FULL PAPER

Hydrindacene-Based Acetylenic Macrocycles with Horizontally and Vertically Ordered Functionality Arrays

Hidetoshi Kawai,^{*[a, b]} Tatsuya Utamura,^[b] Erina Motoi,^[b] Tomoko Takahashi,^[b] Hiroyoshi Sugino,^[b] Manabu Tamura,^[b] Masakazu Ohkita,^[c] Kenshu Fujiwara,^[b] Takao Saito,^[a] Takashi Tsuji,^[b] and Takanori Suzuki^[b]

Abstract: The macrocyclization of 2,6diethynyl hydrindacenes (1) with functional groups at mutually perpendicular positions results in the formation of novel macrocycles which, as a result of the hindered rotation of the hydrindacene units, possess directionally persistent peripheral functionalities. The two hydrindacene units in the dimer macrocycle (2) have been shown to interact

Introduction

Macrocycles^[1] that feature preorganized cavities and well-defined structures that are amenable to modification have attracted significant interest to date on account of their novel properties and potential appli-

cations.^[2] Arylene and ethynylene units have often been used to form such shape-persistent macrocycles.^[3-10] One example of a noteworthy property of some planar shape-persistent macrocycles, such as *m*-phenyleneethynylene macrocycles^[4] and dehydrobenzo[*n*]annulenes,^[5] is the formation of an internal void upon self-assembly based on π - π stack-

[a] Prof. H. Kawai, T. Saito Department of Chemistry, Faculty of Science Tokyo University of Science
1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601 (Japan) Fax: (+81)3-5228-8255 E-mail: kawaih@rs.tus.ac.jp

[b] Prof. H. Kawai, T. Utamura, E. Motoi, T. Takahashi, H. Sugino, M. Tamura, Prof. K. Fujiwara, Prof. T. Tsuji, Prof. T. Suzuki Department of Chemistry, Faculty of Science Hokkaido University Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810 (Japan)

- [c] Prof. M. Ohkita
 Department of Material Science and Engineering
 Graduate School of Engineering
 Nagoya Institute of Technology
 Gokiso-cho, Showa-ku, Nagoya, 466-8555 (Japan)
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201200716.

electronically through their respective butadiyne moieties, whereas the trimer macrocycle (3) demonstrates a moderate degree of geometrical flexibility as

Keywords: alkynes • inclusion compounds • macrocycles • solid-state structures • through-bond interactions a result of the five-membered hydrindacene rings. In addition, these trimer macrocycles contain a central cavity suitably sized for the inclusion of various solvent molecules. These new macrocycles can be further modified by introducing π -conjugated side groups, such as styryl and thienyl groups, as well as by attaching a variety of peripheral ester groups.

ing. In addition, belt-shaped macrocycles^[7-15] that consist of rotatable phenylene units-including p-phenyleneethynylene macrocycles (CPPAs^[7,8] and their homologues^[9]), cycloarylenes,^[10] calixarenes,^[11] and pillararenes^[12]—all feature internal voids and thus might form molecular complexes with a variety of guest species. Further unique and interesting properties might be obtained by modifying the cyclic backbones of such macrocycles by attaching various peripheral functional groups oriented both horizontally and vertically relative to the plane defined by the macrocycle. However, additional structural modifications are also necessary to suppress rotation of the phenylene scaffolds, and thus to obtain a well-defined and persistent array of peripheral functional groups. Fixation of the rotational units within some macrocycles can be achieved by increasing their rotational energy barrier through attaching alkyl chains onto the phenylene units, or by the addition of covalently bound groups to form cyclic ladder-shaped structures,^[13] as in the case with cavitands^[14] and cucurbiturils.^[2e] This approach to rotational fixation of the macrocycle, however, limits the options for any additional modifications of the molecules. An alternative approach to suppressing rotation is to connect the quaternary or tertiary carbon atoms on the individual ring units, as is the case in cyclodextrins and their analogues.^[15]

ChemPubSoc Europe

In this article, we report the design and synthesis of a series of novel macrocycles (2–4), all of which are functionalized in both the horizontal and vertical directions relative to the plane defined by the macrocyclic backbone (Scheme 1). These structures were prepared through Eglin-

Scheme 1. Construction of hydrindacene-based macrocycles 2-4.

ton coupling reactions of the 2,6-diethynylhydrindacenes **1a–d**. The details of the synthetic procedures are presented herein, in addition to the results of X-ray structural analysis and the optical and redox properties of the resulting macrocycles.

