c.)	35 (m.)	9.8 (non-c.)	6.6 (m.)	6.4 (m.)				
4d	COOH	n.i.	n.i.	n.i.	n.i.	n.i.				
4 e	COOMe	55% (750)	80% (200)	94% (50) 47 (non-c.)	87% (90) 27 (c.)	81% (240)				
4j	CONH ⁱ Pr	n.i.	49% (1000)	79% (250)	68% (500)	22%				
4k	CONEt ₂	33%	90% (42)	96% (28)	93% (65)	52% (1000)				
1		41%	13 (c.) 25%	30 (non-c.) 39%	13 (m.) 53% (790)	55% (720)				

^a) For conditions of measurements, see [14]. ^b) c. = competitive, non-c. = non-competitive, m. = mixed type of inhibition, from *Lineweaver–Burk* plots. ^c) n.i. = no inhibition at 1 mm.

	3a (COZR= COSPh)	3b (COZR= CONHBn)	3c (COZR= COOEt)	3e (COZR= COOMe)	3f (COZR= COO ⁱ Pr)	3g (COZR= COOBu)	3h (COZR=CONH- Gly-OEt)	·	$\begin{array}{l} \textbf{3k} \\ (\text{COZR} = \\ \text{CONEt}_2) \end{array}$	3l (COZR= CONHEt)	3m (COZR= COSEt)
α -Galactosidase:											
coffee bean	48%	n.i.	n.i.	42%	29%	43%	n.i.	n.i.	n.i.	n.i.	57% (650
Isomaltase:											
bakers yeast	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.
Amyloglucosidase:											
Asp. niger	n.i.	52%	n.i.	23%	27%	38%	n.i.	23%	n.i.	n.i.	n.i.
Rhiz. mold	n.i.	71% (310)	25%	33%	44%	52%	n.i.	33%	25%	26%	33%
β -Glucosidase:											
almonds	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.
Caldoc. sacch.	n.i.	n.i.	n.i.	n.i.	n.i.	32%	n.i.	n.i.	n.i.	n.i.	n.i.
α -Mannosidase:											
jack bean	n.i.	n.i.	38%	23%	78% (250) ^d)	71% (320)°)	n.i.	n.i.	27%	29%	69% (390
almonds	n.i.	n.i.	n.i.	36%	57%	52%	n.i.	29%	31%	32%	53%
α -N-Acetyl-											
galactosaminidase											
chicken liver	n.i.	n.i.	n.i.	48%	n.i.	27%	n.i.	n.i.	n.i.	n.i.	57% (690
β -Galactosidase:											
bovine liver	67% (450)	43%	57%	54%	57%	76%	21%	38%	58%	52%	58%
Asp. niger	n.i.	n.i. ^c)	80% (370)°)	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.
Asp. oryzae	n.i.	n.i.	45%	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.
jack bean	n.i.	n.i.	42%	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.

Table 3. Inhibitory Activities of Compounds 3 towards Other Glycosidases than α -L-Fucosidases. Percentage of inhibition at 1 mM and IC_{s0} (in parenthesis, μ M) if measured. Optimal pH, $35^{\circ a}$)^b)^c).

N-Substitution at the imino moiety suppresses all inhibitory activity toward all the enzymes assayed as found for derivatives 19-21 and 9.

The most-potent β -galactosidase inhibitor of (1'S)-series **4** is the *N*-benzylcarboxamide **4b**, which shows competitive inhibition of β -galactosidases from bovine liver and from *Aspergillus oryzae*, noncompetitive inhibition towards β -galactosidase from *Aspergillus niger*, and mixed-type inhibition towards β -galactosidase from *E. coli* (see *Table 2*). As in the case of carboxylic acid **3d**, the (1'S)-epimer **4d** is inactive towards all enzymes assayed. Except for *N*-isopropylcarboxamide **4j**, which is a moderate inhibitor of some of the β -galactosidases assayed, the other compounds **4b**, **4c**, **4e**, and **4h** are weak inhibitors of α -mannosidases. None of the (1'S)-epimers **4** that were tested is a specific inhibitor of other glycosidases than β -galactosidases (see *Table 4*).

Table 4. Inhibition of Other Glycosidases than β -Galactosidases by **4**. Percentage of inhibition at 1 mM and IC_{50} (in parenthesis, μ M) if measured. Optimal pH, $35^{\circ a}$)^b).

	4b (COZR= CONHBn)	4c (COZR= COOEt)	4e (COZR= COOMe)	4j (COZR= CONH ⁱ Pr)	$ \begin{array}{l} \mathbf{4k} \\ (\text{COZR} = \\ \text{CONEt}_2) \end{array} $
α -L-Fucosidase:					
from bovine epididymis	37%	n.i.	36%	22%	n.i.
from human placenta	56% (640)	n.i.	48%	39%	n.i.
α -Glucosidase (isomaltase).					
from baker yeast	43%	n.i.	n.i.	n.i.	n.i.
a-Mannosidase:					
from jack beans	37%	49%	22%	n.i.	37%
from almonds	40%	37%	34%	n.i.	38%
β -Glucosidase:					
from almonds	n.i.	38%	n.i.	n.i.	n.i.
Caldoc. sacch.	n.i.	36%	n.i.	n.i.	n.i.

Conclusions. – Efficient syntheses of [(1'R)-1',4'-dideoxy-1',4'-imino-D-erythrosyl]furoic acid derivatives 3 and their (1'S)-epimers 4 were developed starting from Dglucose and ethyl acetoacetate. Whereas 3 are selective inhibitors of α -L-fucosidases, derivatives 4 are selective inhibitors of β -galactosidases. This work demonstrates that meso-pyrrolidine-3,4-diol (1), which is a weak inhibitor of a larger number of glycosidases, can be converted to potent and selective α -L-fucosidase or β -galactosidase inhibitors by linking its C(2) position to C(5) of a 2-methyl-3-furoic acid moiety. Whereas the 3-furoic acids do not inhibit any of the glycosidases assayed, their esters, thioesters, and amides are interesting inhibitors. They constitute new leads for the search of α -L-fucosidase and β -galactosidase inhibitors that possess not only polar (OH, NH) functions but also lipophilic moieties, which might be required for the development of orally active drugs. The inhibitory activities observed are still three orders of magnitude lower than those reported for 1-deoxy-L-fuconojirimycin and 1-deoxy-Dgalactonojirimycin [1], but introduction of additional substituents at C(4') of the 1',4'dideoxy-1',4'-imino-D-erythrosyl moiety as well as modification of the furan ring by substituents (nature and position) leave the possibility to find better leads. It is possible

1904

also that other heterocycles than furan attached at C(1') of the 1',4'-dideoxy-1',4'-imino-D-erythrosyl moiety might generate new and better leads as glycosidase inhibitors.

We are grateful to the Dirección General de Investigación Científica y Técnica of Spain (Grant No. BQU-2001-3779, BP 97-0730), the European Program SOCRATES (EPFL/Seville), the Swiss National Science Fondation (Grant No. 20.63667.00), and the 'Office Fédéral de l'Education et de la Science' (Bern, COST D13/0001/99) for generous support. We thank also the University of Seville for a fellowship to A.J.M.-V.

Experimental Part

General. Anh. solvents and reagents were freshly distilled under N₂ prior to use: THF from sodium and benzophenone, CH₂Cl₂ and ⁱPr₂NEt from CaH₂. TLC: silica gel HF_{254} (Merck); detection by UV light and charring with H₂SO₄. Prep. chromatography (CC): silica gel 60 (Merck; 230 mesh). Optical rotations: at 25°; Perkin-Elmer 241-MC and Jasco DIP-370 spectropolarimeters. IR Spectra: FT-IR Bomem MB-120 instrument; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR Spectra¹): Bruker AMX-300, Bruker ARX-400, and Bruker AMX-500 spectrometers; CDCl₃, (D₆)DMSO, CD₃OD, and D₂O solns.; J values in Hz and δ in ppm. FAB-MS, EI-MS, and CI-MS: Kratos MS-80-RFA instrument; for HR-MS, Micromass AutoSpeQ instrument; in m/z (rel. %).

Ethyl 2-Methyl-5-[(IS,2R,3R)-*1*,2,3,4-*trihydroxybutyl]furan-3-carboxylate* (**6**). To a stirred soln. of **5** (4 g, 14.6 mmol) in dry pyridine (20 ml) at -15° , a soln. of TsCl (7 g, 36.7 mmol) in dry pyridine (10 ml) was added. The mixture was stirred for 2 h at -15° , then H₂O (2 ml) was added and the soln. stirred for 15 min at r.t. The solvent was evaporated, the residue dissolved in CH₂Cl₂, and the soln. washed with 1M HCl, sat. aq. NaHCO₃ soln., and brine, dried (Na₂SO₄), and evaporated, and the residue purified by CC (SiO₂, ether/petroleum ether 1:2 \rightarrow 3:1): **6** (3.56 g, 57%). Hygroscopic solid. [*a*]₁²⁵ = -15 (*c* = 3.3, MeOH). IR: 3468 (OH), 2982, 2922, 1709 (CO), 1589, 1408, 1099, 980, 833. ¹H-NMR (500 MHz, CDCl₃): 7.77 (*d*, ³/2(",3") = ³/3(5",6") = 8.3, H-C(2") and H-C(6") of Ph); 7.33 (*d*, H-C(3") and H-C(5") of Ph); 6.59 (*s*, H-C(4)); 4.91 (*m*,H-C(1')); 4.25 (*q*, ³/4(H,H) = 7.1, MeCH₂); 4.29 - 4.20 (*m*, H_a-C(4')); 4.17 (*d*d, ³/3/(3',4'b) = 10.5, H_b-C(4')); 3.98 - 3.93 (*m*, H-C(3')); 3.85 (*d*d, ³/3(1',2') = 2.4, ³/3(2',3') = 7.7, H-C(2')); 3.10 (*s*, Me of Ts); 2.51 (*s*, Me); 1.32 (*t*, ³/4(H,H) = 7.1, MeCH₂). ¹³C-NMR (125.7 MHz, CDCl₃): 163.9 (COOEt); 158.9, 151.6 (C(2), C(5)); 145.1 (C(1") of Ph), 132.2 (C(4") of Ph); 129.9, 127.9 (2 C each, Ph); 114.1 (C(3)); 108.4 (C(4)); 7.20, 71.5 (C(2'), C(3')); 69.6 (C(4')); 66.3 (C(1')); 60.2 (MeCH₂); 21.5 (Me of Ts), 14.2 (MeCH₂), 13.7 (Me). FAB-MS: 451.1002 ([C₁9H₂₄O₉S+Na]⁺; calc. 451.1039). Anal. calc. for C₁₉H₂₄O₉S: C 57.27, H 6.07; found: C 57.10, H 5.90.

