Parallel Kinetic Resolution of D-Labelled 2-Aryl-Propionic and Butanoic Acids Using *Quasi*-Enantiomeric Combinations of Oxazolidin-2-Ones

ELLIOT COULBECK,¹ MARCO DINGJAN,^{1,2} AND JASON EAMES^{1*}

¹Department of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom ²Department of Chemistry, Queen Mary, University of London, London E1 4NS, United Kingdom

ABSTRACT The parallel kinetic resolution of racemic 2-aryl-2-deuterio-propionic and butanoic acids using an equimolar combination of *quasi*-enantiomeric oxazolidin-2-ones is discussed. The levels of diastereoselectivity were high leading to enantiomerically pure D-labeled products in good yield. *Chirality 22:193–205, 2010.* © 2009 Wiley-Liss, Inc.

KEY WORDS: parallel kinetic resolution; kinetic resolution; *quasi*-enantiomers; 2-phenylpropionic acid; resolution; oxazolidin-2-ones

INTRODUCTION

The synthesis of enantiomerically pure $profens^{1-7}$ such as ibuprofen⁸⁻¹⁰ and naproxen¹¹⁻¹⁴ is well documented. Since 2005, we have been interested in the mutual and parallel kinetic resolutions¹⁵⁻²¹ of profen-based pentafluorophenyl active esters (based on carbon skeleton of 2-phenylpropionic acid) using a combination of oxazolidin-2ones as a strategy for the separation of their enantiomers. For example, treatment of the active ester, pentafluorophenyl 2-phenylpropionate (rac)-2, with an equimolar amount of lithiated oxazolidin-2-ones {derived from the deprotonation of an equimolar mixture of oxazolidin-2ones (R)-1 and (S)-1 [= (rac)-1] with *n*-BuLi}, gave the corresponding adducts (S,R)-syn- and (R,S)-syn-3 [\equiv (rac)syn-3] as the major diastereoisomer in 70% yield with >94% d.e. (Scheme 1). The corresponding oxazolidin-2-one anti-3 can be synthesised using Evans' diasteeoselective alkylation method; for further information see. Ref. 22-24 From this study, it was apparent that the (R)-enantiomer of oxazolidin-2-one 1 recognized the (S)-enantiomer of the active ester 2 to give oxazolidin-2-one (S,R)-syn-3, and the complementary enantiomeric oxazolidin-2-one (S)-1 recognized the remaining (R)-enantiomer of the active ester 2 to give the enantiomeric adduct (R,S)-syn-3 in an equal and opposite stereochemical sense (Scheme 1). We have also demonstrated that an isotopomeric mixture of quasienantiomeric oxazolidin-2-ones (R)-1 and (S)- $[D_2]$ -1 can be used to resolve this active ester (rac)-2 to give an inseparable mixture of labeled and unlabeled oxazolidin-2ones (S,R)-syn-3 and (R,S)-[D₂]-syn-3 in a combined 70% yield with comparable diastereoselection to its unlabeled variant (>94% d.e.) (Scheme 1).22

We now report an extension of this study to the parallel kinetic resolution of a series of deuterium labeled 2-phe-nyl/aryl propionic and butanoic acids $[D_1]$ -**4-7**²⁵ using a *quasi*-enantiomeric combination of isotopomeric and designer oxazolidin-2-ones. For this study, we had to synthe- \bigcirc 2009 Wiley-Liss, Inc.

size a series of D-labeled pentafluorophenyl active esters $[D_1]$ -2 and $[D_1]$ -8-10 (Scheme 2). Addition of DCC to a stirred solution of D-labeled carboxylic acids $[D_1]$ -4-7 and pentafluorophenol in dichloromethane, gave the corresponding pentafluorophenyl active esters $[D_1]$ -2 and $[D_1]$ -8-10 in good yields (>85%) with high levels of deuterium incorporation (>95% D-incorporation) (Scheme 2).

With these active esters in hand, we next probed their parallel kinetic resolution using an isotopomeric pair of *quasi*-enantiomeric oxazolidin-2-ones (R)-1 and (S)-[D_2]-1 (Scheme 3). Treatment of an equimolar amount of oxazolidin-2-ones (R)-1 and (S)-[D₂]-1 with n-BuLi in THF at -78° C, followed by the addition of active esters [D₁]-2 and [D₁]-8-10, gave after 2 h, an inseparable isotopomeric mixture of the corresponding oxazolidin-2-one adducts (S,R)-syn- and (R,R)-anti- $[D_1]$ -3, $[D_1]$ -11, $[D_1]$ -12 and $[D_1]$ -13, and (R,S)-syn- and (S,S)-anti- $[D_3]$ -3, $[D_3]$ -11, $[D_3]$ -12 and $[D_3]$ -13, respectively in good yields (71%-78%) with high levels of diastereoselectivity (94%-96% d.e.) (Scheme 3). From this study, there appears to be no primary or secondary kinetic isotope effect as the levels of deuterium incorporation remained unchanged during the course of this reaction. The D-labeled moiety served primarily as a stereochemical marker for enantiomeric recognition.

We first chose to investigate the optical resolution of these active esters $[D_1]$ -**2** and $[D_1]$ -**8**-**10** using a combination of separable oxazolidin-2-ones based on Evans' and Seebach's oxazolidin-2-ones (*R*)-**1**²⁶ and (*S*)-**14**^{27,28}, respectively (Scheme 4). Treatment of an equimolar combination of oxazolidin-2-ones (*R*)-**1** and (*S*)-**14** with *n*-BuLi in

^{*}Correspondence to: Jason Eames, Department of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom. E-mail: j.eames@hull.ac.uk Received for publication 24 September 2008; Accepted 20 February 2009

DOI: 10.1002/chir.20727 Published online 30 April 2009 in Wiley InterScience

⁽www.interscience.wiley.com).

Scheme 1. Mutual/parallel kinetic resolution of active ester (rac)-2 using (quasi-)enantiomeric oxazolidin-2-ones (R)-1/(S)-1 and (R)-1/(S)-[D₂]-1.

THF at -78° C, followed by the addition of the D-labeled active esters $[D_1]$ -2 and $[D_1]$ -8-10, gave after 2 h, a mixture of oxazolidin-2-one adducts (S,R)-[D1]-syn-3 (in 66% yield with 88% d.e.) and (R,S)-[D₁]-syn-15 (in 54% yield with 94% d.e.) (for $[D_1]-2$), $(S,R)-[D_1]-syn-11$ (in 69% yield with 98% d.e.) and (R,S)-[D₁]-syn-16 (in 63% yield with 98% d.e.) (for [D₁]-8), (S,R)-[D₁]-syn-12 (in 64% yield with 90% *d.e.*) and (R,S)- $[D_1]$ -syn-17 (in 57% yield with 98% *d.e.*) (for $[D_1]$ -9), and (S,R)- $[D_1]$ -syn-13 (in 69% yield with 90% d.e.) and (R,S)- $[D_1]$ -syn-18 (in 64% yield with 94% d.e.) (for $[D_1]$ -10) in high yields with excellent levels of diastereocontrol (Scheme 4). All products were easily separable by column chromatography [eluting with light petroleum ether (b.p. 40-60°C)/diether ether (1:1)] { $\Delta R_{\rm F}$ [light petroleum ether (b.p. 40-60°C)/diether ether (1:1)] = ~ 0.25 } with the exception of those [(R,S)-syn- $[D_1]$ - and (S,S)-anti-[D₁]-15-18] derived from Seebach's oxazolidin-2-one (S)-14 (Scheme 4).

In an attempt to improve separability, we next turned our attention to probing the parallel kinetic resolution of these D-labeled active esters $[D_1]$ -2 and $[D_1]$ -8-10 using a combination of designer oxazolidin-2-ones based on Fox's²⁹ and Evans'²⁶ oxazolidin-2-ones (R)-19 and (S)-1, respectively, which were known to lead to separable diastereoisomeric adducts. Deprotonation of the oxazolidin-2ones (R)-19 and (S)-1 using *n*-BuLi in THF at -78° C, followed by the addition of active esters $[D_1]$ -2 and $[D_1]$ -8-10, gave after 2 h, the corresponding oxazolidin-2-ones (S,R)- $[D_1]$ -syn-20 (in 78% with 94% d.e.) and (R,S)- $[D_1]$ -syn-**3** (in 69% yield with 94% *d.e.*) (for [D₁]-**2**), (S,R)-[D₁]-syn-**21** (in 67% yield with 98% *d.e.*) and (R,S)- $[D_1]$ -syn-11 (in 68% yield with 98% d.e.) (for [D₁]-8), (S,R)-[D₁]-syn-22 (in 71% with 90% d.e.) and (R,S)-[D1]-syn-12 (in 76% yield with 92% d.e.) (for [D₁]-9), and (S,R)-[D₁]-syn-23 (in 77% with 94% d.e.) and (R,S)-[D1]-syn-13 (in 76% yield with 94% d.e.) Chirality DOI 10.1002/chir

(for $[D_1]$ -10), respectively, in high yield with excellent levels of diastereocontrol (Scheme 5).

With these adducts at hand, we next investigated the hydrolysis of two pairs of quasi-enantiomeric combinations of oxazolidin-2-ones (S,R)-syn- $[D_1]$ -3 and (R,S)-syn- $[D_1]$ -15, and (S,R)-syn- $[D_1]$ -20 and (R,S)-syn- $[D_1]$ -3 using LiOH monohydrate (mediated by hydrogen peroxide) in THF/ H_2O (3:1) (Scheme 6). Simple treatment of the oxazolidin-2-ones (S,R)-syn-[D₁]-3, (R,S)-syn-[D₁]-15, (S,R)-syn-[D₁]-20 and (R,S)-syn- $[D_1]$ -3 with LiOH/H₂O₂ in THF/H₂O (3:1), and stirring the resulting solution for 12 h, gave the corresponding enantiomerically enriched 2-deuterio-2-phenylpropionic acids $[D_1]$ -4 in good yields (Scheme 6). The enantiomeric excess of 2-phenylpropionic acid 4 was determined by derivatisation with enantiomerically pure 1phenylethanol using a DCC/DMAP coupling procedure; see experimental details for a representative procedure. The levels of deuterium incorporation for the carboxylic

	Ar D R (<i>rac</i>)-[D ₁]-		DCC, C ₆ F ₅ OH CH ₂ Cl ₂		Ar D R (<i>rac</i>)-[D1	$\begin{array}{c} \text{Ar} \\ \text{D} \\ \text{D} \\ \text{(rac)-[D_1]-} \end{array}$		
Entry	Carboxylic acid	[D]:[H]	Ar	R	Active ester	[D]:[H]	Yield	
1	[D ₁]- 4	97:3	Ph	Me	[D ₁]- 2	97:3	85%	
2	[D ₁]- 5	96:4	Ph	Et	[D ₁]-8	96:4	86%	
3	[D ₁]-6	96:4	4-MeC ₆ H ₄ -	Me	[D ₁]- 9	96:4	89%	
4	[D ₁]- 7	95:5	4-i-BuC ₆ H ₄ -	Me	[D ₁]- 10	95:5	87%	

Scheme 2. Synthesis of active esters $[D_1]$ -2, $[D_1]$ -8, $[D_1]$ -9 and $[D_1]$ -10.

Scheme 3. Parallel kinetic resolution of active esters (rac)-[D₁]-2 and [D₁]-8-10 using quasi-enantiomeric oxazolidin-2-ones (R)-1 and (S)-[D₂]-1.

acids (*e.g.*, $[D_1]$ -4) remained unchanged ($\pm 2\%$) throughout the resolution sequence.

automatic AA-10 Optical Activity polarimeter. All isotopically labeled oxazolidin-2-one adducts have been given an L superscript and unlabeled derivatives a U superscript.

EXPERIMENTAL General

All solvents were distilled before use. All reactions were carried out under nitrogen using oven-dried glassware. Flash column chromatography was carried out using Merck Kieselgel 60 (230–400 mesh). Thin layer chromatography (TLC) was carried out on commercially available pre-coated plates (Merck Kieselgel $60F_{254}$ silica). Proton and carbon NMR spectra were recorded on a Bruker 400 MHz Fourier transform spectrometer using an internal deuterium lock. Chemical shifts are quoted in parts per million downfield from tetramethylsilane. Carbon NMR spectra were recorded on a Shimadzu 8300 FTIR spectrometer. Optical rotations were measured using an

Pentafluorophenyl 2-deuterio-2-phenyl-propionate (rac)-[D₁]-2

N,*N*'-Dicyclohexylcarbodiimide (DCC) (0.78 g, 3.82 mmol) was slowly added to a stirred solution of 2-deuterio-2-phenylpropionic acid (*rac*)- $[D_1]$ -**2** (0.51 g, 3.38 mmol, [D]:[H] = 97:3) in dichloromethane (5 mL) at room temperature. The resulting solution was stirred for 15 minutes. A solution of pentafluorophenol (0.62 g, 3.40 mmol) in dichloromethane (5 mL) was added slowly and the solution was stirred for a further 12 h. The resulting white precipitate (dicyclohexylurea) was removed through filtration (using a sintered funnel). The reaction was quenched with water (20 mL) and extracted with dichloromethane (3 × 10 mL). The combined organic layers were dried (over MgSO₄) and evaporated under reduced pres-

Scheme 4. Parallel kinetic resolution of active esters (*rac*)-[D₁]-2 and [D₁]-8-10 using *quasi*-enantiomeric oxazolidin-2-ones (*R*)-1 and (*S*)-14. *Chirality* DOI 10.1002/chir

Scheme 5. Parallel kinetic resolution of active esters (rac)-[D₁]-2 and [D₁]-8-10 using quasi-enantiomeric oxazolidin-2-ones (R)-19 and (S)-1.