Results and Discussion

Molecular design of hydrindacene-based macrocycles: This novel class of macrocycles, which consists of 2-4, utilizes hydrindacene (1,2,3,5,6,7-hexahydro-s-indacene (1)) as the basic monomer unit. As shown in Scheme 1, the hydrindacene monomer is composed of a rigid aromatic ring with a five-membered alicyclic ring on either side. We recently reported that hydrindacene might be used as a versatile scaffold^[16-18] for the synthesis of various supramolecular assemblies, including a rotaxane template^[16] and allosteric^[17] or functionality-selective receptors.^[18] These varied assemblies result from the multidimensional modification of hydrindacene based on the addition of substituents X, Y, and Z (Scheme 1). Substituents X and Y, at the 2,6-positions on the five-membered rings, and substituent Z, at the 4,8-positions on the aromatic ring, are all mutually perpendicular to one another. The two Y substituents at the 2- and 6-positions are designed as linking groups to produce the macrocycle, whereas the two X groups at the 2- and 6-positions and the Z groups at the 4- and 8-positions remain in mutually perpendicular geometrical relationships and are used as the peripheral functionalities. Accordingly, we expected that the 2,6-diethynyl hydrindacene (Z)-1 would function as a suitable monomer unit for the construction of macrocycles with directional-persistent peripheral functionalities. Macrocyclization was anticipated to proceed through the coupling of the ethynyl groups at the C2 and C6 quaternary carbon atoms of the hydrindacene units, thereby producing novel macrocycles with horizontally and vertically ordered functionality arrays, whereby rotation of the macrocycle units is effectively suppressed. At the same time, the five-membered rings of the hydrindacene units, each of which is puckered into an envelope conformation, confer a moderate degree of geometrical flexibility to the macrocycle as a result of ring flipping. In spite of the inherent flexibility of the five-membered ring on the basis of ring flipping, however, the structural stability that results from the formation of macrocyclic dimers and trimers is enough to maintain the planarity of the macrocycle, and therefore the mutually perpendicular directionality between the functional groups X and Z will be maintained.

Preparation of 4,8-disubstituted hydrindacene derivatives: A series of 2,2,6,6-hydrindacene tetraesters with vertical substituents at the 4,8-positions (**9a–d**) were prepared from the 1,4-disubstituted 2,3,5,6-tetrakis(bromomethyl)benzenes **8a,b**^[19,20] (Scheme 2). Although several synthetic procedures for the preparation of methoxy derivative **8a** have been reported,^[19] all required expensive starting materials such as duroquinone^[19a] or 2,3-dimethylhydroquinone.^[19b] For this reason, we developed a new synthetic route for **8a** as depicted in Scheme 2. Methylation of the relatively inexpensive starting compound 2,3,5-trimethylhydroquinone **5** with CH₃I gave methyl ether **6**,^[21] and subsequent bromomethylation^[22] of **6** with paraformaldehyde/HBr in AcOH produced monobromide **7**.^[23] Treatment of **7** with NBS in CH₂Cl₂ under

Scheme 2. Preparation of 4,8-disubstituted hydrindacene derivatives **9ad**. a) MeI, K₂CO₃, 2-butanone, 65 °C, 81 %; b) paraformaldehyde, 8% HBr in AcOH, 50 °C, 83 %; c) *hv*, *N*-bromosuccinimide (NBS), CH₂Cl₂, 40 °C, 98 %; d) diethyl malonate, NaOEt, EtOH/PhH (for **9a**) or EtOH (for **9b**), reflux, 53 % for **9a**; 77 % for **9b**; e) 2-(tributylstannyl)thiophene, [Pd(PPh₃)₄], DMF, 100 °C, 95 %; f) *trans-*2-styreneboronic acid pinacol ester, Pd(OAc)₂, 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (SPhos), THF, 40 °C, 91 %.

4514

FULL PAPER

photoirradiation with a halogen lamp afforded tetrabromide **8a**^[19] in 66% total yield. Treatment of the tetrabromides **8a,b** with diethyl malonate along with NaOEt in EtOH^[24] gave the tetraesters **9a,b**. The 4,8-dithienyl and distyryl derivatives **9c,d** were prepared by Stille or Suzuki–Miyaura coupling of the dibromo derivative **9b** with 2-(tributylstan-nyl)thiophene or *trans*-2-styreneboronic acid pinacol ester.^[25] The molecular structures of **9a,c,d** were confirmed by crystallography and are given in Figure 1.

Figure 1. X-ray structures of 4.8-disubstituted hydrindacene derivatives **9a**, **9c**, and **9d**. Atoms in thienyl groups of **9c** are positionally disordered.