Ethyl 5-[(2R,3S,4R)-1-Butyl-3,4-dihydroxypyrrolidin-2-yl]-2-methylfuran-3-carboxylate (9) and Ethyl 5-[(2R,3S,4R)-3,4-Dihydroxy-1-(phenylmethyl)pyrrolidin-2-yl]-2-methylfuran-3-carboxylate (10). To a stirred soln. of N-chlorosuccinimide (NCS; 167 mg, 1.25 mmol) in dry CH₂Cl₂ (3 ml) cooled to 0°, Me₂S (97 µl, 1.25 mmol) was added under N₂. After 5 min, a soln. of 6 (0.41 g, 0.94 mmol) in dry CH₂Cl₂ (4 ml) at -20° was added under N2. The mixture was allowed to warm to 5° and the solvent evaporated. The crude product containing ethyl 5-((15,2R,3R)- and (1R,2R,3R)-1-chloro-2,3-dihydroxy-4-{[(4-methylphenyl)sulfonyl]oxy]butyl)-2-methylfuran-3-carboxylate (7 and 8, resp.) ((1S)/(1R) 1:1) was used without purification in the next step. ¹H-NMR (500 MHz, CDCl₃); epimer a: 7.75 (d, ³ $J(2'',3'') = {}^{3}J(5'',6'') = 8.3$, H-C(2'') and H-C(6'') of Ph); 7.33 (d, H-C(3'')) and H-C(5'') of Ph); 6.68 (s, H-C(4)); 5.36 $(d, {}^{3}J(1', 2') = 2.2, H-C(1'))$; 4.28-4.14 $(m, MeCH_{2}, 1)$ $H_a - C(4'), H_b - C(4'); 3.97 (dd, {}^{3}J(2',3') = 8.4, H - C(2'); 3.90 - 3.87 (m, H - C(3')); 2.70 (s, Me of Ts); 2.41$ (s, Me); 1.31 - 1.27 (m, MeCH₂); epimer b: 7.75 (d, ${}^{3}J(2'', 3'') = {}^{3}J(5'', 6'') = 8.3$, H-C(2'') and H-C(6'') of Ph); 7.33 (d, H-C(3'') and H-C(5'') of Ph); 6.69 (s, H-C(4)); 5.20 $(d, {}^{3}J(1', 2') = 4.1, H-C(1'));$ 4.28-4.14 $(m, \text{MeCH}_2, \text{CH}_2(4'));$ 4.04 $(dd, {}^{3}J(2', 3') = 8.4, \text{H}-\text{C}(2'));$ 3.75 - 3.72 (m, H-C(3')); 2.72 (s, Me of Ts); 2.51 (s, Me); 1.31-1.27 (m, MeCH₂). ¹³C-NMR (125.7 MHz, CDCl₃; mixture of epimers): 163.5, 163.4 (COOEt(a), COOEt(b)); 159.5, 159.3, 149.1, 147.4 (C(2)(a), C(5)(a), C(2)(b), C(5)(b)); 144.9 (C(1") of Ph(a), C(1") of Ph(b)); 132.2 (C(4") of Ph(a), C(4") of Ph(b)); 129.7, 127.8 (4 C each, C(2"), C(3"), C(5"), C(6") of Ph(a) and Ph(b)); 114.3 (2 C, C(3)(a), C(3)(b)); 111.0, 110.0 (C(4)(a), C(4)(b)); 73.9, 72.0, 71.3, 71.3 (4 C, C(2')(a), $C(3')(a), C(2')(b), C(3')(b)); 69.7 (C(4')(b)); 69.5 (C(4')(a)); 60.1 (2 C, MeCH_2(a), MeCH_2(b)); 56.0$ (C(1')(a)); 55.5 (C(1')(b)); 21.4 (2 C, Me of Ts(a) and Ts(b)); 14.1 (2 C, MeCH₂(a), MeCH₂(b)); 13.7, 13.6 (Me(a), Me(b)).

The mixture 7/8 was dissolved in butylamine (6.5 ml; for 9) or benzylamine (10 ml; for 10) cooled at 0°. The soln. was allowed to warm to r.t. and stirred for 4 h (for 9) or 12 h (for 10). Then the solvent was evaporated and the residue purified by CC (SiO₂, Et₂O/petroleum ether, $1:1 \rightarrow 3:1$ (for 9) or $1:3 \rightarrow 1:1$ (for 10).

Data of **9**: 134.7 mg (47% overall from **6**). Syrup. $[a]_{D}^{30} = +26$ (c = 2, CH₂Cl₂). ¹H-NMR (300 MHz, CDCl₃): 6.53 (s, H–C(4)); 4.31–4.25 (m, H–C(3')); 4.25 (q, ³*J*(H,H) = 7.1, MeCH₂); 4.16 (t, ³*J*(1',2') = ³*J*(2',3') = 6.5,H–C(2')); 3.53 (dd, ³*J*(3',4'a) = 6.2, ³*J*(4'a,4'b) = 10.4, H_a–C(4')); 3.39 (d, H–C(1')); 2.82 (br. s, 2 OH); 2.54 (s, CH₃); 2.57–2.20 (m, H_a–C(1'')); 2.38 (dd, ³*J*(3',4'b) = 4.7, H_b–C(4')); 2.23–2.15 (m, H_b–C(1'')); 1.32 (t, ³*J*(H,H) = 7.1, *Me*CH₂); 1.42–1.30 (m, 2 H–C(2'')); 1.26–1.18 (m, 2 H–C(3'')); 0.83 (t, ³*J*(H,H) = 7.2, 3 H–C(4'')). ¹³C-NMR (75.4 MHz, CDCl₃): 164.0 (COOEt); 159.2, 150.9 (C(2), C(5)); 113.9 (C(3)); 109.6 (C(4)); 74.7 (C(2')); 68.7 (C(3')); 67.2 (C(1')); 60.0 (MeCH₂); 59.0 (C(4')); 53.6 (C(1'')); 29.5 (C(2'')); 20.3 (C(3'')); 14.2 (*Me*CH₂); 13.8, 13.7 (2 C, C(4''), Me). FAB-MS: 334 (100, [M + Na]⁺). EI-MS: 311 (100, M^{++}). HR-EI-MS: 311.1731 (C₁₀H₂₅NO[±]₃; calc. 311.1732).

Data of **10**: 141 mg (44% overall from **6**). Syrup. $[a]_D^{25} = +8(c = 0.5, CH_2Cl_2)$. ¹H-NMR (300 MHz, CDCl₃): 7.33 – 7.21 (*m*, Ph); 6.61 (*s*, H–C(4)); 4.28 (*q*, ³*J*(H,H) = 7.1, MeCH₂); 4.30 – 4.25 (*m*, H–C(3')); 4.21 (*t*, ³*J*(1',2') = ³*J*(2',3') = 6.3, H–C(2')); 3.85 (*d*, ²*J*(H,H) = 13.0, PhCH); 3.54 (*d*, H–C(1')); 3.38 (*dd*, ³*J*(3',4'a) = 6.0, ³*J*(4'a,4'b) = 10.5, H_a–C(4')); 3.34 (*d*, PhCH), 2.58 (*s*, Me); 2.41 (*dd*, ³*J*(3',4'b) = 4.7, H_b–C(4')); 1.34 (*t*, *Me*CH₂). ¹³C-NMR (75.4 MHz, CDCl₃): 163.9 (COOEt); 159.1, 150.8 (C(2), C(5)); 137.6 (C(1) of Ph); 128.7 – 127.0 (5 C, Ph); 114.0 (C(3)); 109.6 (C(4)); 75.0 (C(2')); 68.6 (C(3')); 66.6 (C(1')); 60.0 (MeCH₂); 58.6 (C(4')); 57.4 (PhCH₂); 14.2 (*Me*CH₂); 13.7 (Me). FAB-MS: 368 (100, [*M* + Na]⁺). EI-MS: 345 (100, M⁺⁺). HR-EI-MS: 345.1578 (C₁₁₁_{2₃NO[±]}; calc. 345.1576).

Ethyl 5-[(2R,3S,4R)-3,4-Dihydroxypyrrolidin-2-yl]-2-methylfuran-3-carboxylate (3c). Procedure A. A soln. of **10** (41 mg, 0.12 mmol) in MeOH (3 ml) was hydrogenated over 10% Pd/C (15 mg) at 1 atm for 1.5 h. Filtration of the catalyst and evaporation gave 3c (30 mg, 98%). White solid.

Procedure B. To a soln. of **14** (92 mg, 0.19 mmol) in MeOH (5 ml), 1M MeONa/MeOH (3 drops) was added. The mixture was stirred at r.t. for 20 min, made neutral with *Amberlyst IR-120* (H⁺), and filtered, and the resin washed with MeOH. The filtrate was hydrogenated over 10% Pd/C (20 mg) at 1 atm for 2 h. Filtration of the catalyst and evaporation gave **3c** (49 mg, 100%). White solid. $[a]_{D}^{25} = -44$ (*c*=1.5, MeOH). ¹H-NMR (300 MHz, CD₃OD): 6.55 (*s*, H–C(4)); 4.25 (*q*, ³*J*(H,H) = 7.1, MeCH₂); 4.17–4.08 (*m*, H–C(2'), H–C(3')); 3.99 (*d*, ³*J*(1',2') = 7.5, H–C(1')); 3.27 (*dd*, ³*J*(3',4'a) = 5.1, ³*J*(4'a,4'b) = 12.0, H_a–C(4')); 2.87 (*dd*, ³*J*(3',4'b) = 3.0, H_b–C(4')); 2.54 (*s*, Me); 1.34 (*t*, *Me*CH₂). ¹³C-NMR (75.4 MHz): 165.5 (COOEt); 160.2, 153.7 (C(2), C(5)); 115.2 (C(3)); 108.8 (C(4)); 77.3 (C(2')); 72.3 (C(3')); 61.3 (MeCH₂); 60.3 (C(1')); 52.5 (C(4')); 14.6 (*Me*CH₂); 13.8 (Me). EI-MS: 255 (100, *M*⁺⁺). HR-EI-MS: 255.1105 (C₁₂H₁₇NO₅⁺; calc. 255.1107). Anal. calc. for C₁₂H₁₇NO₅: C 56.49, H 6.72, N 5.49; found: C 56.45, H 6.61, N 5.81.