sure. The residue was purified by flash column chromatography on silica gel eluting with light petroleum ether (b.p. 40-60°C):diethyl ether (9:1) to give pentafluorophenyl 2-deuterio-2-phenyl-propionate (rac)-[D₁]-2 (0.91 g, 85%, [D]:[H] = 97:3) as a colourless oil; $R_{\rm F}$ [light petroleum (40–60°C):diethyl ether (1:1)] 0.88; v_{max} (CH₂Cl₂)cm⁻¹ 2397 (C-D) and 1781 (C=O); δ_H (400 MHz; CDCl₃) 7.41-7.25 (5 H, m, 5 × CH; Ph), and 1.63 (3 H, s, CH₃CD); δ_{C} (100 MHz; CDCl₃) 170.7 (C=O), 141.4 (142.7 \times and 140.20, 2 C, ddt, ${}^{1}J_{C,F} = 251.3$ Hz, ${}^{2}J_{C,F} = 12.2$ Hz and ${}^{3}J_{C,F} = 3.8$ Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, ${}^{1}J_{C,F} = 253.2$ Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, ${}^{1}J_{C,F} = 253.2$ Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, ${}^{1}J_{C,F} = 253.2$ Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, ${}^{1}J_{C,F} = 253.2$ Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, ${}^{1}J_{C,F} = 253.2$ Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, ${}^{1}J_{C,F} = 253.2$ Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, ${}^{1}J_{C,F} = 253.2$ Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, ${}^{1}J_{C,F} = 253.2$ Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, ${}^{1}J_{C,F} = 253.2$ Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, ${}^{1}J_{C,F} = 253.2$ Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, ${}^{1}J_{C,F} = 253.2$ Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, ${}^{1}J_{C,F} = 253.2$ Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, {}^{1}J_{C,F} = 253.2 Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, {}^{1}J_{C,F} = 253.2 Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, {}^{1}J_{C,F} = 253.2 Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, {}^{1}J_{C,F} = 253.2 Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, {}^{1}J_{C,F} = 253.2 Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, {}^{1}J_{C,F} = 253.2 Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, {}^{1}J_{C,F} = 253.2 Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, {}^{1}J_{C,F} = 253.2 Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, {}^{1}J_{C,F} = 253.2 Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, {}^{1}J_{C,F} = 253.2 Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, {}^{1}J_{C,F} = 253.2 Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, {}^{1}J_{C,F} = 253.2 Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, {}^{1}J_{C,F} = 253.2 Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, {}^{1}J_{C,F} = 253.2 Hz, C(2)-F), 139.7 (141.00 and 138.48, 1 C, dtt, {}^{1}J_{C,F} = 253.2 Hz, ${}^{2}J_{C,F} = 13.4 \text{ Hz} \text{ and } {}^{3}J_{C,F} = 4.2 \text{ Hz}, C(4)\text{-F}, 139.0 \text{ (i-C; Ph)},$ ${}^{J}_{C,F} = 13.4$ Hz and ${}^{J}_{C,F} = 4.2$ Hz, C(4)-F), 139.0 (-C, FII), 138.1 (139.35 and 136.88, 2 C, dtdd, ${}^{1}J_{C,F} = 249.1$ Hz, ${}^{2}J_{C,F} =$ 14.5 Hz, ${}^{3}J_{C,F} = 5.7$ Hz and ${}^{4}J_{C,F} = 3.1$ Hz, C(3)-F), 129.0,² 127.8² and 127.5¹ (5 × CH; Ph), 125.4 (1 C, tdt, ${}^{2}J_{C,F} = 14.5$ Hz, ${}^{4}J_{C,F} = 4.2$ Hz and ${}^{3}J_{C,F} = 2.0$ Hz, *i*-CO; OC₆F₅), 45.1 (unlabelled PhCHCH₃), 44.7 (1 C, t [1:1:1], ${}^{1}J_{C,D} = 19.8$ Hz, Discrete the second PhCDCH₃) and 18.5 (PhCDCH₃) (Found M⁺, 317.0579; $C_{15}H_8DF_5O_2$ requires M⁺, 317.0580); negative isotopic shift at 44.7 ppm (PhCDCH₃) was 0.3591 ppm (35.9 Hz at 100.6 MHz).

Pentafluorophenyl 2-deuterio-2-phenylbutanoate (rac)- $[D_1]$ -8

In the same way as the active ester (*rac*)-[D₁]-**2**, 2-deuterio-2-phenylbutanoic acid (*rac*)-[D₁]-**5** (0.53 g, 3.18 mmol, [D]:[H] = 96:4), DCC (0.73 g, 3.52 mmol) and pentafluorophenol (0.59 g, 3.20 mmol) in dichloromethane (40 mL), gave after purification by flash column chromatography on silica gel eluting with light petroleum ether (b.p. 40–60°C): diethyl ether (9:1), pentafluorophenyl 2-deuterio-2-phenylbutanoate (*rac*)-[D₁]-**8** (0.91 g, 86%, [D]:[H] = 96:4) as a colourless liquid; $R_{\rm F}$ [light petroleum ether (b.p. 40–60°C):diethyl ether (1:1)] 0.80; $v_{\rm max}$ (CHCl₃)cm⁻¹ 2399 (C-D) and 1772 (C=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.41-7.27 (5 H, m, 5 × CH; Ph), 2.27 (1 H, dq, 13.9 and 7.5, CH_AH_BCH₃), 1.97 (1 H, dq, 13.9 and 7.5, CH_AH_BCH₃) and *Chirality* DOI 10.1002/chir 1.01 (3 H, t, J 7.5, CH₂CH₃); $\delta_{\rm C}$ (100 MHz; CDCl₃) 170.1 (OC=O), 141.1 (142.36 and 139.88, 2 C, ddtd, ${}^{1}J_{\rm C,F}$ = 251.3 Hz, ${}^{2}J_{\rm C,F}$ = 11.9 Hz, ${}^{3}J_{\rm C,F}$ = 3.4 Hz and ${}^{4}J_{\rm C,F}$ = 3.4 Hz, C(2)-F), 139.4 (140.65 and 138.14, 1 C, dtt, ${}^{1}J_{\rm C,F}$ = 252.8 Hz, ${}^{2}J_{\rm C,F}$ = 13.9 Hz and ${}^{3}J_{\rm C,F}$ = 3.8 Hz, C(4)-F), 137.8 (139.04 and 136.55, 2 C, dtdd, ${}^{1}J_{\rm C,F}$ = 254.3 Hz, ${}^{2}J_{\rm C,F}$ = 14.2 Hz, ${}^{3}J_{\rm C,F}$ = 4.9 Hz and ${}^{4}J_{\rm C,F}$ = 2.6 Hz, C(3)-F), 137.2 (*i*-C; Ph), 128.8,² 127.9² and 127.8¹ (5 × CH; Ph), 125.3 (1 C, tdt, ${}^{2}J_{\rm C,F}$ = 14.2 Hz, ${}^{4}J_{\rm C,F}$ = 4.4 Hz and ${}^{3}J_{\rm C,F}$ = 2.2 Hz, *i*-CO; OC₆F₅), 52.7 (unlabelled PhCH), 52.3 (1 C, tt [1:1:1], ${}^{1}J_{\rm C,D}$ = 20.6 Hz, PhCD), 26.6 (CH₂CH₃) and 11.8 (CH₂CH₃) (Found M⁺, 331.0732; C₁₆H₁₀DF₅O₂ requires M⁺, 331.0736); negative isotopic shift at 52.3 ppm (PhCD) was 0.3973 ppm (39.7 Hz at 100.6 MHz).

Pentafluorophenyl 2-deuterio-2-(4-methylphenyl)propionate (rac)-[D₁]-9

In the same way as the active ester (rac)-[D₁]-2, 2-deuterio-2-(4-methylphenyl)propionic acid (rac)-[D₁]-6 (0.72 g, 4.35 mmol, [D]:[H] = 96:6), DCC (1.01 g, 4.91 mmol) and pentafluorophenol (0.81 g, 4.42 mmol) in dichloromethane (20 mL), gave after purification by flash column chromatography on silica gel eluting with light petroleum ether (b.p. 40-60°C): diethyl ether (9:1), pentafluorophenyl 2deuterio-2-(4-methylphenyl)propionate (rac)-[D₁]-9 (1.29 g, 89%, [D]:[H] = 96:4) as a colourless oil; $R_{\rm F}$ [light petroleum ether (b.p. $40-60^{\circ}$ C): diethyl ether (1:1)] 0.83; v_{max} (film) cm⁻¹ 2399 (C=O) and 1780 (C=O); δ_{H} (400 MHz; CDCl₃) 7.25 (2 H, dd, J 8.2 and 1.8, $2 \times$ CH; Ar), 7.19 (2 H, dd, J 8.2 and 1.8, 2 × CH; Ar), 2.35 (3 H, s, CH₃; Ar) and 1.62 (3 H, s, CH₃CD); δ_{C} (100 MHz; CDCl₃) 170.8 (C=O), 141.2 (142.50 and 139.95, 2 C, ddt, ${}^{1}J_{C,F} = 251.6$ Hz, ${}^{2}J_{C,F} = 11.9$ Hz and ${}^{3}J_{C,F} = 4.6$ Hz, C(2)-F), 139.5 (140.74 and 138.23, 1 C, dtt, ${}^{1}J_{C,F} = 252.8$ Hz, ${}^{2}J_{C,F} = 13.4$ Hz and ${}^{3}J_{C,F} = 3.8$ Hz), C(4)-F), 137.9 (139.14 and 136.63, 2 C, dtdd, ${}^{1}J_{C,F} = 252.8$ Hz, ${}^{2}J_{C,F} = 12.1$ Hz, ${}^{3}J_{C,F} = 5.3$ Hz and ${}^{4}J_{C,F} = 3.1$ Hz, C(3)-F), 137.6 and 135.8 (2 × *i*-C; Ar),

Scheme 6. Synthesis of enantiomerically pure 2-deuterio-2-phenylpropionic acids (S)-[D₁]- and (R)-[D₁]-4.

129.7² and 127.4² (4 × CH; Ar), 125.2 (1 C, tdt, ${}^{2}J_{C,F} =$ 14.3 Hz, ${}^{4}J_{C,F} =$ 4.6 Hz and ${}^{3}J_{C,F} =$ 2.3 Hz, *i*-CO; OC₆F₅), 44.8 (1 C, s, unlabelled ArCH), 44.4 (1 C, t [1:1:1], ${}^{1}J_{C,D} =$ 19.4 Hz, ArCD), 21.1 (CH₃; Ar) and 18.6 (ArCDCH₃) (Found M⁺, 331.0739; C₁₆H₁₀DF₅O₂ requires M⁺, 331.0736); negative isotopic shift at 44.4 ppm (Ph*C*D) was 0.3590 ppm (35.9 Hz at 100.6 MHz).

Pentafluorophenyl 2-deuterio-2-(4-isobutylphenyl)propionate (rac)- $[D_1]$ -10

In the same way as the active ester (rac)- $[D_1]$ -2, 2-deuterio-2-(4-isobutylphenyl)propionic acid (rac)- $[D_1]$ -7 (0.65 g, 3.13 mmol, [D]:[H] = 95:5), DCC (0.71 g, 3.44 mmol) and

pentafluorophenol (0.59 g, 3.20 mmol) in dichloromethane (100 mL), gave after purification by flash column chromatography on silica gel eluting with light petroleum ether (b.p. 40–60°C): diethyl ether (9:1), pentafluorophenyl 2-deuterio-2-(4-isobutylphenyl)propionate (*rac*)-[D₁]-**10** (1.02 g, 87%, [D]:[H] = 95:5) as a colourless liquid; $R_{\rm F}$ [light petroleum ether (b.p. 40–60°C):diethyl ether (1:1)] 0.80; $v_{\rm max}$ (CHCl₃)cm⁻¹ 2399 (C-D) and 1781 (C=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.20 (2 H, dt, *J* 8.2 and 2.2, 2 × CH; Ar), 7.07 (2 H, dt, *J* 8.2 and 2.2, 2 × CH; Ar), 2.40 (2 H, d, *J* 7.2, CH₂CH), 1.86-1.72 (1 H, m, CH(CH₃)₂), 1.55 (3 H, s, ArCDCH₃) and 0.83 (6 H, d, *J* 6.7, (CH₃)₂CH); $\delta_{\rm C}$ (100 MHz; CDCl₃) 170.8 (C=O), 141.4 (*i*-C; Ar), 141.2 (142.50 Chirality DOI 10.1002/chir and 140.01, 2 C, ddt, ${}^{1}J_{C,F} = 251.3$ Hz, ${}^{2}J_{C,F} = 11.9$ Hz and ${}^{3}J_{C,F} = 4.2$ Hz, C(2)-F), 139.4 (140.74 and 138.23, 1 C, dtt, ${}^{1}J_{C,F} = 253.2$ Hz, ${}^{2}J_{C,F} = 13.8$ Hz and ${}^{3}J_{C,F} = 3.8$ Hz, C(4)-F), 137.8 (139.14 and 136.64, 2 C, dtdd, ${}^{1}J_{C,F} = 254.7$ Hz, ${}^{2}J_{C,F} = 14.5$ Hz, ${}^{3}J_{C,F} = 5.3$ and ${}^{4}J_{C,F} = 3.0$ Hz, C(3)-F), 135.9 (*i*-C; Ar), 129.7² and 127.2² (4 × CH; Ar), 124.8 (1 C, tdt, ${}^{2}J_{C,F} = 14.2$ Hz, ${}^{4}J_{C,F} = 4.6$ Hz and ${}^{3}J_{C,F} = 2.3$ Hz, *i*-CO; OC₆F₅), 45.1 (CH₂; Ar), 44.7 (unlabelled ArCHCH₃), 44.4 (1 C, t [1:1:1], ${}^{1}J_{C,D} = 19.8$ Hz, ArCDCH₃), 30.1 (CHCH₂), 22.3 (CH(CH₃)₂) and 18.4 (ArCDCH₃) (Found M⁺, 337.1203; C₁₉H₁₆DF₅O₂ requires M⁺, 373.1206); negative isotopic shift at 44.39 ppm (ArCD) was 0.3629 ppm (36.2 Hz at 100.6 MHz).

Parallel kinetic resolution of pentafluorophenyl 2-deuterio-2-phenylpropionate (rac)-[D₁]-2 using 4-phenyl-oxazolidin-2-one (R)-1 and 4-phenyl-5,5-dideuterio-oxazolidin-2-one (S)-[D₂]-1

n-BuLi (0.19 mL, 2.5 M in hexane, 0.47 mmol) was added to a stirred solution of 4-phenyl-oxazolidin-2-one (R)-1 (32 mg, 0.20 mmol) and 4-phenyl-5,5-dideuterio-oxazolidin-2-one (S)-[D₂]-1 (33 mg, 0.20 mmol) in THF (5 mL) at -78°C. After stirring for 1 h, a solution of pentafluorophenyl 2-deuterio-2-phenylpropionate (rac)-[D₁]-2 (0.152 g, 0.48 mmol, [D]:[H] = 97:3) in THF (1 mL) was added. The resulting mixture was stirred for 2 h at -78° C. The reaction was quenched with water (10 mL). The organic layer was extracted with diethyl ether $(2 \times 10 \text{ mL})$, dried (over MgSO₄) and evaporated under reduced pressure to give a mixture of diastereoisomeric oxazolidin-2ones 3 [ratio 97:3: syn:anti-]. The crude residue was purified by flash chromatography on silica gel eluting with light petroleum ether (b.p. $40-60^{\circ}$ C):diethyl ether (7:3) to give an inseparable mixture of (2S,4R)-3-[2-deuterio-2phenylpropionyl]-4-phenyl-oxazolidin-2-one (S,R)-syn- $[D_1]$ -**3** and (2R,4S)-3-[2-deuterio-2-phenylpropionyl]-4-phenyl-5,5-dideuterio-oxazolidin-2-one (R,S)-syn- $[D_3]$ -3 (84 mg, 71%; ratio (S,R)-syn-[D₁]-3: (R,S)-syn-[D₃]-3 = 52:48) as a white solid; $R_{\rm F}$ [light petroleum ether (b.p. 40–60°C): diethyl ether: (1:1)] 0.33; m.p. 121-123°C; (Ref. 22 unlabelled (rac)-syn-3; m.p. 124-125 °C; unlabelled (R,S)-3; m.p. 128-130°C); $[\alpha]_D^{20} = +3.90$ (c 1.2, CHCl₃) {Ref. 30 (*S,R*)-*syn*-**3**; $[\alpha]_D^{20} = +92.5$ (c 4.9, CHCl₃)}; v_{max} (CHCl₃)cm⁻¹ 2400 (C-D), 1780 (OC=O) and 1706 (NC=O); $\delta_{\text{H}}(400 \text{ MHz}; \text{CDCl}_3)$ 7.22-7.11 (12 H, m, 12 × CH; 2 × Ph^{U+L}), 7.06-7.01 (4 H, m, 4 × CH; Ph^{U+L}), 6.87-6.82 (4 H, m, 4 × CH; Ph^{U+L}), 5.38 (1 H, dd J 9.0 and 5.1, CHN^U), 5.37 (1 H, s, CHN^L), 4.57 (1 H, t, *J* 9.0, *CH*_AH-BO^U), 4.02 (1 H, dd, *J* 9.0 and 5.1, CH_AH_BO^U) and 1.32 (6 H, s, PhCDC H_3^{U+L}); negative isotopic shift at 5.37 ppm H, s, PhCDCH₃^(C-1); negative isotopic shift at 5.37 ppm was 0.0106 ppm (1.06 Hz at 400 MHz); $\delta_{\rm C}(100 \text{ MHz};$ CDCl₃) 173.7 (2 C; NC=O^{U+L}), 153.1 (2 C; OC=O^{U+L}), 139.7 and 138.2 (4 × *i*-C; 2 × Ph^{U+L}), 128.9,⁴ 128.5,⁶ 128.2,⁴ 127.1² and 125.9⁴ (20 × CH; 2 × Ph^{U+L}), 69.6 (CH₂O^U), 68.9 (1 C, quintet, ¹J_{C,D} = 21.4 Hz, CD₂O^L), 57.7 (CHN^U), 57.6 (CHN^L), 43.8 (unlabelled PhCHCH₃), 43.4 (2 C, t [1:1:1], ¹J_{C,D} = 21.4 Hz, PhCDCH₃^{U+L}) and 18.5 (2 × PhCDCH₃^{U+L}); negative isotopic shifts at 68.9405 ppm was 0.6188 ppm (61.88 Hz at 100 MHz), 57.6039 ppm was was 0.6188 ppm (61.88 Hz at 100 MHz), 57.6039 ppm was Chirality DOI 10.1002/chir