Preparation of 2,6-diethynyl hydrindacene monomer units: The monomer unit, 2,6-diethynyl derivative (Z)-1a, was prepared from the tetraester 9a by using one of three possible methods for the introduction of the ethynyl groups, as shown in Scheme 3. These three routes were: A) the chloroethynylation of enolates as developed by Kende et al.,^[26] B) the conversion of formyl groups to ethynyl groups by the Corey–Fuchs method^[27] following selective reduction of the *gem*-diester to the monoaldehyde as developed by Burton and co-workers,^[28] or C) the conversion of formyl groups to ethynyl groups by the Ohira–Bestmann method.^[29]

Initially, 2,6-diethynyl derivative (Z)-1a was prepared by means of chloroethynylation at the 2,6-positions of (E/Z)-10a (route A). Decarboxylation of 9a in DMSO gave the diester (E/Z)-10a. Treatment of (E/Z)-10a with lithium diisopropylamide (LDA) at -40 °C and the subsequent addition of an excess amount of dichloroacetylene^[26] in diethyl ether at -20 °C gave an isomeric mixture of the 2,6-bis(chloroethynyl) derivative (E)- and (Z)-11a in 20 and 15 % yields, respectively. The structure of (Z)-11a was confirmed through X-ray crystallography after chromatographic separation of the isomers (Figure 2). Dechlorination^[26] of (E)-11a and (Z)-11a with copper gave (E)-1a and (Z)-1a in 39 and 71 % yields, respectively.

Secondly, (Z)-1a was also prepared by an alternative method through the selective reduction of the *gem*-diester to the monoaldehyde by means of the process developed by Burton et al.,^[28] followed by Corey–Fuchs ethynylation^[27] (route B). Reduction of the tetraester **9a** with an excess amount of diisobutylaluminium hydride (DIBAL-H) at -78 °C gave an isomeric mixture of the 2,6-dialdehyde (*E*/*Z*)-**12a** in a ratio of 1:1. Treatment of (*E*/*Z*)-**12a** with CBr₄/

Scheme 3. Preparation of monomer units (*Z*)-**1a**-**d**. a) NaCl, H₂O, DMSO, 170 °C, 69%; b) LDA, hexamethylphosphoramide (HMPA), THF, -78 °C, then dichloroacetylene in Et₂O,^[24] –20 to 25 °C, 20% for (*E*)-**11a**, 15% for (*Z*)-**11a**; c) Cu powder, AcOH/THF, 70 °C, 39% for (*E*)-**1a**, 71% for (*Z*)-**1a** (from (*Z*)-**1a**) and 71% for (*Z*)-**1a** (from (*Z*)-**14a**); d) DIBAL-H, CH₂Cl₂, -78 °C; e) CBr₄, PPh₃, CH₂Cl₂, 0 to 25 °C, 30% for (*E*)-**13a**, 31% for (*Z*)-**13a** (two steps, respectively); f) KHMDS, THF, -78 °C, 92% for (*Z*)-**14a**; g) dimethyl 1-diazo-2-oxopropylphosphonate (Ohira–Bestmann reagent), EtONa, THF -78 °C, then (*E*/*Z*)-**12a**-d, -78 to 25 °C, 40% for (*E*/*Z*)-**1a**; 38% for (*E*/*Z*)-**1b**; 45% for (*E*/*Z*)-**1c**; 53% for (*E*/*Z*)-**1d** (1:1, two steps, respectively); h) 1) (*Z*)-**1a**, LiOH, H₂O/THF, 23 °C; 2) SOCl₂, CH₂Cl₂, 40 °C; 3) *n*-decanol or CH₃(OCH₂CH₂)₃OH, Et₃N, CH₂Cl₂, 21 °C, 49% for (*Z*)-**1e**, 29% for (*Z*)-**1f** (three steps, respectively).

Chem. Eur. J. 2013, 19, 4513-4524

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

Figure 2. X-ray structures of hydrindacene derivatives.

Scheme 4. Macrocyclization of diethynylhydrindacenes (Z)-1 a-f.

PPh ₃ ^[27] gave the 2,6-bis(dibro-
moethenyl) derivative (E) - and
(Z)-13a in 30 and 31% yields,
respectively. After chromato-
graphic separation of the iso-
mers, treatment of (Z) -13a
with potassium bis(trimethylsi-
lyl)amide (KHMDS) and the
subsequent debromination of
(Z)-14a with copper gave (Z) -
1a in 92% yield. The struc-
tures of (E) -13a, (Z) -14a and
(Z)-1a were confirmed
through X-ray crystallography
and are presented in Figure 2.