Ethyl 5-f(1R,2S,3R)- and (1S,2S,3R)-1-Azido-2,3-dihydroxy-4-f[(4-methylphenyl)sulfonyl]oxy]butyl]-2methylfuran-3-carboxylate (12 and 13, resp.). Chlorination of 6 (1.17 mmol) with NCS (207.9 mg, 1.56 mmol) and Me₂S (120.7 µl, 1.17 mmol) as described above gave 7/8, which were dissolved in dry DMF (2 ml), and NaN₃ (0.15 g, 2.3 mmol) was added. The mixture was stirred for 15 min at r.t., diluted with CH₂Cl₂ (60 ml), and washed with H₂O (40 ml) and brine. The org. layer was dried (Na₂SO₄) and evaporated, and the residue purified by CC (SiO₂, ether/petroleum ether $1:3 \rightarrow 1:1$): 2:1 mixture of epimers **12** and **13** (0.34 g, 64% overall from **6**). Syrup. IR (12/13): 3491 (OH), 2984, 2926, 2111 (N₃), 1705 (CO), 1358, 1175. ¹H-NMR (500 MHz, CDCl₃; 12): 7.78 $(d, {}^{3}J(2'', 3'') = {}^{3}J(5'', 6'') = 8.3, H-C(2') \text{ and } H-C(6'') \text{ of Ph}; 7.35 (d, H-C(3'') \text{ and } H-C(5'') \text{ of Ph}; 6.73$ (s, H-C(4)); 4.74 $(d, {}^{3}J(1', 2') = 4.7, H-C(1'));$ 4.30-4.19 $(m, MeCH_{2}, CH_{2}(4'));$ 3.95 $(dd, {}^{3}J(2', 3') = 7.7, H-C(4'));$ 3.95 $(dd, {}^{3}J(2', 3')) = 7.7, H-C(4'));$ 3.95 (dd,H-C(2'); 3.74-3.72 (m, H-C(3')); 2.56 (s, Me of Ts); 2.44 (s, Me); 1.34 (t, ${}^{3}J(H,H) = 7.1$, MeCH₂). ¹H-NMR (500 MHz, CDCl₃; **13**): 7.78 $(d_{,}{}^{3}J(2'',3'') = {}^{3}J(5'',6'') = 8.3, H-C(2'')$ and H-C(6'') of Ph); 7.35 (d, H-C(3')) and H-C(5') of Ph); 6.71 (s, H-C(4)); 4.82 $(d, {}^{3}J(1', 2') = 1.1, H-C(1'))$; 4.30–4.19 $(m, MeCH_{2}, 1)$ $CH_{2}(4')$; 3.91 (m, H-C(2'), H-C(3')); 2.56 (s, Me of Ts); 2.44 (s, Me); 1.32 (t, ${}^{3}J(H,H) = 7.1$, MeCH₂). ¹³C-NMR (125.7 MHz, CDCl₃; **12**): 163.5 (COOEt); 159.9, 146.2 (C(2), C(5)); 145.2 (C(1") of Ph); 132.2 (C(4") of Ph); 129.9 (2 C, C(3") and C(5") of Ph); 127.9 (2 C, C(2") and C(6") of Ph); 114.4 (C(3)); 111.4 (C(4)); 72.1 (C(2')); 71.0 (C(4')); 69.9 (C(3')); 60.3 (MeCH₂); 59.5 (C(1')); 21.5 (Me of Ts); 14.2 (MeCH₂); 13.8 (Me). ¹³C-NMR (125.7 MHz, CDCl₃; 13): 163.5 (COOEt); 159.6, 147.7 (C(2), C(5)); 145.2 (C1") of Ph); 132.2 (C(4") of Ph); 129.9 (2 C, C(3") and C(5") of Ph); 127.9 (2 C, C(2") and C(6") of Ph); 114.4 (C(3)); 110.2 (C(4)); 72.0 (C(2')); 71.1 (C(4')); 69.5 (C(3')); 60.3 (MeCH₂); 58.5 (C(1')); 21.5 (Me of Ts); 14.2 (MeCH₂); 13.7 (Me). FAB-MS (12/13): 476 (100, $[M + Na]^+$). HR-FAB-MS: 476.1099 ($[C_{19}H_{23}N_3O_8S + Na]^+$); calc. 476.1103).

Ethyl 5-{(2R,3S,4R)-3,4-Bis(acetyloxy)-1-[(phenylmethoxy)carbonyl]pyrrolidin-2-yl]-2-methylfuran-3-carboxylate (14) and Ethyl 5-{(2S,3S,4R)-3,4-Bis(acetyloxy)-1-[(phenylmethoxy)carbonyl]pyrrolidin-2-yl]-2-methylfuran-3-carboxylate (15). The mixture 12/13 2 : 1 (277 mg, 0.61 mmol) in abs. EtOH (7 ml) was hydrogenated over 10% Pd/C (30 mg) at 1 atm for 1 h. The catalyst was then removed by filtration and the solvent evaporated. The crude product was dissolved in EtOH/H₂O 1 : 1 (5 ml) and cooled to 0°. NaHCO₃ (168 mg, 2 mmol) and benzyl carbonochloridate (193 µl, 1.5 mmol) were added, and mixture was stirred at r.t. for 1.5 h. Then sat. aq.

NaHCO₃ soln. (1.5 ml) was added at 0° and the mixture stirred for 10 min. The solvent was evaporated and the residue conventionally acetylated with Ac₂O/pyridine for 6 h. The resulting residue was purified by CC (SiO₂, Et₂O/petroleum ether 1:2 \rightarrow 2.1): **14** (115 mg, 40% overall) followed by **15** (56 mg, 20% overall). Colorless oils.

Data of 14: $[a]_{25}^{25} = -1$ (c = 1, CH₂Cl₂). ¹H-NMR (300 MHz, (D₆)DMSO, 90°): 7.42–7.21 (m, arom. H of Cbz), 6.50 (s, H–C(4)); 5.42–5.37 (m, H–C(2'), H–C(3')); 5.12, 5.01 (d, ²J(H,H) = 12.7, CH₂ of Cbz); 4.84 (d, ³J(1',2') = 3.3, H–C(1')); 4.23 (q, ³J(H,H) = 7.1, MeCH₂); 3.94 (dd, ³J(3',4'a) = 5.6, ³J(4'a,4'b) = 11.6, H_a–C(4')); 3.56 (dd, ³J(3',4'b) = 5.1, H_b–C(4')); 2.47 (s, Me); 2.03, 2.02 (s, 2 MeCO); 1.23 (t, MeCH₂). ¹³C-NMR (75.4 MHz, (D₆)DMSO, 90°): 168.9, 168.7 (2 MeCO); 162.3 (COOEt); 157.6 (CO of Cbz); 153.4, 148.9 (C(2), C(5)); 136.0 (C(1) of Ph); 127.7–126.7 (5 C, arom. C of Cbz); 113.6 (C(3)); 107.8 (C(4)); 73.9, 69.0 (C(2'), C(3')); 66.0 (CH₂ of Cbz); 59.3 (MeCH₂); 57.4 (C(1')); 47.8 (C(4')); 19.7 (2 MeCO); 13.6 (MeCH₂); 12.8 (Me).

Data for **15**: $[\alpha]_{D}^{25} = +40$ (c = 0.6, CH₂Cl₂). ¹H-NMR (300 MHz, (D₆)DMSO, 90°): 7.32–7.16 (*m*, arom. H of Cbz); 6.30 (*s*, H–C(4)); 5.44 (*dd*, ³*J*(1',2') = 7.2, ³*J*(2',3') = 4.8, H–C(2')); 5.39–5.34 (*m*, H–C(3')); 5.14 (*d*, H–C(1')); 5.07, 4.96 (*d*, ²*J*(H,H) = 12.7, CH₂ of Cbz); 4.20 (*q*, ³*J*(H,H) = 7.1, MeCH₂); 3.88 (*dd*, ³*J*(3',4'a) = 5.8, ³*J*(4'a,4'b) = 11.8, H_a-C(4')); 3.54 (*dd*, ³*J*(3',4'b) = 3.8, H_b-C(4')); 2.43 (*s*, Me); 1.93, 1.84 (*s*, 2 MeCO), 1.25 (*t*, MeCH₂). ¹³C-NMR (75.4 MHz, (D₆)DMSO, 90°): 169.3, 168.9 (2 MeCO); 163.1 (COOEt); 157.3 (CO of Cbz); 153.9, 149.3 (C(2), C(5)); 136.8 (C(1) of Ph); 128.2–127.3 (5 C, arom. C of Cbz); 113.9 (C(3)); 108.6 (C(4)); 71.4 (C(2')); 69.9 (C(3')); 66.4 (CH₂ of Cbz); 59.7 (MeCH₂); 55.3 (C(1')); 49.2 (C(4')); 20.2, 20.0 (2 MeCO); 14.1 (MeCH₂); 13.2 (Me). CI-MS: 474 (15, [M + H]⁺). Anal. calc. for C₂₄H₂₇NO₉: C 60.88, H 5.75, N 2.96; found: C 60.71, H 5.99, N 2.58.

Ethyl 5-*[*(2\$,3\$,4R)-3,4-*Dihydroxypyrrolidin-2-yl]-2-methylfuran-3-carboxylate* (4c). To a soln. of **15** (95 mg, 0.20 mmol) in MeOH (5 ml), 1M NaMeO/MeOH (3 drops) was added. The mixture was stirred at r.t. for 20 min, made neutral with *Amberlyst IR-120* (H⁺), and filtered, and the resin washed with MeOH. The filtrate was hydrogenated over 10% Pd/C (20 mg) at 1 atm for 2 h. The catalyst was removed by filtration and the solvent evaporated: **4c** (47 mg, 92%). Colorless oil. $[a]_{D}^{25} = -33$ (*c* = 1, MeOH). IR: 3300–2780 (OH, NH); 1707 (CO), 1541, 1398, 1227, 1101. ¹H-NMR (300 MHz, CD₃OD): 6.62 (*s*, H–C(4)); 4.33–4.24 (*m*, H–C(3')); 4.26 (*q*, ³*J*(H,H) = 7.1, MeCH₂); 4.12 (*t*, ³*J*(1',2') = ³*J*(2',3') = 4.3, H–C(2')); 4.07 (*d*, H–C(1')); 3.07 (*d*, ³*J*(3',4'a) = 7.3, ²*J*(4'a,4'b) = 11.5, H_a–C(4')); 2.92 (*dd*, ³*J*(3',4'b) = 6.1, H_b–C(4')); 2.53 (*s*, Me); 1.32 (*t*, *Me*CH₂). ¹³C-NMR (75.4 MHz, CD₃OD): 165.7 (COOEt); 159.7, 152.1 (C(2), C(5)); 115.2 (C(3)); 109.3 (C(4)); 74.0, 73.9 (C(2'), C(3')); 61.2 (MeCH₂); 60.5 (C(1')); 51.9 (C(4')); 14.6 (*Me*CH₂); 13.7 (Me). CI-MS: 256 (10, [*M*+H]⁺). HR-CI-MS: 256.1183 ([C₁₂H₁₇NO₅ + H]⁺; calc. 256.1185). Anal. calc. for C₁₂H₁₇NO₅: C 56.49, H 6.72, N 5.49; found: C 56.59; H 6.53, N 5.78.

(2R,3S,4R)-2-[4-(Hydroxymethyl)-5-methylfuran-2-yl]pyrrolidine-3,4-diol (16). To a suspension of LiAlH₄ (15 mg, 0.4 mmol) in dry THF (0.5 ml), a soln. of**3c**(51 mg, 0.2 mmol) in dry THF (2 ml) was added under N₂. The mixture was stirred for 15 min at r.t. The soln. was diluted with Et₂O (10 ml), and sat. aq. Na₂SO₄ soln. was added. The solid was filtered and washed with EtOH and the filtered soln. evaporated:**16** $(38 mg, 90%). Colorless oil. <math>[a]_{D}^{25} = -27$ (c = 0.3, MeOH). ¹H-NMR (300 MHz, CD₃OD)¹): 6.58 (s, H–C(4)); 4.48–4.33 (m, H–C(2'), H–C(3')); 4.39 (s, CH₂OH); 4.44 (d, ³J(1',2') = 8.8, H–C(1')); 3.51 (dd, ³J(3',4'a) = 3.5, ²J(4'a,4'b) = 12.5, H_a-C(4')); 3.21 (dd, ³J(3',4'b) = 1.8, H_b-C(4')); 2.30 (s, Me). ¹³C-NMR (75.4 MHz, CD₃OD)¹): 152.3, 146.0 (C(2), C(5)); 121.9 (C(3)); 114.1 (C(4)); 75.5 (C(2')); 71.1 (C(3')); 58.6 (C(1')); 56.1 (CH₂OH); 50.9 (C(4')); 11.6 (Me). CI-MS: 214 (70, [M +H]⁺), 196 (100, [M –H₂O +H]⁺). HR-CI-MS: 214.1068 ([$C_{10}H_{13}NO_4 + H$]⁺; calc. 214.1079).