0.1681 ppm (16.81 Hz at 400 MHz) and at 43.4482 ppm was 0.3590 ppm (35.90 Hz at 400 MHz). By mass spectrometry, this mixture of oxazolidin-2-ones (*S*,*R*)-*sym*-[D₁]-**3** and (*R*,*S*)-*syn*-[D₃]-**3** gave a 52:48 ratio of (*S*,*R*)-*syn*-[D₁]-**3**: (*R*,*S*)-*syn*-[D₃]-**3**. For (*S*,*R*)-*syn*-[D₁]-**3**; found MNH₄⁺, 314.1607; C₁₈H₂₀DN₂O₃ requires MNH₄⁺, 314.1609, and for (*R*,*S*)-*sym*-[D₃]-**3**; found MNH₄⁺, 316.1733; C₁₈H₁₈D₃N₂O₃ requires MNH₄⁺, 316.1735.

Parallel kinetic resolution of pentafluorophenyl 2-deuterio-2-phenylbutanoate (rac)-[D₁]-8 using 4-phenyl-oxazolidin-2-one (R)-1 and 4-phenyl-5,5dideuterio-oxazolidin-2-one (S)-[D₂]-1

In the same way as oxazolidin-2-one 3, *n*-butyl lithium (0.19 mL, 2.5 M in hexane, 0.47 mmol), 4-phenyl-oxazolidin-2-one (R)-1 (33 mg, 0.20 mmol), 4-phenyl-5,5-dideuterio-oxazolidin-2-one (S)-[D₂]-1 (34 mg, 0.20 mmol), and pentafluorophenyl 2-deuterio-2-phenylbutanoate (rac)-[D₁]-8 (0.161 g, 0.48 mmol, [D]:[H] = 96:4), gave an inseparable mixture of two diastereoisomeric oxazolidin-2-ones (S,R)- $[D_1]$ -11 and (R,S)- $[D_3]$ -11 (ratio 98:2: syn:anti-). The crude residue was purified by flash chromatography on silica gel eluting with light petroleum ether (b.p. 40-60°C):diethyl ether (7:3) to give inseparable mixture of (2S,4R)-3-[2-deuterio-2-phenylbutanoyl]-4-phenyl-oxazolidin-2-one (S,R)-syn-[D₁]-11 and (2R,4S)-3-[2-deuterio-2-phenylbutanoyl]-4-phenyl-5,5-dideuterio-oxazolidin-2-one (R,S)syn-[D₃]-11 (97 mg, 78 %; ratio (S,R)-syn-[D₁]-11: (R,S)syn-[D₃]-11 = 53:47) as a white solid; $R_{\rm F}$ [light petroleum ether (b.p. 40-60°C):diethyl ether (1:1)] 0.47; m.p. 70-72°C; $[\alpha]_D^{20} = +2.88$ (c 3.2, CHCl₃); {Ref. 30 (S,R)-syn-11; $[\alpha]_D^{20} = +77.4$ (c 4.0, CHCl₃)}; v_{max} (film)cm⁻¹ 2401 (C-D), 1781 (OC=O) and 1711 (NC=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.22-7.10 (12 H, m, 12 × CH; 2 × Ph^{U+L}), 7.08-7.04 (4 H, m, $4 \times CH$; Ph^{U+L}), 6.82 (4 H, dt, J 7.2 and 1.5, $4 \times CH$; Ph^{U+L}), 5.39 (1 H, dd, J 8.9 and 5.0, CHN^U), 5.39 (1 H, s, CHN^L), 4.55 (1 H, t, *J* 8.9, *CH*_AH_BO^U), 3.99 (1 H, dd, *J* 8.9 and 5.0, *CH*_AH_BO^U), 1.97 (2 H, dq, 13.6 and 7.3, *CH*_AH_BCH₃^{U+L}), 1.66 (2 H, dq, 13.6 and 7.3, *CH*_AH_BCH₃^{U+L}) and 0.82 (6 H, t, *J* 7.3, *CH*₃CH₂^{U+L}); negative isotopic shift at 5.39 ppm was 0.0101 ppm (1.01 Hz at 400 MHz); $\delta_{C}(100 \text{ MHz}; \text{CDCl}_{3})$ 173.0 (2 C; NC=O^{U+L}), 153.1 (2 C; OC=O^{U+L}), 138.2 (2 × *i*-C; Ph_A), 137.9 (2 × *i*-C; Ph_B), 128.8,⁴ 128.6,⁴ 128.4,⁶ 127.1² and 125.6⁴ (20 × CH; 2 × Ph^{U+L}), 69.5 (CH₂O^U), 68.8 (1 C, quintet, ${}^{1}J_{C,D} =$ 20.6, CD_2O^{L}), 57.6 (CHN^U), 57.5 (CHN^L), 51.1 (unlabelled PhCHCH₃), 50.7 (2 C, t [1:1:1], ${}^{1}\!J_{\text{C,D}} = 20.6$ Hz, PhCDCH₃^{U+L}), 26.1 (2 × CH₂CH₃^{U+L}) and 11.9 (2 × PhCDCH₃^{U+L}), 26.1 (2 × CH₂CH₃^{U+L}) and 11.9 (2 × CH₂CH₃^{U+L}); negative isotopic shift at 68.8 ppm was 0.6570 ppm (65.70 Hz at 100 MHz), 57.5 ppm was 0.1674 ppm (16.74 Hz at 100 MHz) and 50.7 ppm was 0.3973 ppm (39.73 Hz at 100 MHz). By mass spectrometry, this mixture of oxazolidin-2-ones (S,R)-syn-[D1]-11 and (R,S)-syn- $[D_3]$ -11 gave a 53:47 ratio of (S,R)-syn- $[D_1]$ -11:(R,S)-syn- $[D_3]$ -11. For (S,R)-syn- $[D_1]$ -11; found MNH₄⁺, 328.1769; $C_{19}H_{22}DN_2O_3$ requires MNH_4^+ , 328.1766, and for (*R*,*S*)-syn-[D₃]-**11**; found MNH_4^+ , 330.1890; $C_{19}H_{20}D_3N_2O_3$ requires MNH₄⁺, 330.1891.

Parallel kinetic resolution of pentafluorophenyl 2-deuterio-2-(4-methylphenyl)propionate (rac)-[D₁]-9 using 4-phenyl-oxazolidin-2-one (R)-1 and 4-phenyl-5,5-dideuterio-oxazolidin-2-one (S)-[D₂]-1

In the same way as oxazolidin-2-one 3, n-butyl lithium (0.24 mL, 2.5 M in hexane, 0.60 mmol), 4-phenyl-oxazolidin-2-one (R)-1 (39 mg, 0.24 mmol), 4-phenyl-5,5-dideuterio-oxazolidin-2-one (S)-[D₂]-1 (40 mg, 0.24 mmol), and pentafluorophenyl 2-deuterio-2-(4-methylphenyl)propionate (rac)- $[D_1]$ -9 (0.20 g, 0.60 mmol, [D]:[H] = 96:4), gave an inseparable mixture of two diastereoisomeric oxazolidin-2ones (S,R)-[D₁]-12 and (R,S)-[D₃]-12 (ratio 98:2: syn:anti-). The crude residue was purified by flash chromatography on silica gel eluting with light petroleum ether (b.p. 40- 60° C):diethyl ether (7:3) to give an inseparable mixture of (2S,4R)-3-[2-deuterio-2-(4-methylphenyl)propionate]-4-phenyloxazolidin-2-one (S,R)-syn-[D1]-12 and (2R,4S)-3-[2-deuterio-2-(4-methylphenyl)propionate]-4-phenyl-5,5-dideuteriooxazolidin-2-one (R,S)-syn-[D₃]-12 (0.109 g, 73%; ratio (S,R)-syn- $[D_1]$ -12: (R,S)-syn- $[D_3]$ -12 = 51:49) as a white solid; $R_{\rm F}$ [light petroleum ether (b.p. 40–60°C):diethyl ether (1:1)] 0.40; m.p. 117-119°C {Ref. 22 unlabelled (rac)-12; m.p. 102–104°C; Ref. ²² (S,R)-syn-12; m.p. 107–109°C}; $[\alpha]_{D}^{20} = +5.6 \ (c \ 3.2, \ CHCl_{3}) \ \{\text{Ref. 30} \ (S,R)\text{-syn-12}; \ [\alpha]_{D}^{20} =$ +121.6 (c 0.6, CHCl₃) v_{max}(CHCl₃)cm⁻¹ 2401 (C-D), 1781 (OC=O) and 1713 (NC=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.31-7.21 (6 H, m, 6 × CH; Ph^{U+L}), 7.06 (4 H, br d, *J* 7.9, 4 × CH, Ar^{U+L}), 7.08 (4 H, dt, J 7.9 and 2.0, 4 × CH; Ar^{U+L}), 6.96 (4 H, dt, J 7.6 and 1.8, 4 × CH; Ph^{U+L}), 5.46 (1 H, dd J8.9 and 5.0, CHN^U), 5.45 (1 H, s, CDN^L), 4.62 (1 H, t, *J* 8.9, $CH_{\rm A}H_{\rm B}O^{\rm U}$), 4.08 (1 H, dd, *J* 8.9 and 5.2, $CH_{\rm A}H_{\rm B}O^{\rm U}$), 2.34 (6 H, s, 2 × CH₃; Ar^{U+L}) and 1.39 (6 H, s, ArCDCH₃^{U+L}); negative isotopic shift at 5.45 ppm was 0.01025 ppm (1.25 Hz at 400 MHz); $\delta_{\rm C}(100.6 \text{ MHz}; \text{ CDCl}_3)$ 173.8 (2 C; NC=O^{U+L}), 153.0 (2 C; OC=O^{U+L}), 138.2 (2 × *i*-C; Ar^{U+L}), 136.7 (2 × *i*-C; Ar^{U+L}), 136.6 (2 × *i*-C; Ph^{U+L}), 129.0⁴ and 127.9⁴ (8 × CH; Ar^{U+L}), 128.7⁴, 128.3² and 125.7⁴ (10 × CH; Ph^{U+L}), 69.5 (CH₂O^U), 68.8 (1 C, quintet, L, L) = 0.0 (10 × CH; Ph^{U+L}), 129.0⁴ (2 × 0.0 (10 × CH; Ph^{U+L})), 129.7⁴ (10 × CH; Ph^{U+L}), 129.7 ${}^{1}J_{C,D} = 22.9 \text{ Hz}, \text{ CD}_{2}\text{O}^{\text{L}}$), 57.7 (CHN^U), 57.5 (CHN^L), 43.3 (unlabelled ArCHCH₃), 43.0 (2 C, t [1:1:1], ${}^{1}J_{C,D} = 19.8$ Hz, ArCDCH₃^{U+L}), 22.5 (2 C; CH₃; Ar^{U+L}) and 18.5 (2 C; ArCDCH₃^{U+L}) negative isotopic shifts at 68.8259 was 0.6494 ppm (64.94 Hz at 100 MHz), 57.4969ppm was 0.1680 ppm (16.80 Hz at 100 MHz) and at 43.6039 ppm was 0.3667 ppm (36.67 Hz at 400 MHz). By mass spectrometry, this mixture of oxazolidin-2-ones (S,R)-syn- $[D_1]$ -12 and (R,S)-syn- $[D_3]$ -12 gave a 51:49 ratio of (S,R)-syn- $[D_1]$ -12: (R,S)-syn- $[D_3]$ -12. For (S,R)-syn- $[D_1]$ -12; found MNH₄⁺, 328.1766; C₁₉H₂₂DN₂O₃ requires MNH₄⁺, 328.1766, and (R,S)-syn- $[D_3]$ -12; MNH_4^+ , for found 330.1892; $C_{19}H_{20}D_3N_2O_3$ requires MNH₄⁺, 330.1891.