Table 1.	Reaction	conditions	and	vields for	or macroc	vcles	1a-f.
				,		,	

с [тм]		Isolated yields ^[a] [%]				
		2 (<i>n</i> =2)	3 (<i>n</i> =3)	4 $(n=4)$	Oligomer $(n=5-6)$	Total
1a	1	31	12	4	8	55
1a	10	42	35	5	8	91
1a	100	3	13	6	6	29
1b	10	39	26	12	13	90
1c	10	52	22	8	8	90
1 d	5	64	13	-	_	77
1e	10	56	25	-	_	81
1 f	10	18	11	_	_[b]	29

[a] The product ratios were determined by GPC separation and quantitation. [b] The oligomer could not be obtained due to its solubility to water.[32]

Lastly, (Z)-1a was more readily prepared by treating the dialdehyde (E/Z)-12 a with Ohira-Bestmann reagent^[29] (route C). Upon addition of (E/Z)-12a to a solution of Ohira-Bestmann reagent pretreated with NaOEt in THF at -78 °C,^[30] a 1:1 isomeric mixture of the 2,6-diethynyl derivative (E/Z)-1a was successfully produced. A similar reaction scheme that uses K₂CO₃ as a base in MeOH at room temperature only gave the retro-Claisen product (E/Z)-10a. The 4,8-dibromo-, 4,8-bis(2-thienyl)-, and 4,8-distyryl derivatives (E/Z)-1b-d were also prepared by route C. The E and Z isomers of **1a-d** were separated by high-performance liquid chromatography (HPLC).

Modification of the ester groups on the hydrindacene units of (Z)-1a offers an opportunity to add a wide variety of moieties to these macrocycles. Saponification of ethyl ester groups of (Z)-1a with LiOH and subsequent treatments with SOCl₂ and 1-decanol or triethyleneglycol monomethyl ether gave the decyl ester 1e or the triethyleneglycol (TEG) ester 1 f.

Macrocyclization of 2,6-diethynyl hydrindacenes (Z)-1a-d: Macrocyclization of the methoxy monomer (Z)-1a (10 mM) under modified Eglinton coupling^[31] conditions using Cu-(OAc)₂ in MeCN successfully produced a series of macrocycles including dimer 2a, trimer 3a, and tetramer 4a, as well as higher oligomers in good total yields (Scheme 4, Table 1). The size distribution of the resulting macrocycles in these crude mixtures varied according to the concentration of the starting material (Z)-1 used in the macrocyclization reaction, an effect that is highlighted by the relatively high proportion of dimer formed in the case of 1d, for which a concentration of only 5 mm was employed. When either 1 or 10 mm solutions of (Z)-1a were used, the dimer 2a was the major product, although the total yield of macrocycles was lower with the 1 mm solution. At a higher concentration of (Z)-1a (100 mM), a greater proportion of the larger oligomers resulted, with trimer 3a as the major product. In contrast, treatment of (Z)-1a (10 mM) with Cu(OAc)₂ and CuCl in pyridine resulted in the formation of a complex mixture of products, and macrocycles 2a-4a were isolated in low overall yields of 10%.

Macrocyclization of the bromo monomer (Z)-1b or thienyl monomer (Z)-1c (10 mM) produced mixtures that contained various sizes, including 2b-4b or 2c-4c, results that are somewhat similar to those observed when using (Z)-1a. Following the reaction of styryl monomer (Z)-1d suspended in MeCN, macrocyclic dimer 2d was preferentially produced along with a smaller amount of trimer 3d. This distribution of products was likely obtained because the macrocyclization of (Z)-1d proceeds under quasi-high dilution conditions due to the low solubility of this monomer in MeCN. Macrocyclization of monomers (Z)-1e and (Z)-1f under similar coupling conditions gave macrocyclic dimers 2e and 2f as the major products,^[32] along with trimers **3e** and **3f**.

Dimers **2a–d** were less soluble than the other macrocycles in common organic solvents and were easily isolated by washing the reaction mixtures with CHCl₃. The mother liq-

4516

FULL PAPER

uors were further separated by gel-permeation chromatograa) phy (GPC) and macrocycles 3 and 4 were thus also isolated and characterized by mass spectroscopy.