 $5-\{(2R,3S,4R)-3,4-Dihydroxy-1-[(phenylmethoxy)carbonyl]pyrrolidin-2-yl]-2-methylfuran-3-carboxylic Acid (17). A soln. of 14 (100 mg, 0.21 mmol) in EtOH/lN NaOH 2 :1 (6 ml) was heated at 60° for 6 h. Then Amberlyst IR-120 (H⁺) was added until pH was reached. The mixture was filtered, the resin washed with EtOH, the filtrate evaporated, and the residue purified by CC (SiO₂, CH₂Cl₂/MeOH 40 :1 <math>\rightarrow$ 15 :1): 17 (53 mg, 72%). Colorless oil. $[a]_{25}^{25} = +17$ (c = 2, MeOH). IR: 3579–2054 (OH, COOH), 1688 (CO), 1425, 1356, 1227, 1101. ¹H-NMR (300 MHz, (D₆)DMSO, 90°): 7.34–7.18 (m, Ph); 6.35 (s, H–C(4)); 5.07, 4.98 (d, ²*J*(H,H) = 12.8, CH₂ of Cbz); 4.56 (d, ³*J*(1',2') = 4.1, H–C(1')); 4.18 (m, H–C(3')); 4.04 (t, ³*J*(2',3') = 4.1, H–C(2')); 3.60 (dd, ³*J*(3',4'a) = 5.7, ²*J*(4'a,4'b) = 10.8, H_a–C(4')); 3.40 (dd, ³*J*(3',4'b) = 5.3, H_b–C(4')); 2.45 (s, Me). ¹³C-NMR (75.4 MHz, (D₆)DMSO, 90°): 163.9 (COOH); 156.5 (CO of Cbz); 153.9, 150.9 (C(2), C(5)); 136.4 (C(1) of Ph); 127.7 – 126.7 (5 C, Ph); 114.2 (C(3)); 107.1 (C(4)); 75.2 (C(2')); 68.7 (C(3')); 65.5 (CH₂ of Cbz); 59.9 (C(1')); 50.4 (C(4')); 12.7 (Me). CI-MS: 362 (65, $[M + H]^+$). HR-CI-MS: 362.1222 ($[C_{18}H_{19}NO_7 + H]^+$; calc. 362.1239).

5-[(2R,3S,4R)-3,4-Dihydroxypyrrolidin-2-yl]-2-methylfuran-3-carboxylic Acid (3d). A soln. of 17 (53 mg, 0.15 mmol) in MeOH/THF 3:1 (4 ml) was hydrogenated over 10% Pd/C (15 mg) as described above for 3c/3d (34 mg, 94%). White solid. $[\alpha]_{25}^{25} = -77$ (c = 2.7, MeOH). IR: 3615–2117 (OH, NH, COOOH), 1615 (CO),

1582, 1443, 1103. ¹H-NMR (500 MHz, CD₃OD): 6.69 (*s*, H–C(4)); 4.44 (*dd*, ${}^{3}J(1',2') = 8.6$, ${}^{3}J(2',3') = 3.8$, H–C(2')); 4.41 (*d*, H–C(1')); 4.33–4.30 (*m*, H–C(3')); 3.51 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 4.4$, ${}^{2}J(4'a,4'b) = 12.5$, H_a–C(4')); 3.21 (*dd*, ${}^{3}J(3',4'a) = 1.4$, ${}^{2}J(4'a,4'b) = 1.$

 $5-{(2S,3S,4R)-3,4-Dihydroxy-1-[(phenylmethoxy)carbonyl]pyrrolidin-2-yl]-2-methylfuran-3-carboxylic Acid (18). A soln. of 15 (90 mg, 0.19 mmol) in EtOH/1M NaOH 2:1 (6 ml) was treated as described for 17. Purification by CC (SiO₂, CH₂Cl₂/MeOH 40:1 <math>\rightarrow$ 15:1) gave 18 (46 mg, 69%). Colorless oil. $[a]_{25}^{25} = -26$ (c = 1.8, CH₃OH). IR: 3580–2190 (OH, COOH), 1686 (CO), 1422, 1356, 1227, 1101. ¹H-NMR (300 MHz, (D₆)DMSO, 90°): 7.32–7.19 (m, Ph); 6.37 (s, H–C(4)); 5.07, 4.95 (d, ²J(H,H)=12.8, CH₂ of Cbz); 4.83 (d, ³J(1',2')=6.7,H–C(1')); 4.22 (dd, ³J(2',3')=4.6,H–C(2')); 4.14 (m, H–C(3')); 3.65 (dd, ³J(3',4'a)=5.9, ²J(4'a,4'b)=11.1, H_a–C(4')); 3.38 (dd, ³J(3',4'b)=4.6, H_b–C(4')); 2.42 (s, Me). ¹³C-NMR (75.4 MHz, (D₆)DMSO, 90°): 164.2 (COOH); 155.8 (CO of Cbz); 153.8, 150.3 (C(2), C(5)); 136.4 (C(1) of Ph); 127.6–126.5 (5 C, Ph); 114.1 (C(3)); 107.9 (C(4)); 71.6 (C(2')); 69.2 (C(3')); 65.5 (CH₂ of Cbz); 57.2 (C(1')); 51.0 (C(4')); 12.7 (Me). CI-MS: 362 (4, [M + H]⁺). HR-CI-MS: 362.1222 ([$C_{18}H_{19}NO_7 + H$]⁺; calc. 362.1239).

 $5 \cdot [(2\$, 3\$, 4\aleph) - 3, 4 \cdot Dihydroxypyrrolidin-2 \cdot yl] - 2 \cdot methylfuran-3 \cdot carboxylic Acid (4d). A soln. of$ **18**(46 mg, 0.13 mmol) in MeOH/THF 3 : 1 (4 ml) was hydrogenated as described for**3d/4d** $(28 mg, 92%). Colorless oil. <math>[\alpha]_D^{25} = -10 \ (c = 1, \text{MeOH}). \text{ IR}: 3643 - 2141 \ (OH, \text{NH}, \text{COOH}), 1692 \ (CO), 1580, 1425, 1227, 1103. ^{1}\text{H-NMR} (300 \text{ MHz}, \text{CD}_3\text{OD}): 6.83 \ (s, \text{H}-\text{C}(4)); 4.56 \ (d, ^3J(1',2') = 3.0, \text{H}-\text{C}(1')); 4.48 \ (m, \text{H}-\text{C}(3')); 4.26 \ (t, ^3J(2',3') = 3.5, \text{H}-\text{C}(2')); 3.48 \ (dd, ^3J(3',4'a) = 8.0, ^2J(4'a,4'b) = 11.4, \text{H}_a-\text{C}(4')); 3.14 \ (dd, ^3J(3',4'b) = 7.4, \text{H}_b-\text{C}(4')); 2.50 \ (s, \text{Me}). ^{13}\text{C-NMR} \ (75.4 \text{ MHz}, \text{CD}_3\text{OD}): 171.3 \ (\text{COOH}); 158.2, 144.6 \ (C(2), \text{C}(5)); 120.9 \ (C(3)); 114.1 \ (C(4)); 72.7 \ (C(2')); 72.2 \ (C(3')); 59.7 \ (C(1')); 49.0 \ (C(4')); 13.6 \ (Me). \text{FAB-MS}: 228 \ (100, \ [M+H]^+). \text{ HR-CI-MS}: 228.0872 \ ([C_{10}\text{H}_{13}\text{NO}_5 + \text{H}]^+; \text{ calc}. 228.0872).$

Esters 3e - g. *General Procedure*. To a soln. of ROH (x mmol) and 2,6-dichlorobenzoyl chloride (y mmol) in dry pyridine (z ml), a soln. of **17** (50 mg, 0.139 mmol) in dry DMF (0.9 ml) was added. The mixture was stirred for 5 h. Then the soln. was diluted with CH₂Cl₂ (50 ml) and washed with 1M HCl, sat. aq. NaHCO₃ soln., and brine. The org. layer wasdried (Na₂SO₄) and evaporated and the residue purified by CC (SiO₂, CH₂Cl₂/MeOH 80:1 \rightarrow 60:1). The obtained protected alkyl ester was dissolved in MeOH or THF (4 ml) (see below) and hydrogenated over 10% Pd/C (20 mg) at 1 atm for 1 h. The catalyst was removed by filtration and the solvent evaporated. The following esters were prepared in this manner.

Methyl 5-*[*(2R,3S,4R)-3,4-*Dihydroxypyrrolidin-2-yl]-2-methylfuran-3-carboxylate* (**3e**): ROH = MeOH; x = 0.556 mmol; y = 0.60; z = 2 ml. Purification of the protected methyl ester by CC (SiO₂, CH₂Cl₂/MeOH $20:1 \rightarrow 10:1$) followed by hydrogenolysis (MeOH) gave **3e** (5.7 mg, 37% overall). White solid. $[a]_{D}^{25} = -45$ (c = 0.3, MeOH). IR: 3412 (OH, NH); 2920, 1717 (CO), 1588, 1443, 1236, 1101. ¹H-NMR (400 MHz, CD₃OD): 6.61 (s, H-C(4)); 4.21 (m, H-C(3')); 4.15 ($dd, {}^{3}J(1',2') = 7.6, {}^{3}J(2',3') = 5.0, H-C(2')$); 4.04 (d, H-C(1')); 3.84 (s, COOMe); 3.33 ($dd, {}^{3}J(3',4'a) = 5.2, {}^{2}J(4'a,4'b) = 12.1, H_a-C(4')$); 2.93 ($dd, {}^{3}J(3',4'b) = 3.1$); 2.59 (s, Me). ${}^{13}C-NMR (100.5 MHz, CD₃OD)$: 165.9 (COOMe); 160.4, 153.8 (C(2), C(5)); 114.7 (C(3)); 108.8 (C(4)); 77.3 (C(2')); 72.3 (C(3')); 60.2 (C(1')); 52.5 (C(4')); 13.7 (Me). CI-MS: 242 (8, [M + H]⁺). EI-MS: 241 (7, M^{++}). HR-EI-MS: 241.0955 ($C_{11}H_{15}NO_{5}^{+}$; calc. 241.0950).

