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Abstract: An efficient synthesis of taxotere side chain has been achieved using Shibasaki’s asymmetric Henry reaction as 

the key step. 

Keywords: Taxol, Taxotere side chain, Anticancer agents, Asymmetric synthesis, Asymmetric Henry reaction, La-(R)-BINOL. 

The celebrity molecule Taxol 1 (Fig. 1) was isolated [1] 
in limited quantity from the bark of Pacific yew tree Taxus 
bravifolia and was the most significant discovery ever made 
in the field of naturally occurring anticancer agents. It has 
severe water solubility problem for effective drug delivery 
and therefore requires elaborate secondary treatment. 
Moreover, the production of taxol from the slow growing 
yew trees leads to problems of environmental consideration 
as well as debatibility on the abundance of yew trees. To 
overcome these problems associated with taxol to be used as 
a drug; intensive search for suitable taxol analogue has 
already been initiated. In recent years, more emphasis is 
being given on the production of 10-DAB III, from which a 
wide range of semisynthetic taxol analogues such as taxotere 
2 can be made. A viable approach for the production of 
taxotere from simpler 10-DAB III, 3, by fixing a synthetic 3-
phenylisoserine derived side chain has been reported [2].  
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A number of synthetic approaches for the synthesis of the 
taxotere side chain are reported in the literature [3]. 
However, these syntheses involved several steps and also 
low overall yield. We have long been engaged in the 
synthesis of bioactive natural products involving nitro 
aliphatics [4]. In this context and also with our previous 
experience in the synthesis of taxol side chain [5], we report 
herein a very short synthesis of the Taxotere side chain 
starting from phenyl nitromethane in high enantiomeric 
purity. 

Our approach toward the synthesis of taxotere side chain 
4 is depicted in Scheme 1. It is based on the reduction of the 
nitro alcohol 5, the synthesis of which is anticipated by 
Shibasaki’s asymmetric Henry reaction of phenyl 
nitromethane and ethyl glyoxalate. 

Accordingly, the synthesis of taxotere side chain 
commenced with the Shibasaki’s asymmetric Henry reaction 

[6] of Phenyl nitromethane [7] with ethyl glyoxalate in the 
presence of La-(R)-BINOL catalyst at -50 

o
C in THF to 

furnish the key intermediate 5 with satisfactory 
diastereoselectivity (dr = 13:1; syn: anti) in 72% yield and 
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Fig. (1). Structure of Taxol, Taxotere and 10-DAB III. 
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81% ee [8] (Scheme 2). Catalytic hydrogenation of the nitro 
group in 5 followed by protection of the amino group with 
Et3N and (Boc)2O afforded the taxotere side chain in 48 % 
yield over two steps (89% ee).  

In conclusion, we have achieved a very short synthesis of 
taxotere side chain in 34% overall yield starting from phenyl 
nitromethane. We have performed this synthesis up to 1 
gram level and hence this strategy is adaptable to gram scale 
synthesis of taxotere side chain (34% yield, 89% ee). The 
synthesis features an exception to the most other chiral 
auxillary based approaches to taxotere side chain, 
reaffirming the versatility of nitro aliphatics.  

SPECTRAL DATA OF SELECTED COMPOUNDS 

Compound 4 

m.p 61-64 
o
C [ ]D

20
 = +1.1 (c = 1.0, CHCl3). IR (CHCl3): 

 = 3469, 1737, 1558 cm
-1

. 
1
H NMR (300 MHz, CDCl3):  = 

7.53-7.36 (m, 5H), 5.75-5.73 (d, 1H, J = 5.7 Hz), 4.84 (t, 1H, 
J = 6.3 Hz), 4.23-4.14 (nm 2H), 1.12 (t, 3H, J =6.9 Hz). 

13
C 

NMR (75 MHz, CDCl3):  = 170.6, 131.0, 130.4, 129.5, 
128.3, 92.0, 72.6, 63.1, 14.1. MS (ESI): m/z = 239.1 (M

+
). 

Compound 5 

m.p 118-120 
o
C. [ ]D

20
 = +6.4 (c = 0.9, CHCl3). IR 

(CHCl3):  = 3441, 2979, 1719 cm
-1

. 
1
H NMR (300 MHz, 

CDCl3):  = 7.37-7.26 (m, 5H), 5.43-5.40 (d, 1H, J = 9.3), 
5.25-5.22 (d, 1H, J = 9.6), 4.46 (bs, 1H), 4.38-4.24 (m, 2H), 
3.18 (bs, 1H), 1.41 (s, 9H), 1.35-1.3 (t, 3H, J = 16.2 Hz). 

13
C 

NMR (75 MHz, CDCl3):  = 172.9, 155.1, 139.2, 128.5, 
127.6, 126.7, 79.8, 73.6, 62.5, 55.9, 28.2, 14.1. MS (ESI): 
m/z = 332.1 (M

+
+Na).  
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Scheme 1. Retrosynthesis for the synthesis of taxotere side chain. 
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Scheme 2. Reagents and conditions (i) ethyl glyoxalate, La-(R)-BINOL (10 mol%), THF, -50 
o
C, 60 h; (ii) H2/Pd-C, MeOH, rt; (iii) (Boc)2O, 

Et3N, CH2Cl2, rt. 
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