Peripheral modification of hydrindacene-based macrocycles:

Modification of the ester groups on the macrocycles offers a means to vary some of the characteristic properties of these compounds. In this work, we chose to use transesterification, which allowed us to readily modify the ester groups by reaction with various alkanols. One result of such transesterification can be the tuning of the solubility of a macrocycle in various solvents. Although the macrocycles with long ester chains (2e,f and 3e,f) were prepared by macrocyclization of the corresponding monomers (Z)-1e or (Z)-1f as shown in Scheme 4, we found that transesterification of macrocycles can be achieved using Otera's distannoxane catalyst^[33] (Scheme 5). The ethyl groups on the ester substituents of $d_{\rm d}$

C)

Scheme 5. Transesterification of macrocycles by using Otera's distannoxane.[33]

macrocycles 2 and 3 were easily modified by using Otera's distannoxane^[33] and 1-dodecanol, 1-decanol, or triethyleneglycol monomethyl ether. The resulting peripherally modified macrocycles with long ester chains (2g-i and 3g,h) demonstrated improved solubility in common organic solvents.

X-ray structures of hydrindacene-based macrocycles 2-4: Single crystals of a quality suitable for X-ray crystallography were obtained for dimers 2a,b, trimers 3a,b,c, and tetramer 4b, although attempts to obtain crystal samples from the styryl macrocycles 2d and 3d were unsuccessful. X-ray analyses of macrocycles 2a,b and 3a,b,c provided unambiguous confirmation of their structures and demonstrated a well-ordered array of functionalities that consisted of a peripheral ester along with methoxy (for 2a and 3a), bromo (for 2b and 3b), or thienyl groups (for 3c) vertical to the macrocyclic ring.

The structures determined by X-ray analysis for the dimers 2a and 2b indicated two hydrindacene units facing one another in a parallel fashion with a distance between the two units of 7.86 (for 2a) or 7.70 Å (for 2b; Figure 3). The butadiyne moieties are arranged in pseudoaxial posi-

Figure 3. X-ray structures of a) 2a-hexane solvate and b) 2b, and c,d) their packing structures. A solvated hexane molecule in the crystal of 2a is located outside the cavity and omitted for clarity.

tions on the five-membered rings of the hydrindacene skeleton and are separated by a distance of 6.76 or 7.14 Å (for 2a) and 2b, respectively). The resulting cavity in both 2a and 2b was found to be empty in the crystal structure, thus indicating that the cavity is too small to include any guest solvent molecules.

In trimers **3a–c**, the macrocyclic frame adopts not a hexagonal shape with (pseudo-) D_{3h} symmetry, but rather a distorted rectangular conformation (Figure 4). Two hydrindacene units face one another nearly in parallel at a distance of 7.70, 8.47, or 8.04 Å for 3a, 3b, and 3c, respectively, and are positioned at close to right angles to the third hydrindacene unit. The distances spanned by the hydrindacene and butadiyne units along the long axis of the void are 14.0, 13.4, and 13.8 Å for **3a**, **3b**, and **3c**, respectively. The butadiyne moieties along the central portion of the long axis occupy pseudoequatorial positions, thereby resulting in the rectangular shape of the macrocycles. X-ray analysis further demonstrated that one or more solvent molecules, such as hexane, CHCl₃, or cyclohexane, were captured within the cavities of these trimers. Macrocycles 3a,c, with methoxy or thienyl groups as vertical substituents, stacked into a columnar structure with an offset packing, thus avoiding intermolecular contact between the methoxy or thienyl groups (Figure 4a, c). Solvent molecules in the **3a** crystals appear to be strongly held within the macrocycle cavity and were not removed even under vacuum, presumably due to buttressing effects by the neighboring methoxy groups. Interestingly, the

Figure 4. X-ray structures (top) and their packing structures (middle and bottom) of a) 3a-hexane solvate, b) 3b-(cyclohexane)₂ solvate, and c) 3b-(hexane)_{2.5}-(benzene)_{2.5} solvate. One methoxy group and one of the ethyl groups of 3a are disordered. Cyclohexanes in 3b are disordered. Five thienyl groups and one of the ethyl groups of 3c and solvated hexanes are disordered. Hydrogen atoms are omitted for clarity.

macrocycle **3b** instead stacked into a tubelike structure with a 1D channel-like cavity, in which the three butadiynes and six bromo groups of neighboring macrocycles are in close proximity at distances of 3.30 to 3.66 Å (Figure 4b). The highly disordered packing of cyclohexane molecules within this cavity indicates that such solvent molecules do not undergo specific interactions with the columnar channel.

The tetramer **4b** has a tub-shaped structure, in which all butadiyne moieties are located at a pseudoaxial position on the cyclopentene rings (Figure 5). Four molecules of CH_2Cl_2 are trapped in the cavity of the tub. Interhalogen interactions between adjacent bromo groups (at a distance of 5.09 and 5.31 Å), as well as a preferred conformation for the

structure in which the orientation of the butadiyne groups is pseudoaxial, could account for the observed shrunken tub structure taking precedence over an open-extended structure with a larger cavity.