1-Methylethyl 5-*[*(2R,3S,4R)-3,4-*Dihydroxypyrrolidin-2-yl]-2-methylfuran-3-carboxylate* (**3f**). ROH = ¹⁻ PrOH; x = 12.7 mmol; y = 0.38 mmol; z = 0.8 ml. Purification of the protected 1-methylethyl ester by CC (SiO₂, CH₂Cl₂/MeOH 80:1 \rightarrow 60:1) followed by hydrogenolysis in THF gave **3f** (6.3 mg, 19% overall). White solid. [*a*]_D²⁵ = -32 (c = 0.2, MeOH). IR: 3396 (OH, NH); 2922, 1731 (CO), 1588, 1406, 1105. ¹H-NMR (400 MHz, CD₃OD): 6.59 (s, H–C(4)); 5.16 (*sept.*, ²*J*(H,H) = 6.2, Me₂CH), 4.20 (*td*, ³*J*(3',4'b) = 3.1, ³*J*(3',4'a) = ³*J*(3',2') = 5.1, H–C(3')); 4.14 (*dd*, ³*J*(1',2') = 7.7, H–C(2')); 4.03 (*d*, H–C(1')); 3.31 (*dd*, ²*J*(4'a,4'b) = 12.1, H_a–C(4')); 2.92 (*dd*, H_b–C(4')); 2.58 (s, Me); 1.36 (d, *Me*₂CH). ¹³C-NMR (100.5 MHz, CD₃OD): 165.1 (COO³Pr); 160.1, 153.6 (C(2), C(5)); 115.5 (C(3)); 108.8 (C(4)); 77.3 (C(2')); 72.3 (C(3')); 68.9 (Me₂CH), 60.3 (C(1')); 52.5 (C(4')); 22.2 (*Me*₂CH); 13.8 (Me). EI-MS: 269 (14, *M*⁺⁺). HR-EI-MS: 269.1260 (C₁₃H₁₉NO₅⁺; calc. 269.1263).

Butyl 5-[(2R,3S,4R)-3,4-Dihydroxypyrrolidin-2-yl]-2-methylfuran-3-carboxylate (**3g**): ROH = BuOH; x = 0.27 mmol; y = 0.27 mmol; z = 1.2 ml. Purification of the protected butyl ester by CC (SiO₂, CH₂Cl₂/MeOH 80:1→60:1) followed by hydrogenolysis in THF gave **3g** (14.2 mg, 37% overall). Colorless oil. $[a]_{25}^{25} = -30$ (c = 0.4, MeOH). IR: 3420 (OH, NH), 2926, 1719 (CO), 1588, 1406, 1103. ¹H-NMR (400 MHz, CD₃OD): 6.60 (s, H–C(4)); 4.27 (t, ²J(H,H) = 7.4, CH₂ of Bu); 4.19 (m, H–C(3')); 4.14 (dd, ³J(1',2') = 7.6, ³J(2',3') = 5.0, H–C(2')); 4.03 (d, H–C(1')); 3.31 (dd, ³J(3',4'a) = 5.2, ²J(4'a,4'b) = 12.1, H_a–C(4')); 2.91 (dd, ³J(3',4'b) = 3.1, H_b–C(4')); 2.57 (s, Me), 1.74 (m, CH₂ of Bu), 1.51 (m, CH₂ of Bu), 1.02 (t, CH₂ of Bu). ¹³C-NMR (100.5 MHz, 200.5) (dd).

 $\begin{array}{l} {\rm CD}_3{\rm OD}): 165.3 \ ({\rm COOBu}); 160.2, 153.9 \ ({\rm C}(2), {\rm C}(5)); 115.2 \ ({\rm C}(3)); 108.7 \ ({\rm C}(4)); 77.3 \ ({\rm C}(2')); 72.3 \ ({\rm C}(3')); 65.1 \ ({\rm CH}_2 \ {\rm of } \ {\rm Bu}); 60.3 \ ({\rm C}(1')); 52.5 \ ({\rm C}(4')); 31.9 \ ({\rm CH}_2 \ {\rm of } \ {\rm Bu}); 20.3 \ ({\rm CH}_2 \ {\rm of } \ {\rm Bu}); 14.0 \ ({\rm Me} \ {\rm of } \ {\rm Bu}); 13.8 \ ({\rm Me}). \ {\rm CI-MS}: 284 \ (17, \ [M+H]^+). \ {\rm EI-MS}: 283 \ (12, \ M^+). \ {\rm HR-EI-MS}: 283.1422 \ ({\rm C}_{14}{\rm H}_{21}{\rm NO}_5^+; {\rm calc}. 283.1420). \end{array}$

Amides **3h**,i: General Procedure. To a soln. of **17** (20 mg, 0.055 mmol) in dry DMF (0.75 ml), PyBOP (1*H*-benzotriazol-1-yloxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate; 34 mg, 0.06 mmol), ⁱPr₂Etn (24 μ l, 0.14 mmol), and RNH₂ (0.06 mmol) were added. The mixture was stirred 30 min at r.t. and then evaporated. The residue was diluted with CH₂Cl₂ and washed with 1M HCl and brine. The org. layer was dried (Na₂SO₄) and evaporated. Purification of the residue by CC (SiO₂, CH₂Cl₂/MeOH 60:1 \rightarrow 30:1) gave the protected amide derivative that was dissolved in MeOH (2 ml) and hydrogenated over 10% Pd/C (15 mg) at 1 atm for 1 h. The catalyst was removed by filtration, and the solvent was evaporated. The following amides were obtained in this manner.

N-{ $(f^{-}[(2R,3S,4R)-3,4-Dihydroxypyrrolidin-2-yl]-2-methylfuran-3-yl]carbonyl]glycine Ethyl Ester ($ **3h**):With RNH₂ = glycine ethyl ester hydrochloride,**3h** $(15 mg, 84% overall) was obtained. Colorless oil. <math>[a]_{D}^{25} = -44 \ (c = 0.7, MeOH)$. IR: 3422 (OH, NH), 1732, 1651 (CO), 1539, 1404, 1223, 1103. ¹H-NMR (300 MHz, CD₃OD)¹): 6.62 (s, H-C(4)); 4.22–4.12 $(m, H-C(2'), H-C(3'), MeCH_2)$; 4.03 $(d, {}^{3}J(1',2')=7.3, H-C(1'))$; 4.01 $(s, NHCH_2)$; 3.31 $(dd \text{ (overlapped by MeOH)}, {}^{3}J(3',4'a) = 5.4, H_a-C(4'))$; 2.91 $(dd, {}^{3}J(3',4'b) = 2.8, {}^{2}J(4'a,4'b) = 12.0, H_b-C(4'))$; 2.52 (s, Me); 1.26 $(t, {}^{3}J(H,H) = 7.1, MeCH_2)$. ¹³C-NMR (75.4 MHz, CD₃OD): 171.6 (COOEt); 166.7 (CONH); 158.2, 153.0 (C(2), C(5)); 117.1 (C(3)); 107.6 (C(4)); 77.2 (C(2')); 72.3 (C(3')); 62.3 (MeCH_2); 60.4 (C(1')); 52.4 (C(4')); 42.0 (CH₂NH); 14.5 (MeCH₂). EI-MS: 312 (23, M⁺⁺). HR-EI-MS: 312.1318 (C₁₄H₂₀N₂O₆⁺; calc. 312.1321).

 $5 - [(2R,3S,4R) - 3,4 - Dihydroxypyrrolidin - 2 - yl] - 2 - methyl - N - phenylfuran - 3 - carboxamide (3i): With RNH₂ = Ph,NH₂ 3i (2.8 mg, 17% overall) was obtained. Colorless oil. <math>[a]_{D}^{2D} = -46 (c = 0.7, MeOH)$. ¹H-NMR (300 MHz, CD₃OD): 7.60 (d, ³J(H,H) = 7.5, H-C(2) and H-C(6) of Ph); 7.32 (t, H-C(3) and H-C(5) of Ph); 7.11 (t, H-C(4) of Ph); 6.80 (s, H-C(4)); 4.22 - 4.15 (m, H-C(2'), H-C(3')); 4.06 (d, ³J(1',2') = 7.0, H-C(1')); 3.35 (m, H_a - C(4')); 2.93 (dd, ³J(3',4'b) = 2.8, ²J(4'a,4'b) = 13.4, H_b-C(4')); 2.57 (s, Me). ¹³C-NMR (75.4 MHz, CD₃OD): 164.7 (CONH); 158.7, 153.5 (C(2), C(5)); 139.7 (C(1) of Ph); 129.9 (C2) and C(6) of Ph); 125.5 (C(4) of Ph); 122.4 (C(3) and C(5) of Ph); 118.1 (C(3)); 107.7 (C(4)); 77.3 (C(2')); 72.3 (C(3')); 60.6 (C(1')); 52.5 (C(4')); 13.7 (Me). CI-MS: 303 (100, [M + H]⁺). HR-CI-MS: 303.1329 ([C₁₆H₁₈N₂O₄ + H]⁺; calc. 303.1345).

Amides 19–21: General Procedure. To a soln. of 17 (0.1 mmol) in dry DMF (1 ml), PyBOP (1.2 equiv.), ⁱPr₂EtN (1.2 equiv.), and R¹R²NH (1.2 equiv.) were added. The mixture was stirred for 30 min and then evaporated. The residue was diluted with CH₂Cl₂ and washed with 1M HCl and brine. The org. layer was dried (Na₂SO₄) and evaporated. Purification of the resulting residue by CC (SiO₂, CH₂Cl₂/MeOH 80:1 \rightarrow 40:1) gave the protected amide derivative, which was dissolved in dry THF (4 ml) and hydrogenated over 10% Pd/C at 1 atm for 1 h. The catalyst was removed by filtration, the solvent evaporated, and the corresponding residue purified by CC (SiO₂, CH₂Cl₂/MeOH 25:1 \rightarrow 6:1). The following compounds were prepared in this manner.

5-[(2R,3S,4R)-3,4-Dihydroxy-1-(4-hydroxybutyl)pyrrolidin-2-yl]-2-methyl-N-(1-methylethyl)furan-3-carboxamide (19): With R¹R²NH = i^prNH₂, 19 (15 mg, 46% overall) was obtained. Colorless oil. [a]_D⁵ = +10 (c = 0.7, MeOH). IR: 3324 (OH, NH), 2936, 1634 (CO), 1588, 1530, 1406, 1101. ¹H-NMR (400 MHz, CD₃OD): 6.67 (s, H–C(4)); 4.22 (m, H–C(3)); 4.20 (m, Me₂CH); 4.13 (dd, ³J(2',3') = 5.9, ³J(1',2') = 7.1, H–C(2')); 3.56 – 3.50 (m, H_a–C(4'), CH₂(4'')); 3.48 (d, H–C(1')); 2.70 (m, H_a–C(1')); 2.56 (s, Me); 2.44 (dd, ³J(4'b,3') = 4.9, ²J(4'a,4'b) = 10.4, H_b–C(4')); 2.36 (m, H_b–C(1'')); 1.55–1.50 (m, CH₂(2''), CH₂(3'')); 1.25 (d, ³J(H,H) = 6.6, Me₂CH). ¹³C-NMR (100.5 MHz, CD₃OD): 165.6 (CONH³Pr); 157.6, 152.6 (C(2), C(5)); 117.7 (C(3)); 108.9 (C(4)); 76.1 (C(2')); 70.1 (C(3')); 68.5 (C(1')); 62.7 (C(4'')); 59.8 (C(4')); 55.9 (C(1'')); 42.4 (Me₂CH); 31.6, 25.4 (C(2''), C(3'')); 22.6 (Me_2 CH); 13.7 (Me). EI-MS: 340 (22, M^{++}). HR-EI-MS: 340.2003 (C₁₇H₂₈N₂O₃⁺; calc. 340.1998).