Parallel kinetic resolution of pentafluorophenyl 2-deuterio-2-(4-isobutylphenyl)propionate (rac)-[D₁]-10 using 4-phenyl-oxazolidin-2-one (R)-1 and 4-phenyl-5,5-dideuterio-oxazolidin-2-one (S)-[D₂]-1

In the same way as oxazolidin-2-one **3**, *n*-butyl lithium (0.13 mL, 2.5 M in hexane, 0.325 mmol), 4-phenyl-oxazolidin-2-one (R)-**1** (21 mg, 0.13 mmol), 4-phenyl-5,5-dideu-

terio-oxazolidin-2-one (S)- $[D_2]$ -1 (21 mg, 0.13 mmol), and pentafluorophenyl 2-deuterio-2-(4-isobutylphenyl)propionate (rac)- $[D_1]$ -10 (0.119 g, 0.32 mmol, [D]:[H] = 95:5), gave an inseparable mixture of two diastereoisomeric oxazolidin-2-ones (S,R)-13 and (R,S)-[D₂]-13 (ratio 97:3: syn-:anti-). The crude residue was purified by flash chromatography on silica gel eluting with light petroleum ether (b.p. 40–60 $^{\circ}$ C):diethyl ether (7:3) to give an inseparable mixture of (2S,4R)-3-[2-deuterio-2-(4-isobutylphenyl)propionate]-4phenyl-oxazolidin-2-one (S,R)-syn-[D1]-13 and (2R,4S)-3-[2-deuterio-2-(4-isobutylphenyl)propionate]-4-phenyl-5,5dideuterio-oxazolidin-2-one (R,S)-syn-[D₃]-13 (67 mg, 73%; ratio (S,R)-syn- $[D_1]$ -13: (R,S)-syn- $[D_3]$ -13 = 53:47) as a white solid; $R_{\rm F}$ [light petroleum ether (b.p. 40–60°C):diethyl ether (1:1) 0.40; m.p. 69-71°C (Ref. 22 unlabelled (rac)-**13**; m.p. 69–71°C; Ref. 22 (*S*,*R*)-syn-**13**; m.p. 97–99°C}; $[\alpha]_{D}^{20} = +12.1$ (c 3.0, CHCl₃) {Ref. 30 (S,R)-syn-13; $[\alpha]_{D}^{20}$ $= +118.7 (c 6.0, CHCl_3); v_{max}(CHCl_3)cm^{-1} 2401 (C-D),$ 1779 (OC=O) and 1706 (NC=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.20-7.08 (6 H, m, $6 \times$ CH; Ph and/or Ar^{U+L}), 6.96-6.91 (8 H, m, $8 \times$ CH, Ph and Ar^{U+L}), 6.83 (4 H, dt, *J* 7.9 and 1.9, $4 \times$ CH; Ar^{U+L}), 5.37 (1 H, dd J 9.1 and 5.1, CHN^U), 5.36 $(1 \text{ H}, \text{ s}, \text{ CHN}^{L}), 4.54 (1 \text{ H}, t, J 9.1, CH_{A}H_{B}O^{U}), 3.98 (1 \text{ H}, t)$ dd, J 9.1 and 5.1, $CH_AH_BO^U$), 2.37 (4 H, dd, J 7.4 and 2.2, CH_2^{U+L}), 1.89-1.79 (2 H, appears as a nonet, J 6.7, $(CH(CH_3)_2^{U+L})$, 1.31 (6 H, s, $ArCDCH_3^{U+L}$), 0.84 (6 H, d,

J 6.7, $CH_3^{A}CH^{B}CH_3$) and 0.82 (6 H, d, J 6.7, $CH_3^{A}CH^{B}CH_3^{U+L}$); negative isotopic shift at 5.36 ppm was 0.01025 ppm (1.025 Hz at 400 MHz); $\delta_{\rm C}(100.6$ MHz; CDCl₃) 173.8 (2 C; NC=O^{U+L}), 153.1 (2 C; OC=O^{U+L}), 140.5 (2 × *i*-C; Ar^{U+L}), 138.2 (2 × *i*-C; Ar^{U+L}), 138.8 (2 × *i*-C; Ar^{U+L}), 129.1⁴ and 127.8⁴ (8 × CH; Ar^{U+L}), 128.8,² 128.4^4 and 125.6^4 (10 × CH; Ph), 69.5 (CH₂O^U), 68.8 (1 C, quintet, ${}^{1}J_{C,D} = 23.7$ Hz, CD_2O^{L}), 57.6 (CHN^U), 57.5 (CHN^L), 45.1 (2 C; CH(CH₃)₂^{U+L}), 43.2 (unlabelled ArCHCH₃), 42.8 (2 C, t [1:1:1], ${}^{1}J_{C,D} = 19.8$ Hz, ArCDCH₃^{U+L}), 30.1 (2 C; CH₂^{U+L}), 22.3 (2 C, s, CH₃^ACH ${}^{B}CH_{3}^{U+L})$, 22.2 (2 C, s, CH₃^ACH ${}^{B}CH_{3}^{U+L})$ and 18.3 (2 C, $ArCDCH_3^{U+L}$; negative isotopic shifts at 68.9 was 0.6341 ppm (63.41 Hz at 100 MHz), 57.4892 ppm was 0.1757 ppm (17.57 Hz at 100 MHz) and at 42.8752 ppm was 0.3667 ppm (36.67 Hz at 400 MHz). By mass spectrometry, this mixture of oxazolidin-2-ones (S,R)-syn- $[D_1]$ -13 and (R,S)syn-[D₃]-13 gave a 53:47 ratio of (S,R)-syn-[D₁]-13:(R,S)*syn*- $[D_3]$ -**13**. For (*S*,*R*)-*syn*- $[D_1]$ -**13**; found MNH₄⁺ 370.2234; C₂₂H₂₈DN₂O₃ requires MNH₄⁺, 370.2235, and MNH_4^+ , for (R,S)-syn- $[D_3]$ -13; found 372.2357; $C_{22}H_{26}D_3N_2O_3$ requires MNH₄⁺, 372.2361.

Parallel kinetic resolution of pentafluorophenyl 2-deuterio-2-phenylpropionate (rac)-[D₁]-1 using a quasi-enantiomeric combination of oxazolidin-2-one (R)-1 and oxazolidin-2-one (S)-14

In the same way as oxazolidin-2-one **3**, *n*-butyl lithium (0.48 mL, 2.5 M in hexane, 1.20 mmol), 4-phenyl-oxazolidin-2-one (*R*)-**1** (79 mg, 0.49 mmol), 4,5,5-triphenyl-oxazolidin-2-one (*S*)-**14** (0.157 g, 0.49 mmol) and pentafluorophenyl 2-deuterio-2-phenylpropionate (*rac*)-[D₁]-**2** (0.38 g, 1.21 mmol, [D]:[H] = 97:3), gave a mixture of two diaster-*Chirality* DOI 10.1002/chir

eoisomeric oxazolidin-2-ones (S,R)-syn-3 (ratio 94:6: syn-:anti-) and (R,S)-syn-15 (ratio 97:3: syn:anti-) in a ratio of 55:45. The crude residue was purified by flash chromatography on silica gel eluting with light petroleum ether (b.p. 40-60°C): diethyl ether (7:3) to give the (2S, 4R)-3-(2-deuterio-2-phenylpropionyl)-4-phenyl-oxazolidin-2-one (S,R)*syn*-[D₁]-3 (96 mg, 66%) as a white solid; m.p. 121–123°C (Ref. 31 unlabelled (R,S)-syn-3; m.p. 124-126°C); R_F [light petroleum ether (b.p. 40-60°C):diethyl ether (1:1)] 0.42; v_{max}(CHCl₃)cm⁻¹ 2397 (C-D), 1780 (OC=O) and 1701 (NC=O); $[\alpha]_{D}^{20} = +71.6$ (c 6.4, CHCl₃) {unlabelled (S,R)syn-3; $[\alpha]_D^{20} = +92.5$ (c 4.9, CHCl₃) {Ref. 30 unlabelled (S,R)-syn-**3**; $[\alpha]_D^{20} = +92.5$ (c 4.9, CHCl₃)}; $\delta_H(400 \text{ MHz};$ $CDCl_3$) 7.29-7.21 (6 H, m, 6 × CH; 2 × Ph), 7.14-7.10 (2 H, m, $2 \times$ CH; Ph), 6.96-6.92 (2 H, m, $2 \times$ CH; Ph), 5.45 (1 H, dd J 9.0 and 5.1, CHN), 4.63 (1 H, t, J 9.0, CH_AH_BO), 4.08 (1 H, dd, J 9.0 and 5.1, CH_AH_BO) and 1.40 (3 H, s, PhCDCH₃); δ_{C} (100 MHz; CDCl₃) 174.1 (NC=0), 153.6 (OC=O), 140.2 and 138.7 $(2 \times i-C; 2 \times Ph)$, 129.3,² 128.9,³ 128.6,² 127.5¹ and 126.3² (10 × CH; 2 × Ph), 70.0 (CH₂O), 58.2 (CHN), 44.2 (unlabelled PhCHCH₃), 43.8 (1 C, t [1:1:1], ${}^{J}_{C,D}$ 20.3, PhCDCH₃) and 19.0 (PhCDCH₃) (Found MH⁺, 297.1346; $C_{18}H_{17}DNO_3$ requires MH⁺, 297.1344); negative isotopic shift at 43.8 ppm (PhCD) was 0.366 ppm (36.6 Hz at 100.6 MHz) and (2R,4S)-3-(2-deuterio-2-phenylpropionyl)-4,5,5-triphenyl-oxazolidin-2-one (R,S)syn-[D₁]-15 (0.12 g, 54 %) as a white powder; $R_{\rm F}$ [light petroleum ether (b.p. 40-60°C):diethyl ether (1:1)] 0.58; m.p. 156-158°C {Ref. 32 unlabelled m.p. 154-156°C}; $[\alpha]_{D}^{20} =$ -226.4 (c 4.2, CHCl₃) {Ref. 32 unlabelled (R,S)-syn-15; $[\alpha]_{D}^{20} = -255.1 \ (c \ 3.4, \ CHCl_{3})\}; v_{max}(CHCl_{3})cm^{-1} \ 2389 \ (C-1)^{-1} \ CHCl_{3}) cm^{-1} \ CHCl_{3} \ CHCl_{3}) cm^{-1} \ CHCl_{3} \ CHCl_{3} \ CHCl_{3} \ CHCl_{3}) cm^{-1} \ CHCl_{3} \ CHCl_{3}$ D), 1779 (OC=O) and 1704 (NC=O); $\delta_{\rm H}(400 \text{ MHz};$ $CDCl_3$) 7.66 (2 H, br d, J 7.7, 2 × CH; Ph), 7.50-7.36 (4 H, m, $4 \times$ CH; Ph), 7.18-7.11 (2 H, m, $2 \times$ CH; Ph), 7.11-7.07 $(2 \text{ H}, \text{ m}, 2 \times \text{CH}; \text{Ph}), 7.01-6.89 (8 \text{ H}, \text{ m}, 8 \times \text{CH}; \text{Ph}),$ 6.67 (2 H, br d, J 7.7, 2 × CH; Ph), 6.30 (1 H, s, CHN) and 1.37 (3 H, s, PhCDCH₃); $\delta_{C}(100 \text{ MHz}; \text{ CDCl}_{3})$ 173.2 (NC=0), 152.0 (OC=0), 141.8, 137.9 and 134.9 ($3 \times i$ -C; $3 \times Ph$ – oxazolidin-2-one), 139.4 (*i*-C; Ph), 128.9,² 128.8,¹ 128.4,² 128.2,² 127.9,⁴ 127.5,² 127.4,¹ 127.3,¹ 126.9,¹ 126.1^2 and 126.0^2 (20 × CH; 4 × Ph), 88.5 (CPh₂O), 65.9 (CHN), 43.9 (unlabelled PhCHCH₃), 43.5 (1 C, t [1:1:1], ${}^{1}J_{C,D} =$ PhCDCH₃) (Found $\rm MH^+$, 449.1968; 20.6 Hz, $C_{30}H_{25}DNO_3^+$ requires 449.1970; and found MNH_4^+ , 465.2155; $C_{30}H_{28}DN_2O_3^+$ requires MNH₄⁺, 465.2157); negative isotopic shift at 43.5 ppm (PhCD) was 0.3743 ppm (37.4 Hz at 100.6 MHz).

Parallel kinetic resolution of pentafluorophenyl 2-deuterio-2-phenylbutanoate (rac)- $[D_1]$ -8 using a quasi-enantiomeric combination of oxazolidin-2-one (R)-1 and oxazolidin-2-one (S)-14

In the same way as oxazolidin-2-one **3**, *n*-butyl lithium (0.36 mL, 2.5 M in hexane, 0.90 mmol), 4-phenyl-oxazolidin-2-one (*R*)-**1** (62 mg, 0.38 mmol), 4,5,5-triphenyl-oxazolidin-2-one (*S*)-**14** (0.12 g, 0.38 mmol) and pentafluorophenyl 2-deuterio-2-phenylbutanoate (*rac*)-[D₁]-**8** (0.30 g, 0.91 mmol, [D]:[H] = 96:4), gave a mixture of two diastereoisomeric oxazolidin-2-ones (*S*,*R*)-*syn*-**11** (*ratio* 99:1: *syn*:*anti*-) and (*R*,*S*)-*syn*-**16** (*ratio* 99:1: *syn*:*anti*-) in a ratio of *Chirality* DOI 10.1002/chir 52:48. The crude residue was purified by flash chromatography on silica gel eluting with light petroleum ether (b.p. $40-60^{\circ}$ C):diethyl ether (7:3) to give (2S,4R)-3-(2-deuterio-2phenylbutanoyl)-4-phenyl-oxazolidin-2-one (S,R)-syn- $[D_1]$ -11 (81 mg, 69%) as a white solid; $R_{\rm F}$ [light petroleum ether (b.p. 40-60°C):diethyl ether (1:1)] 0.29; m.p. 80-82°C {Ref. ³² unlabelled (S,K)-syn-11, III.p. 02 of C_{11}^{20} = +53.2 (c 4.6, CHCl₃) {Ref. 30 (S,R)-syn-11; $[\alpha]_{D}^{20}$ = C_{11}^{20} (P S)-cyn-[D₂]-11; $[\alpha]_{D}^{20}$ = 82°C {Ref. ³² unlabelled (S,R)-syn-11; m.p. 82–84°C}; $[\alpha]_D^{20}$ +77.4 (c 4.0, CHCl₃); Ref. 22 (*R*,*S*)-syn-[D₂]-11; $[\alpha]_D^{2_0} = -55.2$ (c 4.6, CHCl₃)}; v_{max}(CH₂Cl₂)cm⁻¹ 2399 (C-D), 1772 (OC=O) and 1700 (NC=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.19-7.09 (6 H, m, 6 \times CH; Ph), 7.04-7.02 (2 H, m, 2 \times CH; Ph), 6.81 (2 H, dt, J 8.4 and 1.8, $2 \times$ CH; Ph), 5.38 (1 H, dd, J 8.9 and 5.0, CHN), 4.53 (1 H, t, J 8.9, CH_AH_BO), 3.98 (1 H, dd, J 8.9 and 5.0, CH_AH_BO), 1.95 (1 H, dq, J 13.5 and 7.4, CH_AH_BCH₃), 1.63 (1 H, dq, J 13.5 and 7.4, $CH_AH_BCH_3$) and 0.79 (3 H, t, J 7.4, CH_3CH_2); $\delta_C(100)$ MHz; CDCl₃) 173.0 (NC=O), 153.1 (OC=O), 138.2 and 138.0 (2 × *i*-C; 2 × Ph), 128.8,² 128.6,² 128.3,³ 127.1¹ and 125.6^2 (10 × CH; 2 × Ph), 69.4 (CH₂O), 57.7 (CHN), 50.7 (1 C, t [1:1:1], ${}^{1}J_{C,D} = 21.3$ Hz, PhCDEt), 26.2 (CH₂CH₃) (CH₂CH₃) (Found MNH₄⁺, 328.1766; and 11.9 $C_{19}H_{22}DN_2O_3$ requires MNH₄⁺, 328.1766); negative isotopic shift at 50.7 ppm (PhCD) was 0.3973 ppm (39.7 Hz at 100.6 MHz); and (2R,4S)-3-(2-deuterio-2-phenylbutanoyl)-4,5,5-triphenyl-oxazolidin-2-one (R,S)-syn-[D₁]-16 (0.11 g, 63 %) as a white powder; $R_{\rm F}$ [light petroleum ether (b.p. 40-60°C): diethyl ether (1:1)] 0.52; m.p. 121-122°C {Ref. unlabelled (*R*,*S*)-syn-16; m.p. 150–153°C}; $[\alpha]_D^{20} = -231.4$ $(c 5.6, \text{CHCl}_3)$ {Ref. 32 unlabelled (R,S)-syn-16; $[\alpha]_D^{20} =$ -195.2 (c 3.4, CHCl₃); v_{max} (CHCl₃)cm⁻¹ 2399 (C-D), 1779 (OC=O) and 1707 (NC=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.55 (2 H, br d, J 7.5, 2 \times CH; Ph), 7.39-7.29 (3 H, m, 3 \times CH; Ph), 7.16-7.07 (5 H, m, $5 \times$ CH; $2 \times$ Ph), 6.90-6.80 (8 H, m, $8 \times$ CH; $3 \times$ Ph), 6.57-6.55 (2 H, d, J 7.5, $2 \times$ CH; Ph), 6.20 (1 H, s, CHN), 1.90 (1 H, dq, J 13.5 and 7.3, $CH_{A}H_{B}CH_{3}$), 1.63 (1 H, dq, J 13.5 and 7.3, $CH_{A}H_{B}CH_{3}$) and 0.68 (3 H, t, J 7.3, CH_3CH_2); $\delta_C(100 \text{ MHz}; CDCl_3)$ 172.8 (NC=O), 152.1 (OC=O), 141.7, 137.9 and 135.0 (3 \times *i*-C; 3 \times Ph), 137.6 (*i*-C; PhCHEt), 128.9,³ 128.8,² 128.3,² 127.9^2 , 127.8^1 , 127.5^2 , 127.4^1 , 127.3^2 , 127.1^1 , 126.3^2 and 126.2^2 (20 × CH; 4 × Ph), 88.6 (CPh₂O), 65.9 (CHN), 50.7 $(1 \text{ C}, \text{ t} [1:1:1], {}^{1}J_{C,D} = 19.9 \text{ Hz}, \text{ ArCDEt}), 26.6 (CH_2CH_3)$ and 11.8 (CH_2CH_3) (Found MNH₄⁺, 480.2386; $C_{31}H_{30}DN_2O_3$ requires MNH₄⁺, 480.2392); negative isotopic shift at 50.7 ppm (PhCD) was 0.4125 ppm (41.2 Hz at 100.6 MHz).