Spectroscopic characterization of the hydrindacene-based macrocycles

¹*H* NMR spectra: ¹*H* NMR spectra of all macrocycles in CDCl₃ indicated a high degree of symmetry (D_{nh}) in these species (Figure 6). Evidently the high symmetry (D_{3h}) of the trimer **3a** in solution differs from the pseudo- $C_{2\nu}$ symmetry adopted in the crystal. Although the ¹*H* NMR spectrum of

A EUROPEAN JOURNAL

Figure 5. X-ray structure of $4b \cdot (CH_2Cl_2)_4$ and its packing structure. Hydrogen atoms are omitted for clarity.

Figure 6. ¹H NMR spectra of a) monomer (Z)-1c; b) macrocycles 2c, c) 3c, and d) 4c; e) monomer (Z)-1d; f) macrocycles 2d; and g) 3d in CDCl₃ at 295 K.

3a did not change upon lowering the solution temperature to $-92 \,^{\circ}$ C in CD₂Cl₂, the most stable conformer of **3a** is likely to adopt a rectangular shape with $C_{2\nu}$ symmetry. Accordingly, this apparent D_{3h} symmetry is achieved by means of a rapid degenerate conformational change accompanied by flipping of the alicyclic rings of the hydrindacene units, since a hexagonal shape would force all alicyclic rings to adopt an unstable flattened conformation and thus is not favored for this macrocycle (see Figure S1 in the Supporting Information). The apparent high symmetry of the tetramer **4a** also originates in the rapid conformational changes between two degenerate folded tub forms.

FULL PAPER

It should be noted that the signals from dimers 2a-d appear at shifted positions relative to the corresponding signals of the larger macrocycles **3a-d** and **4a-c**, as well as those of the precursor species 1a-d. Notably, one of the signals from the protons of the five-membered ring of 2a-d (H_b) appears at an upfield-shifted position around $\delta =$ 3.5 ppm, an effect that can be attributed to the conformational rigidity of the hydrindacene units in the dimer. When the ester group is located at the pseudoaxial position on the five-membered ring of a hydrindacene unit, the protons (H_b) of five-membered rings near the ester group experience a stronger deshielding effect from the carbonyl of the ester group than from the alkyne group, thereby causing those signals to appear at lower-field positions (see the Supporting Information). The larger macrocycles 3a-d and 4a-c, as well as the precursor species 1a-d, all of which have moderately flexible five-membered rings, exhibit this effect, although the rigid macrocycles 2a-d with ester groups at the pseudoequatorial position do not. Our conclusion that the population of ester groups that actually occupies pseudoaxial positions is greater in the monomers 1, trimers 3, and tet-

> ramers 4 than in the dimers 2 was also confirmed by observing that the methylene protons (H_c) of the ethyl ester groups of 1a-d, 3a-d, and 4a-c appear at upfield-shifted positions (at $\delta = 4.1$ to 4.2 ppm) due to shielding from the benzene rings of the hydrindacene unit relative to the same protons in **2a-d** (at $\delta = 4.2$ to 4.3 ppm). These observations indicate that dimers 2a-d possess a rigid macrocyclic framework, whereas trimers 3 and tetramers 4, as well as monomers 1, have a moderately flexible structure based on flipping of the five-membered rings.

> *UV-visible and fluorescence spectra*: The spectroscopic properties of the macrocyclic

dimers 2c,d, trimers 3c,d, and monomers 1c,d are shown in Figure 7. The molar absorption coefficients for each species show multiplication by the number of chromophoric units in the structure. From the normalized data obtained by instead dividing by the number of chromophoric units (see the Supporting Information), it is evident that the molar absorption per hydrindacene unit shows a hypochromic shift in dimers 2c,d relative to monomers 1c,d. Slight blueshifts were observed in the UV-visible spectra of the dimers 2a–d relative to 1a–d (3, 1, 5, and 5 nm for 2a, 2b, 2c, and 2d, respectively; Table 2). Additionally, slight redshifts were observed in the fluorescence spectrum of dimer 2c relative to 1c and 3c

Figure 7. UV/Vis (solid line) and fluorescence spectra (dashed line) of a) (*E*)-1c, 2c, and 3c; and b) (*E*)-1d, 2d, and 3d in CH_2Cl_2 .

Table 2. Optical data of monomers 1a-d and macrocycles 2a-d and 3a-d.