5 - [(2R,3S,4R) - 3,4 - Dihydroxy - 1 - (4 - hydroxybutyl) pyrrolidin -2 - yl] - N,N - diethyl -2 - methylfuran -3 - carboxa $mide (20). With R¹R²NH = Et₂NH, 20 (18 mg, 22% overall) was obtained. Colorless oil. <math>[\alpha]_{D}^{25} = +11$ (c = 0.7, MeOH). IR: 3391 (OH), 2934, 1666 - 1603 (CO), 1443, 1221, 1101. ¹H-NMR (400 MHz, CD₃OD): 6.40 (s, H–C(4)); 4.23 (m, H–C(3')); 4.13 (dd, $^{3}J(2',3') = 5.9$, $^{3}J(1',2') = 7.0$, H–C(2')); 3.55 - 3.50 (m, H–C(1'), H_a-C(4'), CH₂(4''), 2 MeCH₂); 2.70 (m, H_a-C(1'')); 2.44 (dd, $^{3}J(4'b,3') = 4.9$, $^{2}J(4'a,4'b) = 10.4$, H_b-C(4')); 2.40 (m, H_b-C(1'')); 2.36 (s, Me); 1.58 - 1.49 (m, CH₂(''), CH₂(3'')); 1.23 (br. s, 2 *Me*CH₂). ¹³C-NMR (100.5 MHz, CD₃OD): 168.1 (CONHEt₂); 153.6, 153.2 (C(2), C(5)); 118.1 (C(3)); 109.5 (C(4)); 76.3 (C(2')); 70.1 (C(3')); 68.4 (C(1')); 52.8 (C(4'')); 55.9 (C(1'')); 44.6, 40.9 (2 MeCH₂); 31.6, 25.4 (C(2'')), C(3'')); 14.6, 13.2 (2 *Me*CH₂); 12.8 (Me). EI-MS: 354 (22, *M*⁺⁺). HR-EI-MS: 354.2157 (C₁₈H₃₀N₂O₃⁺; calc. 354.2155). N-{[5-[(2R,3S,4R)-3,4-Dihydroxy-1-(4-hydroxybutyl)pyrrolidin-2-yl]-2-methylfuran-3-yl/carbonyl]-L-phenylalanine Methyl Ester (**21**). With R¹R²NH = H₂N – Phe – OMe**21**(18 mg, 39% overall) was obtained. $Colorless oil. <math>[\alpha]_{25}^{25} = -21 (c = 0.8, MeOH)$. IR: 3367 (OH, NH); 2934, 2857, 1736 (CO), 1642 (CO), 1528, 1443, 1227, 1101, 849, 700. ¹H-NMR (400 MHz, CD₃OD)¹): 7.31 – 7.24 (m, Ph); 6.64 (s, H – C(4')); 4.82 (dd, ³J(H, H_a of Bn) = 5.4, ³J(H, H_b of Bn) = 9.4, HNCHCOOMe), 4.22 (m, H – C(3')); 4.12 (dd, ³J(2',3') = 5.9, ³J(1',2') = 7.0, H – C(2')); 3.76 (s, COOMe); 3.57 – 3.51 (m, H_a – C(4'), CH₂(4'')); 3.49 (d, H – C(1'')); 3.29 (dd, ²J(H, H) = 13.8, PhCH); 3.11 (dd, PhCH); 2.70 (m, H_a – C(1'')); 2.47 (s, Me); 2.45 (dd, ³J(4'b,3') = 4.9, ²J(4'a,4'b) = 10.4, H_b – C(4')); 2.37 (m, H_b – C(1'')); 1.59 – 1.48 (m, CH₂(2''), CH₂(3'')). ¹³C-NMR (100.5 MHz, CD₃OD)¹): 173.8 (COOMe); 166.2 (CONH); 158.1, 152.8 (C(2), C(5')); 138.5 (C(1) of Ph); 130.2, 129.5, 127.8 (Ph); 117.0 (C(3)); 108.9 (C(4)); 76.1 (C(2')); 70.1 (C(3')); 68.5 (C(1')); 62.8 (C(4'')); 59.8 (C(4')); 55.9 (C(1'')); 55.3 (PhCH₂); 52.8 (COOMe); 38.1 (CH of HN – Phe – OMe); 31.6, 25.4 (C(2''), C(3'')); 13.6 (Me). EI-MS: (30, M⁺⁺). HR-EI-MS: 460.2208 (C₂₄H₃₂N₃O⁴; calc. 460.2209).

 $5-\{(2R,3S,4R)-and (2S,3S,4R)-1-[(9H-Fluoren-9-ylmethoxy)carbonyl]-3,4-dihydroxypyrrolidin-2-yl]-2-interval and (2S,3S,4R)-1-[(9H-Fluoren-9-ylmethoxy)carbonyl]-3,4-dihydroxypyrrolidin-2-yl]-3-interval and (2S,3S,4R)-1-[(9H-Fluoren-9-ylmethoxy)carbonyl]-3,4-dihydroxypyrrolidin-2-ylmethoxypyrrolidin-2-interval and (2S,3S,4R)-1-[(9H-Fluoren-9-ylmethoxypyrrolidin-2-interval and (2S,3S,4R)-1-[(9H-Fluoren-9-ylmethoxypyrrolidin-2-interval and (2S,3S,4R)-1-[(9H-Fluoren-9-ylmethoxypyrrolidin-2-interval and (2S,3S,4R)-1-[(9H-Fluoren-9-ylmethoxypyrrolidin-2-interval and (2S,3S,4R)-1-[(9H-Fluoren-9-xpyrrolidin-2-interval and (2S,3S,4R)-1-[(9H-Fluoren-9-x$ methylfuran-3-carboxylic Acid (22 and 23, resp.). The mixture 3c/4c 2:1 (0.77 g, 3.01 mmol) was dissolved in EtOH/IM NaOH (80 ml) and heated for 6 h at 60°. The mixture was then neutralized with Amberlyst IR-120 (H⁺), filtered, and evaporated. The residue was dissolved in dry pyridine (2 ml) and cooled to 0°. Chlorotrimethylsilane (2.3 ml, 18.24 mmol) was added dropwise. The mixture was allowed to warm to r.t. and stirred for 45 min. The soln. was then cooled to 0° and 9*H*-fluoren-9-ylmethyl carbonochloridate (1.19 g, 4.46 mmol) was added. The mixture was warmed to r t, and stirred for 1.5 h. Then, the soln, was cooled again to 0°, H₂O (6 ml) was added, and the soln. stirred for 1 h at r.t. Finally, the solvent was evaporated and the residue purified by CC (SiO₂, CH₂Cl₂/MeOH 15:1 \rightarrow 8:1): **22/23**2:1 (1.11 g, 82% overall). White solid. IR: 3600–2350 (OH, COOH)), 1690 (CO), 1418, 1223, 1103, 1024, 743. ¹H-NMR (300 MHz, CD₃OD; mixture of conformers of 22/23): 7.75-7.23 (*m*, arom. H of Fmoc); 6.37, 6.28 (br. s, each, H-C(4)); 4.40-4.08 (*m*, CH and CH₂ of Fmoc, H-C(1'), H-C(2'), H-C(3'), H-C(4')); 3.75-3.40 (m, H-C(4')); 2.49, 2.47 (s, each, Me). ¹³C-NMR (75.4 MHz, CD₃OD; mixture of conformers of 22/23): 167.3 (COOH); 159.8, 159.7, 152.2 (C(2), C(5)); 145.2, 142.6, 128.7, 128.1, 125.9, 120.9 (arom. C of Fmoc); 116.1 (C(3)); 110.0, 109.0 (C(4)); 77.6, 70.6, 62.2, 59.1, 51.7 (C(1'), C(2'), C(3'), C(4')); 68.5 (CH₂ of Fmoc); 49.9–48.2 (CH of Fmoc); 13.7 (Me). FAB-MS: 472 (33, [M+ Na^{+} , 494 (15, $[M - 1 + 2Na^{+}]$). HR-FAB-MS: 472.1377 ($[C_{25}H_{23}NO_{7} + Na^{+}]$; calc. 472.1372).

Amides (**3b**j,k and **4b**j,k): General Procedure. To a soln. of **22/23** 2:1 (0.1 mmol) in dry DMF (1 ml), PyBOP (1.2 equiv.), $^{1}Pr_{2}EIN$ (1.2 equiv.), and $R^{1}R^{2}NH$ (1.2 equiv.) was added. The mixture was stirred for 30 min and then evaporated. The residue was diluted with CH₂Cl₂ and washed with 1M HCl and brine. The org. layer was dried (Na₂SO₄) and evaporated and the residue acylated conventionally with Ac₂O/pyridine. The resulting residue was purified by CC (SiO₂, Et₂O/petroleum ether 1:2 \rightarrow 5:1) to give, separately, the two *O*acetylated 1'-epimeric¹) amides that were, independently, dissolved in MeOH (2 ml). Then 1M NaOMe/MeOH (4 drops) was added and the mixture stirred at r.t. for 20 min. The solvent was evaporated and the residue dissolved in DMF (2 ml) and treated with Et₂NH (30 equiv.). The mixture was stirred for 15 min and then evaporated, and the resulting residue purified by CC (SiO₂, CH₂Cl₂/MeOH 20:1 \rightarrow 6:1). The following compounds were prepared in this manner.

5-[(2R,3S,4R)- and (2S,3S,4R)-3,4-Dihydroxypyrrolidin-2-yl]-2-methyl-N-(phenylmethyl)furan-3-carboxamide (**3b** and **4b**): With R¹R²NH = PhCH₂NH₂, **3b** (9.8 mg, 46% overall) and **4b** (3.8 mg, 36% overall) were obtained. Colorless oils.

Data of **3b**: $[\alpha]_{25}^{D5} = -55$ (c = 0.8, MeOH). IR: 3388 (NH, OH), 2917, 2830, 1640 (CO), 1404, 1221, 1103, 739. ¹H-NMR (400 MHz, CD₃OD): 7.36–7.23 (m, Ph); 6.73 (s, H–C(4)); 4.53 (s, CH₂ of Bn); 4.26–4.22 (m, H–C(2'), H–C(3')); 4.15 (d, ³J(1',2') = 7.3, H–C(1')); 3.38 (dd (overlapped by MeOH), H_a–C(4')); 3.01 (dd, ³J(3',4'b) = 2.3, ²J(4'a,4'b) = 12.0, H_b–C(4')); 2.58 (s, Me). ¹³C-NMR (100.5 MHz, CD₃OD): 166.1 (CONHBn); 158.3, 151.9 (C(2), C(5)); 140.3, 129.5, 128.5, 128.1 (6 C, Ph); 117.6 (C(3)); 108.3 (C(4)); 76.9 (C(2')); 72.1 (C(3')); 60.0 (C(1')); 52.2 (C(4')); 43.9 (PhCH₂); 13.7 (Me). EI-MS: 316 (13, M^{++}). HR-EI-MS: 316.1415 ($C_{17}H_{20}N_2O_4^+$; calc. 316.1423).