Parallel kinetic resolution of pentafluorophenyl 2-deuterio-2-(4-methylphenyl)propionate (rac)-[D₁]-9 using a quasi-enantiomeric combination of oxazolidin-2one (R)-1 and oxazolidin-2-one (S)-14

In the same way as oxazolidin-2-one **3**, *n*-butyl lithium (0.37 mL, 2.5 M in hexane, 0.92 mmol), 4-phenyl-oxazolidin-2-one (*R*)-**1** (62 mg, 0.38 mmol), 4,5,5-triphenyl-oxazolidin-2-one (*S*)-**14** (0.12 g, 0.38 mmol) and pentafluorophenyl 2-deuterio-2-(4-methylphenyl)propionate (*rac*)-[D₁]-**9** (0.307 g, 0.92 mmol, [D]:[H] = 96:4), gave a mixture of two diastereoisomeric oxazolidin-2-ones (*S*,*R*)-*syn*-**12** (ratio 95:5: *syn::anti-*) and (*R*,*S*)-*syn*-**17** (ratio 99:1: *syn::anti-*) in a

201

ratio of 53:47. The crude residue was purified by flash chromatography on silica gel eluting with light petroleum ether (b.p. 40–60°C):diethyl ether (7:3) to give (2S,4R)-3-[2-deuterio-2-(4-methylphenyl)propionyl]-4-phenyl-oxazolidin-2-one (S,R)-syn-[D₁]-12 (75 mg, 64%) as a white solid; $R_{\rm F}$ [light petroleum ether (b.p. 40-60 °C):diethyl ether (1:1)] 0.30; m.p. 110-112°C {Ref. 32 unlabelled (S,R)-syn-12; m.p. 105-110 °C; for unlabelled (R,S)-syn-12; m.p. 105-110°C}; v_{max}(CHCl₃)cm⁻¹ 2397 (C-D), 1772 (OC=O) and 1700 (NC=O); $[\alpha]_D^{20} = +90.4$ (*c* 4.6, CHCl₃) {Ref. 30 (*S,R*)-*syn*-**12**; $[\alpha]_D^{20} = +121.6$ (*c* 0.6, CHCl₃) { for unlabelled (*R,S*)-*syn*-**12**; $[\alpha]_D^{20} = -116.5$ (*c* 0.8, CHCl₃)}; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.28-7.21 (3 H, m, 3 × CH; Ph), 7.06 (2 H, br d, J 8.1, 2 \times CH; Ar), 7.01 (2 H, dt, J 8.1 and 2.2, 2 \times CH; Ar), 6.96 (2 H, dt, J 7.7 and 1.8, 2 × CH; Ph), 5.47 (1 H, dd, J 9.1 and 5.1, CHN), 4.64 (1 H, t, J 9.1, CH_AH_BO), 4.06 (1 H, dd, J 9.1 and 5.1, CH_AH_BO), 2.34 (3 H, s, CH₃; Ar) and 1.39 (3 H, s, ArCDCH₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 173.5 (NC=O), 152.7 (OC=O), 137.9 (*i*-CMe; Ar), 136.4 (*i*-C; Ar), 136.2 (*i*-C; Ph), 129.8,² 128.4,² 128.0,¹ 127.6² and 125.5^2 (9 × CH; Ph and Ar), 69.1 (CH₂O), 57.3 (CHN), 42.6 (1 C, t [1:1:1], ${}^{1}J_{C,D} = 20.2$ Hz, ArCDCH₃), 20.7 (CH₃; Ar) and 18.1 (ArCDCH₃) (Found MNH_4^+ , 328.1768; $C_{19}H_{22}DN_2O_3^+$ requires MNH₄⁺, 328.1766); negative isotopic shift at 42.6 ppm (ArCD) was 0.3666 ppm (36.6 Hz at 100.6 MHz); and (2R,4S)-3-[2-deuterio-2-(4-methylphenyl)propionyl]-4,5,5-triphenyl-oxazolidin-2-one (R,S)-syn- $[D_1]$ -17 (0.101 g, 57 %) as a white powder; $R_{\rm F}$ [light petroleum ether (b.p. 40-60°C): diethyl ether (1:1)] 0.57; m.p. 87-89°C {Ref. 32 unlabelled (*R*,*S*)-syn-17; m.p. 119-121°C}; $[\alpha]_{D}^{20} = -213.2$ (c 5.4, CHCl₃) {Ref. 32 unlabelled (R,S)syn-17; $[\alpha]_{D}^{20} = -258.6$ (c 2.4, CHCl₃)}; v_{max} (CHCl₃)cm⁻¹ 2399 (C-D), 1780 (OC=O) and 1703 (NC=O); $\delta_{\rm H}(400$ MHz; CDCl₃) 7.65 (2 H, br d, J 7.5, 2 × CH; Ph), 7.48-7.38 $(3 \text{ H}, \text{ m}, 3 \times \text{CH}; \text{Ph}), 7.04-6.89 (12 \text{ H}, \text{ m}, 12 \times \text{CH}; \text{Ph})$ and Ar), 6.69 (2 H, br d, J 7.5, Ph), 6.29 (1 H, s, CHN), 2.32 (3 H, s, CH₃Ar) and 1.36 (3 H, s, ArCDCH₃); δ_{C} (100 MHz; CDCl₃) 173.5 (NC=O), 151.9 (OC=O), 141.8, 138.0 and 135.0 (3 \times *i*-C; 3 \times Ph), 136.7 and 136.5 (2 \times *i*-C; Ar), $129.1,^{2} 128.9,^{2} 128.8,^{1} 128.2,^{2} 127.8,^{3} 127.5,^{2} 127.4,^{2} 127.3,^{1}$ 126.2^2 and 126.1^2 (19 \times CH; 3 \times Ph and Ar), 88.5 (CPh₂O), 65.9 (CHN), 44.6 (1 C, t [1:1:1], ${}^{1}J_{C,D} = 20.6$ Hz, ArCDCH₃), 21.0 (CH₃Ar) and 19.0 (ArCHCH₃) (Found MH⁺, 463.2124; C₃₁H₂₇DNO₃ requires MH⁺, 463.2126); negative isotopic shift at 44.6 ppm (ArCD) was 0.3629 ppm (36.3 Hz at 100.6 MHz).

Parallel kinetic resolution of pentafluorophenyl 2-deuterio-2-(4-isobutylphenyl)propionate (rac)-[D₁]-10 using a quasi-enantiomeric combination of oxazolidin-2ones (R)-1 and oxazolidin-2-one (S)-14

In the same way as oxazolidin-2-one **3**, *n*-butyl lithium (0.37 mL, 2.5 M in hexane, 0.925 mmol), 4-phenyl-oxazolidin-2-one (*R*)-**1** (64 mg, 0.39 mmol), 4,5,5-triphenyl-oxazolidin-2-one (*S*)-**14** (0.122 g, 0.39 mmol) and pentafluorophenyl 2-deuterio-2-(4-isobutylphenyl)propionate (*rac*)-[D₁]-**10** (0.346 g, 0.92 mmol, [D]:[H] = 95:5), gave a mixture of two diastereoisomeric oxazolidin-2-ones (*S*,*R*)-*syn*-**13** (ratio 95:5: *syn:anti*-) and (*R*,*S*)-*syn*-**18** (ratio 97:3: *syn:anti*-) in a ratio of 52:48. The crude residue was purified by flash chromatography on silica gel eluting with light petroleum ether (b.p. 40–60°C): diethyl ether (7:3) to give (2S,4R)-3-[2-deuterio-2-(4-isobutylphenyl)propionyl]-4-phenyl-oxazolidin-2one (S,R)-syn-[D₁]-13 (95 mg, 69%) as a white solid; m.p. 78–80°C (Ref. ³² unlabelled (*S*,*R*)-*syn*-13; m.p. 86–88°C); $R_{\rm F}$ [light petroleum ether (b.p. 40–60°C):diethyl ether (1:1)] 0.37; $[\alpha]_{D}^{25} = +98.9$ (c 4.6, CHCl₃) {Ref. 32 (S,R)-syn-13; $[\alpha]_{D}^{25} = +118.7 \ (c \ 6.0, \ CHCl_{3}) \} \{\text{for unlabelled } (R,S)-syn-13;$ lit. $[\alpha]_D^{25} = -114.6$ (c 4.2, CHCl₃)}; v_{max} (CHCl₃)cm⁻¹ 2399 (C-D), 1780 (OC=O) and 1705 (NC=O); $\delta_{\rm H}$ (400 MHz; $CDCl_3$) 7.15-7.07 (3 H, m, 3 × CH; Ph), 7.00 (4 H, m, 4 × CH, Ph and Ar), 6.80 (2 H, dt, J 7.9 and 1.9, $2 \times$ CH; Ar), 5.36 (1 H, dd J 9.0 and 5.2, CHN), 4.53 (1 H, t, J 9.0, CH_AH_BO), 3.97 (1 H, dd, J 9.0 and 5.2, CH_AH_BO), 2.43 (2 H, dd, J 7.3 and 2.2, CH₂Ar), 1.82-1.74 (1 H, m, (CH(CH₃)₂), 1.32 (3 H, s, ArCDCH₃), 0.82 (3 H, d, J 6.6, CH₃^ACHCH₃ and 0.80 (3 H, d, J 6.6, $CH_3^A CHCH_3^B$); $\delta_C(100.6 \text{ MHz};$ CDCl₃) 173.8 (NC=O), 153.1 (OC=O), 140.5 (*i*-C; Ar), 138.2 (*i*-C; Ar), 136.8 (*i*-C; Ph), 129.3² and 128.7² (4 × CH; Ar), 128.4,¹ 127.8² and 125.7² (5 × CH; Ph), 69.5 (CH₂O), 57.6 (CHN), 44.9 (*C*H(CH₃)₂), 42.8 (1 C, t [1:1:1], ${}^{1}J_{C,D} = 20.6$ Hz, Ar*C*DCH₃), 30.1 (*C*H₂Ar), 22.5² (*C*H₃)₂CH) and 18.4 (ArCD*C*H₃) (Found MNH₄⁺, 370.2232; $C_{22}H_{28}DN_2O_3$ requires MNH₄⁺, 370.2235); negative isotopic shift at 42.8 ppm (ArCD) was 0.3665 ppm (36.6 Hz at 100.6 MHz); and (2R,4S)-3-[2-deuterio-2-(4-isobutylphenyl)propionyl]-4,5,5-triphenyl-oxazolidin-2-one (R,S)-syn-[D₁]-18 (0.126 g, 64 %) as a white powder; $R_{\rm F}$ [light petroleum ether (b.p. 40-60°C): diethyl ether (1:1)] 0.63; m.p. 57-59°C {Ref. 32 unlabelled m.p. = 62-64°C}; $[\alpha]_{D}^{20} = -228.7$ (c 5.0, CHCl₃) {Ref. 32 unlabelled (*R*,*S*)-syn-18; $[\alpha]_D^{20} = -306.7$ (*c* 4.4, CHCl₃)}; v_{max} (CHCl₃)cm⁻¹ 2399 (C-D), 1780 (OC=O) and 1704 $(NC=0); \delta_{H}(400 \text{ MHz}; CDCl_{3}) 7.66 (2 \text{ H, br d, } 17.3, 2 \times$ CH; Ph), 7.49-7.37 (3 H, m, $3 \times$ CH; Ph), 7.28 (2 H, br d, J $8.1, 2 \times CH; Ar$), 7.16 (2 H, br d, J 8.1, 2 × CH; Ar), 7.07-6.85 (8 H, m, 8 \times CH; 3 \times Ph), 6.66 (2 H, br d, J 7.3, 2 \times CH; Ph), 6.29 (1 H, s, CHN), 2.44 (2 H, dd, J 7.2 and 1.6, CH₂Ar), 1.91-1.80 (1 H, appears as a septet, J 6.8, (CH₃)₂CH), 1.36 (3 H, s, ArCDCH₃), 0.92 (3 H, d, J 6.6, $CH_3^{A}CHCH_3^{B}$) and 0.91 (3 H, d, J 6.6, $CH_3^{A}CHCH_3^{B}$); δ_C(100 MHz; CDCl₃) 173.5 (NC=O), 152.1 (OC=O), 141.8, 138.1 and 135.0 (3 × *i*-C; 3 × Ph), 140.5 (*i*-CCH₂; Ar), 136.6 (*i*-C; Ar), 129.2,² 128.9,³ 128.9,¹ 128.1,² 127.9,¹ 127.9,² 127.6,² 127.4,¹ 127.3,¹ 126.3² and 126.2² ($19 \times CH$; $19 \times Ph$ and Ar), 88.6 (CPh₂O), 66.0 (CHN), 45.0 (CH₃)₂CH), 43.1 (1 C, t [1:1:1], ${}^{1}\!J_{C,D} = 19.1$ Hz, ArCDCH₃), 30.2 (CH₂Ar), 22.5 (CH₃^ACHCH₃^B), 22.4 (CH₃^ACHCH₃^B) and 18.9 (ArCDCH₃) (Found MNH₄⁺, 522.2859; C₃₄H₃₆DN₂O₃) requires MNH₄⁺, 522.2861); negative isotopic shift at 43.1 ppm (ArCD) was 0.3781 ppm (37.8 Hz at 100.6 MHz).