	Absorption	Emission	Stokes shift
	$\lambda_{\max} [nm]$	$\lambda_{\rm em} [\rm nm]$	[nm]
3a	284	_	_
2a	284	-	-
(Z)-1a	283	328	49
3b	286	-	-
2 b	286	-	-
(E)-1b	285	-	-
3c	295	353, 366	58
2 c	291	360, 374	69
(E)-1c	296	352, 366	56
3 d	339	395, 417	56
2 d	341	395, 417	54
(E)-1 d	346	395, 417	49

(8 nm redshifted from both 1c and 3c). The methoxy and bromo derivatives 2a,b and 3a,b are nonfluorescent.

Since the distances of 7.7 to 7.9 Å between the two hydrindacene units in the dimers **2a–d** are too great to allow direct interaction in a through-space manner,^[34] the larger Stokes shift observed in **2c** relative to trimer **3c** might be attributed to the excited-state coupling of the hydrindacene chromophores of **2** and the butadiyne units arranged vertically between the two hydrindacene units. Due to the overlapping of the absorption band of the butadiyne and the hydrindacene chromophore in **1a–c** (at $\lambda_{max} \approx 270$ nm for each relevant compound^[35,36]), their excited states might be effectively delocalized over the entire molecule in the dimer structure (see the calculated molecular orbitals (MOs) in Figure 9 below).^[37]

A coupled excited state appears to be energetically unfavorable in the case of the styryl macrocycles 2d and 3d. Interactions among hydrindacene units were not observed even in dimer 2d, although a series of styryl-substituted hydrindacene derivatives (1d, 2d, 3d, and 9d) efficiently emit fluorescence bands in the region of 400 nm both in solution and in the solid state (ϕ =0.89 for 1d, 0.92 for 2d, approxi-

mately 1.0 for $\mathbf{9d}$ in CH_2Cl_2 , 0.17 for $\mathbf{2d}$, 0.61 for $\mathbf{9d}$ as a solid, respectively). These differences might be due to the fact that the excited-state energy of the distyrylbenzene chromophore is lower than that of the butadiyne unit.^[37]

Cyclic voltammetry: The interunit interactions^[34] within the macrocyclic dimer were also evident in the redox properties of the methoxy macrocycles 2a-4a. These macrocycles, along with reference compounds 1a, 9a, and 1,4-dimethoxy-durene, were analyzed by cyclic voltammetry in CH₂Cl₂ that contained 0.1 M Bu₄NPF₆ as a supporting electrolyte (Figure 8). The 4,8-dimethoxyhydrindacene derivatives 1a-

Figure 8. Cyclic voltammograms of a) 2a (black line) and b) 3a (gray line) measured in CH₂Cl₂ containing $0.1 \text{ M} nBu_4 \text{NPF}_6$ (Pt electrode, scan rate: 100 mVs⁻¹).

4a and **9a** show reversible oxidation waves around ± 1.35 V ($E_{1/2} = \pm 1.29$ and ± 1.42 V for **2a**, ± 1.37 V for **3a**, ± 1.36 V for **4a**, ± 1.35 V for **1a**, and ± 1.34 V for **9a** versus SCE). In contrast, 1,4-dimethoxydurene shows irreversible oxidation peaks at a higher potential ($E_{1/2} = \pm 1.48$ V). This can be accounted for by considering that the methoxy groups in this species cannot adopt coplanar arrangements with the benzene nuclei in the cationic state due to steric hindrance, so that a positive charge cannot be delocalized over the methoxy lone pair.^[39] Thus, the reversibility upon oxidation of the hydrindacene derivatives **1a**–**4a** and **9a** can be attributed to the decrease in steric hindrance around the methoxy groups on the benzene ring, which is achieved by binding neighboring alkyl groups on the aromatic ring into alicyclic structures.^[39a-c]

It is interesting to note that dimer 2a shows two well-resolved and reversible waves at $E_{ox} = +1.29$ and +1.42 V, whereas trimer 3a and tetramer 4a show only one reversible wave around +1.36 V. Because each hydrindacene unit should undergo one-electron oxidation at this potential, it is highly likely that there is an electronic interaction between the two hydrindacene units in the cation radical $2a^{++}$, which makes further oxidation of $2a^{++}$ to the dication $2a^{2+}$ difficult. Considering that the analogous tetramethoxy-

4520

[7.7]paracyclophane derivative, with an interplanar distance of 7.38 Å, shows only one reversible peak,^[34c] the potential difference of 0.13 V observed in dimer **2a** (with an interplanar distance of 7.86 Å between its two hydrindacene units) presumably does not stem from through-space interaction,^[34] but rather from through-bond interaction. The absence of such bond interactions in trimer **3a** or tetramer **4a** can be explained by considering their flexible structures. Thus, a rigid macrocycle framework that favors through-bond interaction is necessary for the stepwise oxidation observed in the dimer.