Data of **4b**: $[a]_{25}^{25} = -22$ (c = 0.6, MeOH). IR: 3388 (NH, OH), 2917, 2830, 1640 (CO), 1404, 1103, 1028, 739. ¹H-NMR (400 MHz, CD₃OD): 7.34–7.25 (m, Ph); 6.73 (s, H–C(4')); 4.52 (s, PhCH₂); 4.37 (m, H–C(3')); 4.23 (d, $^{3}J(1',2') = 3.9$, H–C(1')); 4.19 (t, $^{3}J(2',3') = 4.1$, H–C(2')); 3.20 (dd, $^{3}J(3',4'a) = 7.5$, $^{2}J(4'a,4'b) = 11.5$, H_a–C(4')); 2.99 (dd, $^{3}J(3',4'b) = 6.3$, H_b–C(4')); 2.55 (s, Me). ¹³C-NMR (100.5 MHz, CD₃OD): 166.3 (CONHBn); 157.5, 150.6 (C(2), C(5)); 140.4, 129.5, 128.4, 128.1 (6 C, Ph); 117.6 (C(3)); 108.5 (C(4)); 73.7, 73.5 (C(2'), C(3')); 60.3 (C(1')); 51.3 (C(4')); 43.8 (PhCH₂); 13.6 (Me). EI-MS: 316 (4, M^{++}). HR-EI-MS: 316.1435 (C₁₇H₂₀N₂O₄⁺; calc. 316.1423).

5-[(2R,3S,4R)- and (2S,3S,4R)-3,4-Dihydroxypyrrolidin-2-yl]-2-methyl-N-(1-methylethyl)furan-3-carboxamide (**3** and **4** j, resp.): With R¹R²NH = ⁱPrNH₂, **3** j (7.5 mg, 41% overall) and **4** j (2.9 mg, 35% overall) were obtained. Colorless oils.

Data of $3j: [a]_{25}^{25} = -70$ (c = 0.6, MeOH). IR: 3356 (NH, OH), 1634 (CO), 1534, 1400, 1103. ¹H-NMR (400 MHz, CD₃OD): 6.67 (s, H-C(4)); 4.24-4.12 (m, H-C(2'), H-C(3'), Me₂CH); 4.06 (d, ${}^{3}J(1',2') = 7.5$, H-C(1')); 3.33 (dd, H_a-C(4')); 2.95 (dd, ${}^{3}J(3',4'b) = 3.0$, ${}^{2}J(4'a,4'b) = 12.1$, H_b-C(4')); 2.56 (s, Me); 1.25 (d, ${}^{3}J(H,H) = 6.6$, Me₂CH). ¹³C-NMR (100.5 MHz, CD₃OD): 165.5 (CONHⁱPr); 157.6, 152.7 (C(2), C(5)); 117.8 (C(3)); 107.7 (C(4)); 77.2 (C(2')); 72.3 (C(3')); 60.4 (C(1')); 52.4 (C(4')); 42.4 (Me₂CH); 22.6 (Me₂CH); 13.6 (Me). EI-MS: 268 (18, M⁺⁺). HR-EI-MS: 268.1425 (C₁₃H₂₀N₂O₄⁺; calc. 268.1423).

 $\begin{array}{l} Data \ of \ \mathbf{4j}: [a]_D^{25} = -10 \ (c=0.3, \text{MeOH}). \ IR: 3325 \ (\text{NH}, \text{OH}), 2930, 1634 \ (\text{CO}), 1588, 1402, 1101. \ ^{1}\text{H}-\text{NMR} \\ (400 \ \text{MHz}, \ \text{CD}_3\text{OD}): \ 6.88 \ (s, \text{H}-\text{C}(4)); \ 4.50-4.45 \ (m, \text{H}-\text{C}(1'), \ \text{H}-\text{C}(3')); \ 4.29 \ (t, \ ^{3}J(1',2') = \ ^{3}J(2',3') = \ ^{3}.9, \\ \text{H}-\text{C}(2')); \ 4.18 \ (sept., \ ^{3}J(\text{H},\text{H}) = \ 6.6, \ \ \text{Me}_2\text{C}H); \ 3.38 \ (dd \ \ (overlapped \ by \ \ \text{MeOH}), \ \ \text{H}_a-\text{C}(4')); \ 3.15 \\ (dd, \ ^{3}J(3',4'b) = \ 6.8, \ \ ^{2}J(4'a,4'b) = \ 11.6, \ \ \text{H}_b-\text{C}(4')); \ 2.55 \ (s, \ \text{Me}); \ 1.25 \ (d, \ ^{3}J(\text{H},\text{H}) = \ 6.6, \ \ Me_2\text{CH}). \ \ ^{13}\text{C}-\text{NMR} \\ (100.5 \ \ \text{MHz}, \ \text{CD}_3\text{OD}): \ 165.3 \ \ (\text{CONH}^{1}\text{Pr}); \ 157.7, \ 147.9 \ \ (\text{C}(2), \ \text{C}(5)); \ 118.2 \ \ (\text{C}(3)); \ 110.1 \ \ (\text{C}(4)); \ 73.2, \ 72.8 \ \ (\text{C}(2'), \\ \text{C}(3')); \ 59.9 \ \ (\text{C}(1')); \ 50.2 \ \ (\text{C}(4')); \ 42.5 \ \ (Me_2\text{CH}), \ 22.6 \ \ (Me_2\text{CH}); \ 13.5 \ \ (\text{Me}). \ \text{CI-MS}: \ 269 \ \ (8, \ \ (M+H]^+). \ \text{EI-MS}: \\ (8, \ M^{++}). \ \text{HR-EI-MS}: \ 268.1429 \ \ (\text{C}_{13}\text{H}_{20}\text{N}_2\text{O}_4^+; \ \text{cac.} \ 268.1423). \end{array}$

5-[(2R,3S,4R)- and (2S,3S,4R)-3,4-Dihydroxypyrrolidin-2-yl]-N,N-diethyl-2-methylfuran-3-carboxamide (**3k** and **4k**): With R¹R²NH = Et₂NH, **3k** (7.3 mg, 39% overall) and **4k** (3.1 mg, 36% overall) were obtained. Colorless oils.

Data of **3k**: $[a]_{D}^{15} = -50$ (*c* = 0.3, MeOH). IR: 3412 (NH, OH), 2922, 1595–1700 (CO), 1443, 1101. ¹H-NMR (400 MHz, CD₃OD): 6.42 (*s*, H–C(4)); 4.24–4.18 (*m*, H–C(2'), H–C(3')); 4.10 (*d*, ³*J*(1',2') = 7.5, H–C(1')); 3.52 (br. *s*, 2 MeCH₂); 3.38 (*dd* (overlapped by MeOH), H_a–C(4')); 2.97 (*dd*, ³*J*(3',4'b) = 2.5, ²*J*(4'a,4'b) = 12.0, H_b–C(4')); 2.36 (*s*, Me); 1.22 (br. *s*, 2 *Me*CH₂). ¹³C-NMR (100.5 MHz, CD₃OD): 168.0 (CONEt₂); 153.7, 152.9 (C(2), C(5)); 118.2 (C(3)); 108.5 (C(4)); 77.2 (C(2')); 72.2 (C(3')); 60.2 (C(1')); 52.3 (C(4')); 44.6, 40.9 (MeCH₂); 14.6, 13.1 (*Me*CH₂); 12.8 (Me). EI-MS: 282 (14, *M*⁺⁺). HR-EI-MS: 282.1577 (C₁₄H₂₂N₂O₄; calc. 282.1579).

Data of **4k**: $[a]_{25}^{25} = -13$ (c = 0.3, MeOH). IR: 3404 (NH, OH), 2974, 2932, 1661–1542 (CO), 1443, 1383, 1101. ¹H-NMR (400 MHz, CD₃OD): 6.55 (s, H–C(4)); 4.44–4.39 (m, H–C(3')); 4.31 (d, ³J(1',2') = 3.9, H–C(1')); 4.23 (t, ³J(2',3') = 3.9, H–C(2')); 3.52 (br. s, 2 MeCH₂); 3.26 (dd, ³J(3',4'a) = 7.5, ²J(4'a,4'b) = 11.5,H_a-C(4')); 3.04 (dd, ³J(3',4'b) = 6.4, H_b-C(4')); 2.36 (s, Me); 1.23 (d, 2 *M*eCH₂). ¹³C-NMR (100.5 MHz, CD₃OD): 168.1 (CONEt₂); 153.5, 150.2 (C(2), C(5)); 118.3 (C(3)); 109.6 (C(4)); 73.5, 73.3 (C(2'), C(3')); 60.2 (C(1')); 51.0 (C(4')); 44.6, 40.9 (MeCH₂); 14.6, 13.2, (*M*eCH₂); 12.8 (Me). EI-MS: 282 (15, *M*⁺⁺). HR-EI-MS: 282.1584 (C₁₄H₂₂N₂O₄⁺; calc. 282.1579).

 $5 \cdot [(2R,3S,4R) \cdot 3,4 \cdot Dihydroxypyrrolidin \cdot 2 \cdot yl] \cdot N \cdot ethyl \cdot 2 \cdot methyl furan \cdot 3 \cdot carboxamide (31). As described for 3b,j,k, with 22 (46 mg, 0.1 mmol) and EtNH₂ but omitting acetylation and deacetylation with 1M NaOMe/MeOH. Fmoc Deprotection gave 31 (14.2 mg, 56% overall). Colorless oil. <math>[a]_D^{25} = -51$ (c = 0.5, MeOH). IR: 3347 (NH, OH), 2928, 1634 (CO), 1588, 1445, 1101, 856, 748. ¹H-NMR (400 MHz, CD₃OD): 6.67 (s, H-C(4)); 4.25 - 4.21 (m, H-C(2'), H-C(3')); 4.13 (d, J(1',2') = 7.1, H-C(1')); 3.39 - 3.34 (m (overlapped by MeOH), H_a-C(4'), MeCH₂); 3.00 (dd, $^{3}J(3',4'b) = 2.5$, $^{2}J(4'a,4'b) = 12.1$, H_b-C(4')); 2.57 (s, Me); 1.23 (t, $^{3}J(H,H) = 7.3$, $MeCH_2$). ¹³C-NMR (100.5 MHz, CD₃OD): 166.1 (CONHEt); 157.9, 151.9 (C(2), C(5)); 117.7 (C(3)); 108.2 (C(4)); 76.9 (C(2')); 72.1 (C(3')); 60.1 (C(1')); 52.2 (C(4')); 35.2 (MeCH₂); 15.0 ($MeCH_2$); 13.6 (Me). CI-MS: 255 (23, $[M + H]^+$). EI-MS: 254 (12, M^{++}). HR-EI-MS: 254.1262 ($c_{12}H_{18}N_2O_{1}^+$; calc. 254.1267).

S-Phenyl 5-[(2R,3S,4R)-3,4-Dihydroxypyrrolidin-2-yl]-2-methylfuran-3-carbothioate (**3a**) and Methyl 5-[(2R,3S,4R)-3,4-Dihydroxypyrrolidin-2-yl]-2-methylfuran-3-carboxylate (**3e**). To a soln. of **22/23** (104 mg, 0.23 mmol) in dry THF (1.3 ml), thiophenol (30 μ l, 0.3 mmol), DCC (63 mg, 0.3 mmol), and DMAP (3 mg) were added. The mixture was stirred for 2 h and evaporated and the residue acetylated conventionally with Ac₂O/pyridine. Purification of the residue by CC (SiO₂, Et₂O/petroleum ether 1:2 \rightarrow 2:1) gave **24** (69 mg, 48%) and **25** (26 mg, 18%).