Parallel kinetic resolution of pentafluorophenyl 2-deuterio-2-phenylpropionate (rac)-[D₁]-2 using 4-[4-(tert-butyldimethylsilyloxy)phenyl]-oxazolidin-2-one (R)-19 and 4-phenyl-oxazolidin-2-one (S)-1

In the same way as oxazolidin-2-one **3**, *n*-butyl lithium (0.38 mL, 2.5 M in hexane, 0.95 mmol), 4-[4-(*tert*-butyldimethylsilyloxy)phenyl]-oxazolidin-2-one (*R*)-**19** (0.117 g, 0.40 mmol), 4-phenyl-oxazolidin-2-one (*S*)-**1** (65 mg, 0.40 mmol), and pentafluorophenyl 2-deuterio-2-phenylpropio-*Chirality* DOI 10.1002/chir nate (rac)- $[D_1]$ -2 (0.303 g, 0.95 mmol, [D]:[H] = 97:3), gave a mixture of two diastereoisomeric oxazolidin-2-ones (S,R)-syn-20 (ratio 97:3: syn:anti-) and (R,S)-syn-2 (ratio 97:3: syn:anti-) in a ratio of 53:47. The crude residue was purified by flash chromatography on silica gel eluting with light petroleum ether (b.p. $40-60^{\circ}$ C):diethyl ether (7:3) to give (2S,4R)-3-[2-deuterio-2-phenylpropionyl]-4-[4-(tertbutyldimethylsilyloxy)phenyl]-oxazolidin-2-one (S,R)-syn- $[D_1]$ -20 (0.133 g, 78%) as a white solid; R_F [light petroleum ether (b.p. 40-60°C): diethyl ether (1:1)] 0.50; m.p. 80-81°C (Ref. 30 for unlabelled (S,R)-syn-20; m.p. 96-98°C); $[\alpha]_D^{20} = +97.2$ (c 5.0, CHCl₃); {Ref. 30 (R,S)-20; $[\alpha]_{D}^{20} = -95.2 \ (c \ 2.0, \ CHCl_{3})\}; \ v_{max}(CHCl_{3})cm^{-1} \ 2400 \ (C-1)^{-1} \ (C-1$ D), 1776 (OC=O) and 1706 (NC=O); $\delta_{\rm H}(400 \text{ MHz};$ CDCl₃) 7.19-7.15 (3 H, m, 3 × CH; Ph), 7.05-7.00 (2 H, m, $2 \times$ CH; Ph), 6.87 (2 H, dt, J 8.4 and 2.4, $2 \times$ CH; Ar), 6.63 $(2 \text{ H}, \text{ dt}, J 8.4 \text{ and } 2.4, 2 \times \text{CH}; \text{Ar}), 5.35 (1 \text{ H}, \text{ dd}, J 9.0 \text{ and}$ 5.0, CHN), 4.54 (1 H, t, J 9.0, CH_AH_BO), 4.04 (1 H, dd, J 9.0 and 5.0, CH_AH_BO), 1.34 (3H, s, PhCDCH₃), 0.94 (9 H, s, 3 \times CH₃C; *t*-Bu) and 0.14 (6 H, s, 2 \times CH₃Si); $\delta_{\rm C}$ (100 MHz; CDCl₃) 173.6 (NC=O), 155.7 (*i*-C; Ar), 153.0 (OC=O), 139.8 (*i*-C; Ph), 130.9 (*i*-C; Ar), 128.4², 128.0² and 127.0^1 (5 \times CH; Ph), 127.3^2 and 120.2^2 (4 \times CH; Ar), 69.7 (CH₂O), 57.3 (CHN), 43.8 (unlabelled PhCHCH₃), 43.4 (1 C, t [1:1:1], ${}^{1}J_{C,D}$ = 19.8 Hz, PhCDCH₃), 25.6³ (3 × $CH_{3}C$; *t*-Bu), 18.4 (PhCH CH_{3}), 18.1 (CH₃C; *t*-Bu), -4.5 (CH₃^ASiCH₃^B) and -4.5 (CH₃^ASi CH_{3}^{B}); negative isotopic shift at 43.4405 ppm was 0.3367 ppm (33.67 Hz at 100 MHz) (Found MH⁺, 427.2157; C₂₄H₃₁DNO₄Si requires MH⁺, 427.2158); and (2R,4S)-3-[2-deuterio-2-phenylpropionyl]-4-phenyl-oxazolidin-2-one (R,S)-syn- $[D_1]$ -3 (82 mg, 69 %) as a white solid; $R_{\rm F}$ [light petroleum ether (b.p. 40– 60°C):diethyl ether (1:1)] 0.33; m.p. 121–123°C (Ref. 31 (*R*,*S*)-syn-3; m.p. 124–126°C); $[\alpha]_{D}^{23} = -79.1$ (*c* 5.6, CHCl₃) for unlabelled (*R*,*S*)-syn-3; $[\alpha]_{D}^{23} = -91.9$ (*c* 4.9, CHCl₃); {Ref. 30 unlabelled (*S*,*R*)-syn-3, $[\alpha]_{D}^{20} = +92.5$ (*c* 4.9, CHCl₃)}; v_{max}(CHCl₃)cm⁻¹ 2401 (C-D), 1781 (OC=O) and 1713 (NC=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.20-7.11 (6 H, m, 6 \times CH; 2 \times Ph), 7.04-7.00 (2 H, m, 2 \times CH; Ph), 6.86-6.82 $(2 \text{ H}, \text{ m}, 2 \times \text{CH}; \text{Ph}), 5.37 (1 \text{ H}, \text{dd} / 9.0 \text{ and } 5.1, \text{CHN}),$ 4.53 (1 H, t, J 9.0, CH_AH_BO), 3.99 (1 H, dd, J 9.0 and 5.1, CH_AH_BO) and 1.31 (3 H, s, PhCDCH₃); $\delta_C(100 \text{ MHz};$ CDCl₃) 173.6 (C=O), 153.0 (C=O), 139.7 and 138.2 (2 \times *i*-C; $2 \times Ph$), 128.8,² 128.6,³ 128.0,² 127.0¹ and 125.8² (10 \times CH; 2 \times Ph), 69.5 (CH₂O), 57.7 (NCH), 43.7 (unlabelled PhCHCH₃), 43.4 (1 C, t [1:1:1], ${}^{1}J_{C,D} = 20.6$ Hz, PhCDCH₃) and 18.4 (PhCHCH₃); negative isotopic shift at 43.3871 ppm was 0.3666 ppm (36.66 Hz at 100 MHz) (Found MNH_4^+ , 314.1608; $C_{18}H_{20}DN_2O_3$ requires MNH₄⁺, 314.1609).

Parallel kinetic resolution of pentafluorophenyl 2-deuterio-2-phenylbutanoate (rac)-[D₁]-8 using 4-[4-(tert-butyldimethylsilyloxy)phenyl]-oxazolidin-2-one (R)-19 and 4-phenyl-oxazolidin-2-one (S)-1

In the same way as oxazolidin-2-one **3**, *n*-butyl lithium (0.37 mL, 2.5 M in hexane, 0.92 mmol), 4-[4-(*tert*-butyldimethylsilyloxy)phenyl]-oxazolidin-2-one (*R*)-**19** (0.11 g, 0.38 mmol), 4-phenyl-oxazolidin-2-one (*S*)-**1** (62 mg, 0.38 mmol), and pentafluorophenyl 2-deuterio-2-phenylbuta-*Chirality* DOI 10.1002/chir noate (rac)-[D₁]-8 (0.30 g, 0.91 mmol, [D]:[H] = 96:4), gave a mixture of two diastereoisomeric oxazolidin-2-ones (S,R)-syn-21 (ratio 99:1: syn:anti-) and (R,S)-syn-11 (ratio 99:1: syn-:anti-) in a ratio of 53:47. The crude residue was purified by flash chromatography on silica gel eluting with light petroleum ether (b.p. $40-60^{\circ}$ C):diethyl ether (7:3) to give (2S,4R)-3-[2-deuterio-2-phenylbutanoyl]-4-[4-(tertbutyldimethylsilyloxy)phenyl]-oxazolidin-2-one (S,R)-syn- $[D_1]$ -21 (0.11 g, 67%) as a colourless oil; R_F [light petroleum ether (b.p. 40–60°C):diethyl ether (1:1)] 0.57; $[\alpha]_D^{20}$ = +87.6 (c 4.0, CHCl₃) {Ref. 30 unlabelled (*R*,*S*)-syn-21; $[\alpha]_{D}^{20} = -89.4$ (c 4.4, CHCl₃)}; ν_{max} (CH₂Cl₂)cm⁻¹ 2401 (C-D), 1778 (OC=O) and 1702 (NC=O); $\delta_{\rm H}$ (400 MHz; $CDCl_3$) 7.19-7.16 (3 H, m, 3 × CH; Ph), 7.07-7.04 (2 H, m, 2 × CH; Ph), 6.75 (2 H, dt, J 8.5 and 2.5, 2 × CH; Ar), 6.61 (2 H, dt, J 8.5 and 2.5, 2 × CH; Ar), 5.37 (1 H, dd, J 9.0 and 5.0, CHN), 4.56 (1 H, t, J 9.0, CH_AH_BO), 4.03 (1H, dd, J 9.0 and 5.0, CH_AH_BO), 2.00 (1 H, dq, J 13.8 and 7.3, $CH_{A}H_{B}CH_{3}$), 1.66 (1 H, dq, J 13.8 and 7.3, $CH_{A}H_{B}CH_{3}$), 0.94 (9 H, s, $3 \times CH_3$; *t*-Bu), 0.83 (3 H, t, *J* 7.3, CH₃CH₂), 0.14 (6 H, s, 2 \times SiCH₃); δ_{C} (100 MHz; CDCl₃) 173.0 (NC=O), 155.7 (OC=O), 153.2 (*i*-CO; Ar), 138.1 (*i*-C; Ph) 130.9 (*i*-C; Ar), 128.6,² 128.4,² 127.1,² 127.0¹ and 120.2² (9) × CH; Ph and Ar), 69.6 (CH₂O), 57.3 (CHN), 51.1 (unlabelled PhCH), 50.7 (1 C, t [1:1:1], ${}^{1}J_{C,D} = 19.8$ Hz, PhCD), 26.2 (CH_2CH_3), 25.6³ (3 × CH_3C ; t-Bu), 18.1 (CH_3C ; t-Bu), 11.9 (CH₂CH₃) and -4.5^2 (2 × SiCH₃); negative isotopic shift at 50.7742 ppm was 0.3972 ppm (39.72 Hz at 100 MHz) (Found MH⁺, 441.2312; C₂₅H₃₃DNO₄Si requires MH^+ , 441.2314); and (2R,4S)-3-[2-deuterio-2-phenylbutanoyl]-4-phenyl-oxazolidin-2-one (R,S)-syn-[D₁]-11 (80 mg, 68 %) as a white solid; $R_{\rm F}$ [light petroleum ether (b.p. 40– 60°C):diethyl ether (1:1)] 0.43; m.p. 80-82°C (Ref. 32 unlabelled (S,R)-syn-11; m.p. 82–84°C); $[\alpha]_D^{20} = -59.4$ (c 3.2, CHCl₃); {Ref. 30 (*S*,*R*)-syn-11; $[\alpha]_D^{20} = +77.4$ (*c* 4.0, CHCl₃); Ref. 22 (*R*,*S*)-syn-[D₂]-11; $[\alpha]_D^{20} = -54.2$ (*c* 4.6, CHCl₃); CHCl₃)}; v_{max}(CH₂Cl₂)cm⁻¹ 2401 (C-D), 1782 (OC=O) and 1708 (NC=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.18-7.08 (6 H, m, 6 \times CH; Ph), 7.06-7.01 (2 H, m, 2 \times CH; Ph), 6.82-6.78 (2 H, m, $2 \times$ CH; Ph), 5.38 (1 H, dd, *J* 8.9 and 5.0, CHN), 4.57 (1 H, t, J 8.9, CH_AH_BO), 3.98 (1 H, dd, J 8.9 and 5.0, CH_AH_BO), 2.00-1.90 (1 H, dq, J 13.5 and 7.3, CH_AH_BCH₃), 1.68-1.58 (1 H, dq, J 13.5 and 7.3, CH_AH_BCH₃) and 0.79 (3 H, t, J 7.5, CH₃CH₂); δ_C(100 MHz; CDCl₃) 173.1 (NC=O), 153.1 (OC=O), 138.2 and 137.9 (2 × *i*-C; 2 × Ph), 128.8,² 128.7,² 128.4,¹ 128.3,² 127.1,¹ and 125.6² (10 × CH; 2 × Ph), 69.4 (CH₂O), 57.7 (CHN), 51.1 (unlabelled Ph*C*H), 50.7 (1 C, t [1:1:1], ${}^{1}J_{C,D}$ = 19.8 Hz, Ph*C*D), 26.1 (CH₂CH₃) and 11.9 (CH₂CH₃); negative isotopic shift at 50.7055 ppm was 0.4049 ppm (40.49 Hz at 100 MHz) (Found MNH₄⁺, 328.1765; C₁₉H₂₂DN₂O₃ requires MNH4⁺, 328.1766).

Parallel kinetic resolution of pentafluorophenyl 2-deuterio-2-(4-methylphenyl)propionate (rac)-[D₁]-9 using 4-[4-(tert-butyldimethylsilyloxy)phenyl]-oxazolidin-2-one (R)-19 and 4-phenyl-oxazolidin-2-one (S)-1

In the same way as oxazolidin-2-one **3**, *n*-butyl lithium (0.53 mL, 2.5 M in hexane, 1.325 mmol), 4-[4-(*tert*-butyldimethylsilyloxy)phenyl]-oxazolidin-2-one (*R*)-**19** (0.162 g,

0.55 mmol), 4-phenyl-oxazolidin-2-one (S)-1 (90 mg, 0.55 mmol), and pentafluorophenyl 2-deuterio-2-(4-methylphenyl)propionate (rac)-[D₁]-9 (0.438 g, 1.32 mmol, [D]:[H] = 96:4), gave a mixture of two diastereoisomeric oxazolidin-2-ones (S,R)-syn- $[D_1]$ -22 (ratio 95:5: syn-:anti-) and (R,S)-syn- $[D_1]$ -12 (ratio 96:4: syn-:anti-) in a ratio of 53:47. The crude residue was purified by flash chromatography on silica gel eluting with light petroleum ether (b.p. 40-60°C):diethyl ether (7:3) to give (2S,4R)-3-[2-deuterio-2-(4methylphenyl)propionate]-4-[4-(tert-butyldimethylsilyloxy)phenyl]-oxazolidin-2-one (S,R)-syn-[D₁]-22 (0.172 g, 71 %) as a colourless oil; $R_{\rm F}$ [light petroleum ether (b.p. 40as a constructs on, $R_{\rm F}$ [inglit period and enter (6.9. for 60° C):diethyl ether (1:1)] 0.53; $[\alpha]_{\rm D}^{20} = +121.1$ (*c* 4.2, CHCl₃) {Ref. 30 (*R*,*S*)-*syn*-**22**; $[\alpha]_{\rm D}^{20} = -120.3$ (*c* 6.0, CHCl₃)}; $v_{\rm max}$ (CH₂Cl₂)cm⁻¹ 2401 (C-D), 1777 (OC=O) and 1702 (NC=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 6.95 (2 H, br d, J 8.0, $2 \times$ CH; Ar_A), 6.91 (2 H, dt, J 8.0 and 1.8, $2 \times$ CH; Ar_A), 6.78 (2 H, dt, J 8.5 and 2.5, 2 \times CH; Ar_B), 6.62 (2 H, dt, J 8.5 and 2.5, $2 \times$ CH; Ar_B), 5.35 (1 H, dd, J 9.0 and 5.0, CHN), 4.56 (1 H, t, J 9.0, CH_AH_BO), 4.05 (1H, dd, J 9.0 and 5.0, CH_AH_BO), 2.27 (3 H, s, CH₃; Ar), 1.32 (3 H, s, ArCDCH₃), 0.93 (9 H, s, $3 \times$ CH₃; *t*-Bu) and 0.15 (6 H, s, 2 × SiCH₃); δ_{C} (100 MHz; CDCl₃) 173.8 (NC=O), 155.8 (OC=O), 153.1 (*i*-CO; Ar_B), 136.9, 136.6 and 130.9 ($3 \times i$ -C; Ar_A and Ar_B), 129.1, 128.0, 127.3 and 120.2 (4 \times CH; Ar_A and Ar_B), 69.7 (CH₂O), 57.3 (CHN), 43.4 (unlabelled ArCHCH₃), 43.0 (1 C, t [1:1:1], ${}^{1}J_{C,D} = 19.8$ Hz, ArCDCH₃), 25.6³ (3 × CH₃; *t*-Bu), 21.0 (CH₃; Ar), 18.5 (ArCDCH₃), 18.2 (CH₃C; t-Bu) and -4.5^2 (2 × SiCH₃); negative isotopic shift at 43.0433 ppm was 0.3667 ppm (36.67 Hz at 100 MHz) (Found MH⁺, 441.2315; C₂₅H₃₃DNO₄Si requires MH⁺, 441.2314); and (2R,4S)-3-[2deuterio-2-(4-methylphenyl)propionyl]-4-phenyl-oxazolidin-2-one (*R*,*S*)-syn-[D₁]-12 (0.129 g, 76 %) as a white solid; $R_{\rm F}$ [light petroleum ether (b.p. 40-60 °C):diethyl ether (1:1)] 0.31; m.p. 118–120°C; {Ref. ³² (R,S)-syn-12; m.p. 105-110°C}; v_{max} (CHCl₃) cm⁻¹ 2400 (C-D), 1781 (OC=O) and 1706 (NC=O); $[\alpha]_D^{20} = -101.4$ (c 2.6, CHCl₃) {Ref. 32 (S,R)-syn-12; $[\alpha]_D^{20} = +121.6$ (c 0.6, CHCl₃)}; δ_H (400 MHz, CDCl₃) 7.22-7.12 (3 H, m, 3 × CH; Ph), 6.97 (2 H, br d, J 8.2, 2 \times CH; Ar), 6.91 (2 H, dt, J 8.2 and 2.2, 2 \times CH; Ar), 6.86 (2 H, dt, J 6.9 and 1.8, 2 × CH; Ph), 5.36 (1 H, dd, J 9.0 and 5.1, CHN), 4.54 (1 H, t, J 9.0, CH_AH_BO), 3.99 (1 H, dd, J 9.0 and 5.1, CH_AH_BO), 2.25 (3 H, s, CH₃; Ar) and 1.32 (3 H, s, ArCDCH₃); δ_C (100 MHz, CDCl₃) 173.9 (NC=O), 153.1 (OC=O), 138.3 (i-CMe; Ar), 136.8 (*i*-C; Ar), 136.7 (*i*-C; Ph), 129.1,² 128.8,² 128.5,¹ 128.0² and 125.8^2 (9 × CH; Ph and Ar), 69.6 (CH₂O), 57.8 (CHN), 43.4 (unlabelled ArCHCH₃), 43.0 (1 C, t [1:1:1], ${}^{1}J_{C,D}$ = 20.6 Hz, ArCDCH₃), 21.0 (CH₃; Ar) and 18.6 (ArCHCH₃); negative isotopic shift at 43.0815 ppm was 0.3667 ppm (36.67 Hz at 100 MHz). (Found MNH_4^+ , 328.1766; $C_{19}H_{22}DN_2O_3^+$ requires MNH₄⁺, 328.1766).

Parallel kinetic resolution of pentafluorophenyl 2-deuterio-2-(4-isobutylphenyl)propionate (rac)-[D₁]-10 using 4-[4-(tert-butyldimethylsilyloxy)phenyl]-oxazolidin-2-one (R)-19 and 4-phenyl-oxazolidin-2-one (S)-1

In the same way as oxazolidin-2-one **3**, *n*-butyl lithium (0.49 mL, 2.5 M in hexane, 1.225 mmol), 4-[4-(*tert*-butyldi-

methylsilyloxy)phenyl]-oxazolidin-2-one (R)-19 (0.146 g, 0.50 mmol), 4-phenyl-oxazolidin-2-one (S)-1 (82 mg, 0.50 mmol), and pentafluorophenyl 2-deuterio-2-(4-isobutylphenyl)propionate (rac)-[D₁]-10 (0.45 g, 1.21 mmol, [D]:[H] = 95:5), gave a mixture of two diastereoisomeric oxazolidin-2-ones (S,R)-syn-23 (ratio 97:3: syn-:anti-) and (R,S)-syn-13 (ratio 97:3: syn:anti-) in a ratio of 53:47. The crude residue was purified by flash chromatography on silica gel eluting with light petroleum ether (b.p. 40-60°C):diethyl ether (7:3) to give (2S,4R)-3-[2-deuterio-2-(4-isobutylphenyl)propionate]-4-[4-(tert-butyldimethylsilyloxy)phenyl]-oxazolidin-2-one (S,R)-syn-[D₁]-23 (0.185 g, 77%) as a colourless oil; $R_{\rm F}$ [light petroleum ether (b.p. 40–60°C):diethyl ether (1:1)] 0.50; (Ref. 30 unlabelled (R,S)-syn-23; m.p. 68–70°C); $[a]_{D}^{20} = +134.5$ (*c* 6.2, CHCl₃) {Ref. 30 (*R*,*S*)-*syn*-**23**; $[\alpha]_{D}^{20} = -129.6$ (*c* 3.4, CHCl₃)}; v_{max} (CH₂Cl₂)cm⁻¹ 2400 (C-D), 1776 (OC=O) and 1702 (NC=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 6.96 (4 H, br s, $4 \times$ CH; Ar_A), 6.73 (2 H, dt, I 8.4 and 2.4, 2 × CH; Ar_B), 6.60 (2 H, dt, I 8.4 and 2.4, 2 \times CH; Ar_B), 5.37 (1 H, dd, J 9.0 and 5.1, CHN), 4.56 (1 H, t, J 9.0, CH_AH_BO), 4.03 (1H, dd, J 9.0 and 5.1, CH_AH_BO), 2.40 (2 H, d, J 6.9, CH₂Ar), 1.83 (1 H, appears as a nonet, J 6.8, (CH₃)₂CH), 1.34 (3 H, s, ArCDCH₃), 0.95 (9 H, s, 3 \times CH₃; *t*-Bu), 0.91 (3 H, d, *J* 6.8, CH₃^ACHCH₃^B), 0.89 (3 H, d, *J* 6.8, CH₃^ACHCH₃^B) and 0.15 (6 H, s, 2 × SiCH₃); $\delta_{\rm C}$ (100 MHz; CDCl₃) 173.8 (NC=O), 155.6 (OC=O), 153.1 (*i*-CO; Ar_A), 140.4, 136.9 and 130.9 ($3 \times i$ -C; Ar_A and Ar_B), 129.1, 127.8, 127.1 and 120.2 (4 \times CH; Ar_A and Ar_B), 69.6 (CH₂O), 57.2 (CHN), 45.0 (CH₂Ar), 43.3 (ArCHCH₃), 42.8 $(1 \text{ C}, \text{ t} [1:1:1], {}^{1}J_{C,D} = 19.8 \text{ Hz}, \text{ Ar}CDCH_{3}), 30.1$ $(CH_3)_2$ CH), 25.5³ (3 × CH₃C; *t*-Bu), 22.3 and 22.2 (2 × CH₃; *i*-Bu), 18.2 (ArCHCH₃), 18.1 (CH₃C; *t*-Bu) and -4.5² $(2 \times \text{SiCH}_3)$; negative isotopic shift at 42.8523 ppm was 0.3743 ppm (37.43 Hz at 100 MHz) (Found MH⁺, 483.2788; C₂₈H₃₉DNO₄Si requires MH⁺, 483.2784); and (2R,4S)-3-[2-deuterio-(4-isobutylphenyl)propionyl]-4-phenyloxazolidin-2-one (R,S)-syn-[D₁]-13 (0.134 g, 76 %) as a colourless oil; $R_{\rm F}$ [light petroleum ether (b.p. 40–60°C):diethyl ether (1:1)] 0.34; {Ref. 32 (*S*,*R*)-*syn*-13; m.p. 86–88°C}; $[\alpha]_D^{25} = -113.2 \ (c \ 3.8, \ CHCl_3) \ \{\text{Ref. 32} \ (S,R)-\text{syn-13}; \ [\alpha]_D^{25}$ = +118.7 (c 6.0, CHCl₃); for unlabelled (R,S)-syn-13; $[\alpha]_{D}^{22}$ $= -114.6 \ (c \ 4.2, \ CHCl_3)\}; \ v_{max}(CHCl_3)cm^{-1} \ 2400 \ (C-D),$ 1780 (OC=O) and 1707 (NC=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.20-7.08 (3 H, m, 3 \times CH; Ph), 6.97-6.90 (4 H, m, 4 \times CH, Ph and Ar), 6.82 (2 H, dt, J 7.8 and 2.0, 2 \times CH; Ar), 5.37 (1 H, dd / 9.1 and 5.1, CHN), 4.54 (1 H, t, / 9.1, CH_AH_BO), 3.96 (1 H, dd, J 9.1 and 5.1, CH_AH_BO), 2.35 (2 H, dd, J 7.4 and 2.2, CH₂Ar), 1.83-1.71 (1 H, appears as a nonet, J 6.8, (CH(CH₃)₂), 1.31 (3 H, s, ArCDCH₃), 0.84 (3 H, d, J 6.6, $CH_3^{A}CHCH_3^{B}$) and 0.82 (3 H, d, J 6.6, $CH_3^{A}CHCH_3^{B}$); $\delta_{\rm C}(100.6 \text{ MHz}; \text{CDCl}_3)$ 173.8 (NC=O), 153.1 (OC=O), 140.5 (*i*-C; Ar), 138.2 (*i*-C; Ar), 136.8 (*i*-C; Ph), 129.2² and 128.7^2 (4 × CH; Ar), 128.4^1 127.8^2 and 125.7^2 (5 × CH; Ph), 69.5 (CH₂O), 57.6 (CHN), 45.0 (CH(CH₃)₂), 43.2 (unlabelled ArCHCH₃), 42.8 (1 C, t [1:1:1], ${}^{1}J_{C,D} = 19.8$ Hz, ArCDCH₃), 30.2 (CH₂Ar), 22.4 (CH₃^ACHCH₃^B), 22.3 (CH₃^ACHCH₃^B) and 18.2 (ArCDCH₃); negative isotopic shift at 42.8829 ppm was 0.3590 ppm (35.90 Hz at 100 MHz) (Found MH⁺, 353.1970; $C_{22}H_{25}DNO_3$ requires MH⁺, 353.1971).

Hydrolysis of oxazolidin-2-one (S,R)-syn- $[D_1]$ -3; synthesis of 2-deuterio-2-phenylpropionic acid (S)- $[D_1]$ -4

Lithium hydroxide monohydrate (32 mg, 0.76 mmol) was slowly added to a stirred solution of oxazolidin-2-one (S,R)-syn-[D₁]-3 (0.18 g, 0.60 mmol) and hydrogen peroxide (0.22 mL, 3.53 M in H₂O, 0.79 mmol) in THF/water (1:1; 5 mL). The reaction mixture was stirred at room temperature for 12 h. The reaction was quenched with water (10 mL) and extracted with dichloromethane (3×10 mL). The combined organic layers were dried (over $MgSO_4$) and evaporated under reduced pressure to give the oxazolidin-2-one (R)-1 (0.116 g, 96 %) as a white solid. After acidic extraction of the aqueous layer using HCl (1 M, 10 mL) and dichloromethane $(3 \times 10 \text{ mL})$, gave 2-deuterio-2phenylpropionic acid (S)-4 (75 mg, 82%) ([D]:[H] = 97:3) as a colourless liquid; >98% *e.e.*, $[\alpha]_{D}^{24} = +71.8$ (*c* 0.15, CHCl₃); {unlabelled (*S*)-4; Ref. 31 $[a]_{D}^{20} = +71.2$ (*c* 0.66, CHCl₃)}; v_{max} (film)cm⁻¹ 2306 (CD) and 1704 (C=O); δ_{H} (270 MHz; CDCl₃) 7.35-7.20 (5 H, m, 5 \times CH; Ph) and 1.50 (3 H, s, CH₃); δ_{C} (100 MHz; CDCl₃) 180.6 (C=O), 140.0 (*i*-C; Ph), 129.0,² 128.0² and 127.7¹ (5 × CH; Ph), 45.7 (1 C, s, unlabelled PhCHCH₃), 45.3 (1 C, t [1:1:1], ${}^{1}J_{C,D} = 20.1 \text{ Hz}, \text{ Ph}CDCH_{3}$) and 18.3 (CDCH₃); (Found MNH_4^+ , 169.1081; C₉H₁₃DNO₂ requires 169.1082). Isotope shift at C(2) was 0.27 ppm (27.1 Hz at 100.613 MHz).