Diasteroisomer **24** was dissolved in MeOH (2 ml), and 1M NaMeO/MeOH was added until a basic pH was reached. The mixture was left to stand at r.t. for 20 min, then made neutral with *Amberlyst IR-120* (H⁺), filtered, and evaporated. The residue was dissolved in DMF (2 ml), Et₂NH (30 equiv.) was added, the mixture stirred for 15 min at r.t. and then evaporated, and the residue purified by CC (SiO₂, CH₂Cl₂/MeOH 20:1 \rightarrow 6:1): **3a** (8 mg, 23%) as colorless oil followed by **3e** (7 mg, 28%; see above). **3a**: $[a]_{D}^{25} = -34$ (c = 0.3; MeOH). IR: 3375 (NH, OH), 2922, 1721 (CO), 1665, 1589, 1406, 1105. ¹H-NMR (400 MHz, CD₃OD); 7.54–7.48 (*m*, Ph); 6.81 (*s*, H–C(4)); 4.24–4.17 (*m*, H–C(2'), H–C(3')); 4.10 (*d*, ³*J*(1',2') = 7.5, H–C(1')); 3.35 (*dd* (overlapped by MeOH), H_a–C(4')); 2.96 (*dd*, ³*J*(3',4'b) = 2.8, ²*J*(4'a,4'b) = 12.0, H_b–C(4')); 2.59 (*s*, Me). ¹³C-NMR

 $\begin{array}{l} (100.5 \text{ MHz}, \text{CD}_3\text{OD}): 185.6 \ (\text{COSEt}); 158.5, 154.5 \ (\text{C}(2), \text{C}(5)); 136.2, 130.6, 130.3 \ (5 \text{ C}, \text{Ph}); 128.5 \ (\text{C}(1) \ \text{of} \\ \text{Ph}); 121.7 \ (\text{C}(3)); 107.6 \ (\text{C}(4)); 77.4 \ (\text{C}(2')); 72.3 \ (\text{C}(3')); 60.2 \ (\text{C}(1')); 52.5 \ (\text{C}(4')); 14.2 \ (\text{Me}). \ \text{CI-MS}: 320 \ (83, [M+H]^+). \\ \text{EI-MS}: 319 \ (5, M^{++}). \ \text{HR-EI-MS}: 319.0884 \ (\text{C}_{16}\text{H}_{17}\text{NO}_4\text{S}^+; \\ \text{calc.} \ 319.0878). \end{array}$

Methyl 5-*[*(2\$,3\$,4**R**)-3,4-*Dihydroxypyrrolidin-2-yl]-2-methylfuran-3-carboxylate* (**4e**). As described for **3a/3e**, with diastereoisomer **25** (see above; 26 mg, 0.041 mmol) in MeOH (3 ml), 1M NaOMe/MeOH, and Et₂NH/DMF: **4e** (5.5 mg, 56%) (the (1'*S*)-epimer¹) **4a** of **3a** was not observed). Colorless oil. $[a]_{25}^{55} = -27$ (*c* = 0.3, MeOH). IR: 3375 (NH, OH), 1719 (CO), 1589, 1406, 1101. ¹H-NMR (400 MHz, CD₃OD): 6.70 (*s*, H–C(4)); 4.36 (*m*, H–C(3')); 4.20–4.48 (*m*, H–C(2'), H–C(1')); 3.84 (*s*, COO*Me*); 3.18 (*dd*, ³*J*(3',4'a) = 7.4, ²*J*(4'a,4'b) = 11.5, H_a–C(4')); 3.00 (*dd*, ³*J*(3',4'b) = 6.2, H_b–C(4')); 2.58 (*s*, Me). ¹³C-NMR (100.5 MHz, CD₃OD): 170.4 (COOMe); 159.9, 151.6 (C(2), C(5)); 114.7 (C(3)); 109.7 (C(4)); 73.8, 73.7 (C(2'), C(3')); 60.3 (C(1')); 51.8 (COOMe); 51.6 (C(4')); 13.7 (Me). CI-MS: 242 (14, [*M* + H]⁺⁺). EI-MS: 241 (8, *M*⁺⁺). HR-EI-MS: 241.0945 (C₁₁H₁₅NO₅⁺; calc. 241.0950).

S-*Ethyl 5-[(2*R,3S,4R)-*3*,4-*Dihydroxypyrrolidin-2-yl]-2-methylfuran-3-carbothioate* (**3m**). To a soln. of **22** (40 mg, 0.09 mmol) in dry THF (1.5 ml), ethanethiol (14 µl, 0.18 mmol), DCC (38 mg, 0.18 mmol), and DMAP (3 mg) were added. The mixture was stirred for 2 h at r.t. and then evaporated. Purification of the residue by CC (SiO₂, CH₂Cl₂/MeOH 80:1 \rightarrow 65:1) gave the protected thioester **26** (13 mg, 0.026 mmol), which was dissolved in DMF (1.5 ml). Et₂NH (30 equiv.) was added and the soln. stirred for 15 min at r.t. The solvent was evaporated and the resulting residue purified by CC (SiO₂, CH₂Cl₂/MeOH 20.1 \rightarrow 6:1): **3m** (5.3 mg, 27% overall). Colorless oil. [α]₂₅²⁵ = -70 (c = 0.4, MeOH). IR: 3359 (NH, OH), 2928, 1651 (CO), 1570, 1406, 1103, 878. ¹H-NMR (400 MHz, CD₃OD): 6.71 (s, H–C(4)); 4.24–4.18 (m, H–C(2'), H–C(3')); 4.10 (d, ³J(1',2') = 7.4, H–C(1')); 3.36 (dd (overlapped by MeOH), H_a–C(4')); 3.04 (q, ³J(H,H) = 7.4, MeCH₂); 2.97 (dd, ³J(3',4'b) = 2.6, ²J(4'a,4'b) = 12.0, H_b–C(4')); 2.60 (s, Me); 1.33 (t, *MeCH₂*). ¹³C-NMR (100.5 MHz, CD₃OD): 187.5 (COSEt); 157.7, 153.4 (C(2'), C(5)); 122.6 (C(3)); 108.1 (C(4)); 77.2 (C(2')); 72.2 (C(3')); 60.0 (C(1')); 52.3 (C(4')); 23.7 (MeCH₂); 15.4 (*Me*CH₂); 14.2 (Me). EI-MS: 271 (13, *M*⁺⁺). HR-EI-MS: 271.0875 (C₁₂H₁₇NO₄S⁺; calc. 271.0878).

REFERENCES

- A. E. Stütz, 'Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond', Ed. Wiley-VCH, Weinheim, 1999; G. W. J. Fleet, S. V. Evans, L. E.Fellows, R. J. Nash, *Tetrahedron Lett.* **1985**, *26*, 3127; N. Asano, K. Oseki, H. Kizu, K. Matsui, *J. Med. Chem.* **1994**, *37*, 3701; N. Asano, M. Nishida, M. Miyauchi, K. Ikeda, M. Yamamoto, H. Kizu, Y. Kameda, A. A. Watson, R. J. Nash, G. W. J. Fleet, *Phytochemistry* **2000**, *53*, 379.
- [2] F. Popowycz, S. Gerber-Lemaire, R. Demange, E. Rodriguez-García, A. T. Carmona-Asenjo, I. Robina, P. Vogel, *Bioorg. Med. Chem. Lett.* 2001, 11, 2489.
- [3] C. R. Johnson, M. W. Miller, A. Golebiowski, H. Sundram, M. B. Ksebati, *Tetrahedron Lett.* 1994, 35, 8991;
 B. A. Johns, Y. T. Pan, A. D. Elbein, C. R. Johnson, J. Am. Chem. Soc. 1997, 119, 4856; M. A. Leewenburgh,
 S. Picasso, H. S. Overkleeft, G. A. van der Marel, P. Vogel, J. H. van Boom, Eur. J. Org. Chem. 1999, 1185;
 O. R. Martin, L. Liu, F. Yang, *Tetrahedron Lett.* 1996, 37, 1991; O. M. Saavedra, O. Martin, J. Org. Chem. 1996, 61, 6987; A. Baudat, P. Vogel, *Tetrahedron Lett.* 1996, 37, 483; A. Baudat, P. Vogel, J. Org. Chem. 1997, 62, 6252; E. Frerot, C. Marquis, P. Vogel, J. Org. Chem. 1997, 62, 6252; K. Kraehenbuehl, S. Picasso, P. Vogel, *Helv. Chim. Acta* 1998, 81, 1439; Y.-H. Zhu, P. Vogel, J. Org. Chem. 1999, 64, 666; C. Marquis, S. Picasso, P. Vogel, Synthesis 1999, 1441; F. Cardona, I. Robina, P. Vogel, J. Carbohydr. Chem. 2000, 19, 555;
 C. Marquis, F. Cardona, I. Robina, G. Wurth, P. Vogel, Heterocycles 2002, 56, 181; Y.-H. Zhu, P. Vogel, Chem. Commun. 1999, 1873; F. Cardona, S. Valenza, S. Picasso, A. Goti, A. Brandi, J. Org. Chem. 1998, 63, 7311; I. Navarro, P. Vogel, Helv. Chim. Acta 2002, 85, 152.
- [4] S. Gerber-Lemaire, F. Popowycz, E. Rodriguez-Carvajal, A. T. Carmona-Asenjo, I. Robina, P. Vogel, *ChemBioChem* 2002, 3, 466.
- [5] I. Robina, A. J. Moreno-Vargas, J. G. Fernández-Bolaños, J. Fuentes, R. Demange, P. Vogel, Bioorg. Med. Chem. Lett. 2001, 11, 2555.
- [6] A. J. Moreno-Vargas, R. Demange, J. Fuentes, I. Robina, P. Vogel, Bioorg. Med. Chem. Lett. 2002, 12, 2335.
- [7] C. W. Ekhart, M. H. Flechter, P. Hadwiger, E. Mlaker, A. E. Stütz, A. Tauss, T. M. Wrodnigg, in 'Iminosugars as Glycosidases Inhibitors, Nojirimycin and Beyond', Ed. A. E. Stütz, Wiley-VCH, Weinheim, 1999, p. 254.
- [8] F. García-González, Adv. Carbohydr. Chem. 1956, 11, 97.
- [9] E. J. Corey, C. U. Kim, M. Takeda, Tetrahedron Lett. 1972, 4339.

- [10] R. H. Furneaux, G. Limberg, P. C.Tyler, V. L. Schramm, *Tetrahedron* 1997, *53*, 2915.
 [11] M. Yokohama, T. Akiba, Y. Ochiai, A. Momotake, H. Togo, *J. Org. Chem.* 1998, *63*, 7207.
- [12] K. C. Nicolaou, K. Koide, M. E. Bunnage, Chem.-Eur. J. 1995, 1, 454.
- [13] L. H. Koole, H. M. Moody, N. L. H. L. Broeders, P. J. L. M. Quaedflieg, W. H. A. Kuijpers, M. H. P. van Genderen, A. J. J. M. Coenen, S. van der Wal, H. M. Buck, J. Org. Chem. 1989, 54, 1657.
- [14] S. Picasso, Y. Chen, P. Vogel, Carbohydr. Lett. 1994, 1, 1; A. Brandi, S. Cicchi, F. M. Cordero, B. Fignoli, A. Goti, S. Picasso, P. Vogel, J. Org. Chem. 1995, 60, 6806.

Received September 25, 2002