Hydrolysis of oxazolidin-2-one (R,S)-syn- $[D_1]$ -15; synthesis of 2-deuterio-2-phenylpropionic acid (R)- $[D_1]$ -4

In the same way as 2-deuterio-2-phenylpropionic acid (*S*)-[D₁]-4, oxazolidin-2-one (*R*,*S*)-*syn*-[D₁]-15 (61 mg, 0.14 mmol), lithium hydroxide monohydrate (11 mg, 0.27 mmol) and hydrogen peroxide (80 µL, 3.53 M in H₂O, 0.27 mmol) in THF/water (1:1; 5 mL), gave after purification by aqueous extraction as 2-deuterio-2-phenylpropionic acid (*R*)-[D₁]-4³³ (19 mg, 92%) ([D]:[H] = 99:1) as a colourless liquid; >95% *e.e.*, $[\alpha]_{D}^{22} = -64.9$ (*c* 3.6, CHCl₃) {unlabelled (*R*)-4; Ref. 30 $[\alpha]_{D}^{22} = -71.4$ (*c* 0.7, CHCl₃) } which was spectroscopically identical to those previously obtained. The combined organic layers were dried (over MgSO₄) and evaporated under reduced pressure and purified by column chromatography to give the 4,5,5-triphenyloxazolidin-2-one (*S*)-14 (41 mg, 95%) as a white solid.

Hydrolysis of oxazolidin-2-one (S,R)-syn- $[D_1]$ -20; synthesis of 2-deuterio-2-phenylpropionic acid (S)- $[D_1]$ -4

In the same way as 2-deuterio-2-phenylpropionic acid (*S*)-[D₁]-4, oxazolidin-2-one (*S*,*R*)-*syn*-[D₁]-**20** (73 mg, 0.17 mmol), lithium hydroxide monohydrate (7 mg, 0.17 mmol) and hydrogen peroxide (50 µL, 3.53 M in H₂O, 0.17 mmol) in THF/water (1:1; 5 mL), gave after purification by aqueous extraction as 2-deuterio-2-phenylpropionic acid (*S*)-[D₁]-4 (20 mg, 77%) ([D]:[H] = 95:5) as a colourless liquid; >98% *e.e.*, $[\alpha]_{D}^{22} = +68.0$ (*c* 1.7, CHCl₃) {unlabelled (*S*)-4; Ref. 31 $[\alpha]_{D}^{22} = +71.2$ (*c* 0.66, CHCl₃)} which was spectroscopically identical to those previously obtained. The combined organic layers were dried (over MgSO₄) *Chirality* DOI 10.1002/chir

and evaporated under reduced pressure and purified by column chromatography to give the oxazolidin-2-one (R)-**19** (44 mg, 88%) as a white solid.

Hydrolysis of oxazolidin-2-one (R,S)-syn-[D₁]-3; synthesis of 2-deuterio-2-phenylpropionic acid (R)-[D₁]-4

In the same way as 2-deuterio-2-phenylpropionic acid (S)-[D₁]-4, oxazolidin-2-one (*R*,*S*)-*syn*-[D₁]-3 (44 mg, 0.15 mmol), lithium hydroxide monohydrate (12 mg, 0.30 mmol) and hydrogen peroxide (80 µL, 3.53 M in H₂O, 0.30 mmol) in THF/water (1:1; 5 mL), gave after purification by aqueous extraction as 2-deuterio-2-phenylpropionic acid (*R*)-[D₁]-4 (15 mg, 67%) ([D]:[H] = 95:5) as a colourless liquid; >98% *e.e.*, $[\alpha]_{D}^{22} = -63.6$ (*c* 3.0, CHCl₃); which was spectroscopically identical to those previously obtained. The combined organic layers were dried (over MgSO₄) and evaporated under reduced pressure and purified by column chromatography to give the oxazolidin-2-one (*S*)-1 (23 mg, 95%) as a white solid.

Representative procedure for determining the enantiomeric excess of 2-deuterio-2-phenylpropionic acid 4

(S)-1-Phenyl-ethanol (12 mg, 99 µmol) was added to a stirred solution of 2-deuterio-2-phenyl-propionic acid (S)-[D₁]-4 (15 mg, 99 µmol) {derived from the hydrolysis of oxazolidin-2-one (*S*,*R*)-*syn*-[D₁]-**20**}, DMAP (3 mg, 20 µmol) and DCC (23 mg, 0.11 mmol) in CH₂Cl₂ (5 ml) at room temperature. The solution was stirred for 12 h. The resulting DCU was filtered off, and the remaining CH₂Cl₂ layer was washed with brine (10 mL), dried (over MgSO₄) and evaporated under reduced pressure. By ¹H NMR spectroscopy (400 MHz) a single diastereoisomeric ester [(*S*,*S*)-*anti*-]³⁴ was detected. The enantiomeric excess of the original 2-deuterio-2-phenyl-propionic acid (*S*)-[D₁]-4 was >98% *e.e.*

In the same way as above, (*R*)-1-phenyl-ethanol (33 mg, 0.27 mmol) was added to a stirred solution of 2-deuterio-2phenyl-propionic acid (*R*)-[D₁]-4 (41 mg, 0.27 mmol) (derived from the hydrolysis of oxazolidin-2-one (*R*,*S*)-*sym*-[D₁]-**15**}, DMAP (7 mg, 50 µmol) and DCC (62 mg, 0.30 mmol) in CH₂Cl₂ (5 ml) at room temperature. The solution was stirred for 12 h. The resulting DCU was filtered off, and the remaining CH₂Cl₂ layer was washed with brine (10 mL), dried (over MgSO₄) and evaporated under reduced pressure. By ¹H NMR spectroscopy (400 MHz) a single diastereoisomeric ester [(*R*,*R*)-*anti*-]³⁴-] was detected. The enantiomeric excess of the original 2-deuterio-2-phenyl-propionic acid (*R*)-[D₁]-4 was >98% *e.e.*

CONCLUSIONS

In conclusion, we have reported the efficient parallel kinetic resolution of a series of structurally related pentafluorophenyl active esters {*e.g.*, (*rac*)-[D₁]-2} using three combinations of designer oxazolidin-2-ones (*R*)-1 and (*S*)-[D₂]-1, (*R*)-1 and (*S*)-14, and (*S*)-1 and (*R*)-19. The levels of diastereocontrol were found to be excellent favoring the formation of the corresponding *syn*-oxazolidin-2-one adducts **3**, **15** and **20** in high yields with excellent levels of diastereoselectivity. The preferred combination of *quasi*-enantiomeric oxazolidin-2-ones for the efficient resolution of pentafluorophenyl 2-deuterio-2-phenylpropionate (*rac*)- $[D_1]$ -**2** was found to involve the oxazolidin-2-ones (*S*)-**1** and (*R*)-**19**. These oxazolidin-2-ones were shown to be efficient *quasi*-enantiomers for the parallel kinetic resolution and separation of a variety of 2-deuterio-2-aryl-propionic and butanoic acids in good yield with high levels of deuterium incorporation.

ACKNOWLEDGMENTS

The authors are grateful to the EPSRC for a studentship (to E.C.) and The University of Hull for their financial support (to J.E.), and the EPSRC National Mass Spectrometry Service (Swansea) for accurate mass determinations. The authors also thank Onyx Scientific Limited (Drs. Tony Flinn and Julian Northen) for their interest in this project.

LITERATURE CITED

- Sonawane HR, Bellur NS, Ahuja JR, Kulkarni DG. Recent developments in the synthesis of optically active α-arylpropanoic acids: an important class of non-steroidal anti-inflammatory agents. Tetrahedron: Asymmetry 1992;3:163–192.
- Fuji K, Node M, Tanaka F, Hosoi S. Binaphthol as a chiral auxiliary. Asymmetrical alkylation of arylacetic acid. Tetrahedron Lett 1989;30: 2825–2828.
- Corriu JP, Masse JP. Activation of Grignard reagents by transitionmetal complexes. A new and simple synthesis of *trans*-stilbenes and polyphenyls. J Chem Soc Chem Commun 1972;144–144.
- Tamao K, Sumitani K, Kumada M. Selective carbon-carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel-phosphine complexes. J Am Chem Soc 1972;94: 4374–4379.
- Hayashi T, Konishi M, Fukushima M, Kanehira K, Hioki T, Kumada M. Chiral (β-aminoalkyl)phosphines. Highly efficient phosphine ligands for catalytic asymmetric Grignard cross-coupling. J Org Chem 1983;48:2195–2202.
- Larsen RD, Corley EG, Davis P, Reider PJ, Grabowski EJJ. α-Hydroxy esters as chiral reagents: asymmetric synthesis of 2-arylpropionic acids. J Am Chem Soc 1989;111:7650–7651.
- Fadel A. Optical active arylpropionic acids from the stereoselective alkylation of chiral imide enolates. Synlett 1992;48–50.
- Alper H, Hamel N. Asymmetric synthesis of acids by the palladiumcatalyzed hydrocarboxylation of olefins in the presence of (*R*)-(-)- or (*S*)-(+)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate. J Am Chem Soc 1990;112:2803–2804.
- Piccolo O, Spreafico F, Visentin G, Valoti E. Alkylation of aromatic compounds with optically active lactic acid derivatives: synthesis of optically pure 2-arylpropionic acid and esters. J Org Chem 1985;50: 3945–3946.
- Piccolo O, Azzena U, Melloni G, Delogu G, Valoti E. Stereospecific Friedel-Crafts alkylation of aromatic compounds: synthesis of optically active 2- and 3-arylalkanoic esters. J Org Chem 1991;56:183–187.
- Ohta T, Takaya H, Kitamura M, Nagai K, Noyori R. Asymmetric hydrogenation of unsaturated carboxylic acids catalyzed by BINAP-ruthenium(II) complexes. J Org Chem 1987;52:3174–3176.
- Stille JK, Parrinello G. Asymmetric hydroformylation of styrene by polymer-supported catalysts: platinum-tin chloride supported on polymer-bound chiral phosphines. J Mol Cat 1993;21:203–210.
- Kumar A, Salunkhe RV, Rane RA, Dike SY. Novel catalytic enantioselective protonation (proton transfer) in Michael addition of benzenethiol to α-acrylacrylates: synthesis of (S)-naproxen and α-arylpropionic acids or esters. J Chem Soc Chem Commun 1991;485–486.
- 14. Franck A, Ruchardt C. Optically active naproxen by kinetic resolution. Chem Lett 1984;1431–1434.

- Coumbarides GS, Eames J, Flinn A, Northen J, Yohannes Y. Probing the resolution of 2-phenylpropanoyl chloride using *quasi*-enantiomeric Evans' oxazolidinones. Tetrahedron Lett 2005;46:849–853.
- Coumbarides GS, Dingjan M, Eames J, Flinn A, Northen J, Yohannes Y. Efficient parallel resolution of an active ester of 2-phenylpropionic acid using *quasi*-enantiomeric Evans' oxazolidinones. Tetrahedron Lett 2005;46:2897–2902.
- Coumbarides GS, Dingjan M, Eames J, Flinn A, Motevalli M, Northen J, Yohannes Y. Efficient parallel resolution of racemic Evans' oxazolidinones using *quasi*-enantiomeric profens. Synlett 2006;101–105.
- Boyd E, Chavda S, Eames J, Yohannes Y. Parallel kinetic resolution of 2-methoxy and 2-phenoxy-substituted carboxylic acids using a combination of *quasi*-enantiomeric oxazolidinones. Tetrahedron: Asymmetry 2007;18:476–482.
- Coumbarides GS, Dingjan M, Eames J, Flinn A, Northen J. Parallel kinetic resolution of an oxazolidinone using a *quasi*-enantiomeric combination of [D,¹³C]-isotopomers of pentafluorophenyl 2-phenyl propionate. Chirality 2007;19:321–328.
- Chavda S, Coumbarides GS, Dingjan M, Eames J, Flinn A, Northen J. Mutual kinetic separation of isotopomers of pentafluorophenyl 2-phenyl propionate using *quasi*-enantiomeric oxazolidinones. Chirality 2007;19:313–320.
- Coulbeck E, Eames J. Probing the parallel kinetic resolution of 1-phenylethanol using *quasi*-enantiomeric oxazolidinone adducts. Tetrahedron: Asymmetry 2007;18:2313–2325.
- Boyd E, Chavda S, Coulbeck E, Coumbarides GS, Dingjan M, Eames J, Flinn A, Krishnamurthy AK, Namutebi M, Northen J, Yohannes Y. Synthesis, characterisation and application of enantiomeric isotopomers of Evans' oxazolidinones. Tetrahedron: Asymmetry 2006;17:3406– 3422.
- 23. Evans DA, Ennis MD, Mathrp DJ. Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of α -substituted carboxylic acid derivatives. J Am Chem Soc 1982;104:1737–1739.
- Evans DA. Studies in asymmetric synthesis. The development of practical chiral enolate synthons. Aldrichim Acta 1982;15:23–32.
- Coumbarides GS, Dingjan M, Eames J, Flinn A, Northen J. An efficient laboratory synthesis of α-deuteriated profens. J Label Compd Radiopharm 2006;78:903–914.
- Evans DA, Sjogren EB. The asymmetric synthesis of β-lactam antibiotics- I. application of chiral oxazolidones in the staudinger reaction. Tetrahedron Lett 1985;26:3783–3786.
- Hintermann T, Seebach D. A useful modification of the Evans auxiliary: 4-isopropyl-5,5-diphenyloxazolidin-2-one. Hel Chim Acta 1998;81: 2093–2126.
- Gaul C, Schweizer BW, Seiler P, Seebach D. Crystal structures—a manifesto for the superiority of the valine-derived 5,5-diphenyloxazolidinone as an auxiliary in enantioselective organic synthesis. Hel Chim Acta 2002;85:1546–1566.
- 29. Liao L, Zhang F, Dmitrenko O, Bach RD, Fox JM. A reactivity/affinity switch for parallel kinetic resolution: α-amino acid quasienantiomers and the resolution of cyclopropene carboxylic acids. J Am Chem Soc 2004;126:4490–4491.
- Chavda S, Coulbeck E, Dingjan M, Eames J, Flinn A, Northen J. Parallel kinetic resolution of active esters using designer oxazolidin-2-ones derived from phenylglycine. Tetrahedron: Asymmetry 2008;19:1536–1548.
- Boyd E, Chavda S, Coulbeck E, Coumbarides GS, Dingjan M, Eames J, Flinn A, Motevalli M, Northen J, Yohannes Y. Parallel kinetic resolution of racemic oxazolidinones using quasi-enantiomeric active esters. Tetrahedron: Asymmetry 2007;18:2515–2530.
- 32. Coulbeck E, Eames J. Parallel kinetic resolution of active esters using a quasi-enantiomeric combination of (*R*)-4-phenyl-oxazolidin-2-one and (*S*)-4,5,5-triphenyl-oxazolidin-2-one. Tetrahedron: Asymmetry 2008;19: 2223–2233.
- Kato D-I, Mitsuda S, Ohta H. Microbial deracemization of α-substituted carboxylic acids: substrate specificity and mechanistic investigation. J Org Chem 2003;68:7234–7242.
- Coulbeck E, Eames J. Parallel kinetic resolution of 1-phenylethanol using quasi-enantiomeric active esters. Synlett 2008;333–336.

Chirality DOI 10.1002/chir