Theoretical calculation: To elucidate the observed electronic interactions between the two hydrindacene units in dimer 2a, we performed density functional theory (DFT) calculations with regard to both dimers 2a and 2c, as well as radical cation $2a^+$. The optimized geometric parameters of these macrocycles calculated at the B3LYP/6-31G* level^[40,41] are in good agreement with the experimental data obtained for their solid-state structures. Orbital-coefficient contours of the HOMOs and LUMOs of dimers 2a,c demonstrate that a significant interaction exists between the two hydrindacene units through the butadiyne units (Figure 9). The through-bond coupling between the orbitals of the substituted benzene portions of the hydrindacene units and those of the butadiyne units yields the following: bonding HOMO-1, anti-bonding HOMO, bonding LUMO, and antibonding LUMO+1. The calculated gaps between HOMO and HOMO-1 are 0.10 eV (LUMO and LUMO+1: 0.11 eV) for 2a and 0.04 eV (LUMO and LUMO+1: 0.07 eV) for 2c. In the optimized structure of radical cation 2a⁺, orbital-coefficient contours of the singly occupied molecular orbital (SOMO) demonstrate that a similar interaction exists between the two hydrindacene units through the butadiyne units, thus suggesting electronic delocalization in the one-electron-oxidated state (Figure S3 in the Supporting Information).

Conclusion

We have shown that the macrocyclization of a series of (Z)-2,6-diethynyl hydrindacenes ((Z)-1) with functional groups at mutually perpendicular positions results in the formation of novel macrocycles with directionally persistent peripheral functionalities as a result of rotational fixation of the hydrindacene units. Analysis of the resulting macrocycles has demonstrated several interesting characteristics, including that the two hydrindacene units in the macrocyclic dimers (2) might interact electronically through their butadiyne moieties. The macrocyclic trimers (3) exhibit moderate geometrical flexibility and possess a central cavity that is large enough to accommodate molecules of common organic solvents. Furthermore, peripheral ester groups were readily modified to introduce hydrophobic or hydrophilic chains through the use of Otera's distannoxane catalyst. Some of these modified macrocycles could have the capacity for tun-

FULL PAPER

Figure 9. Pictorial presentations of HOMOs and LUMOs in a) macrocyclic dimers **2a** and b) **2c** calculated at the B3LYP/6-31G* level.

able solubility and subsequent assembly into tubelike structures when in solution, with the result of adjusting their affinity towards membranes^[2b,i,42] or other substrate surfaces.^[2d] The introduction of π -conjugated groups, such as styryl and thienyl groups (as in **2 c,d** and **3 c,d**), or hydrogenbonding groups such as amides^[17,18] to the 4,8-positions of the hydrindacene unit could allow the possibility of π -conjugated or self-assembled nanotubes. We are currently studying various functionalization options with the goal of assembling such macrocycles into tubular structures.

Experimental Section

General method for the macrocyclization of (Z)-1: A mixture of (Z)-1 and $Cu(OAc)_2$ (20 equiv) in CH₃CN was heated at reflux for 25 h. After the mixture was cooled, water was added, and the solution was extracted with CHCl₃. The organic layer was washed with water and brine, dried over Na₂SO₄, and then filtered. A small amount of CHCl₃ was added to the white solid obtained by evaporation of the solvent to give a suspension. Macrocycles **2a–d** were obtained by filtration of the suspension.

www.chemeurj.org

A EUROPEAN JOURNAL

Other macrocycles **3a–d**, **4a–c**, and higher oligomers were separated by GPC (eluting with $CHCl_3$) of the filtrate.

Methoxy macrocycles 2a–4a with ethyl esters: Macrocycles 2a–4a were prepared from (Z)-1a (28 mg, 68 μ mol) and Cu(OAc)₂ (220 mg, 1.22 mmol) in CH₃CN (5.0 mL). GPC separation of the crude product gave dimer 2a (11.6 mg, 46%), trimer 3a (9.8 mg, 39%), tetramer 4a (1.5 mg, 6%), and higher oligomer (2.5 mg, 10%) as white solids, respectively.

Dimer 2a: M.p. 269.0–270.0 °C; ¹H NMR: δ =4.27 (q, *J*=7.2 Hz, 8H), 3.73 (s, 12 H), 3.44 (d, *J*=15.6 Hz, 8H), 3.38 (d, *J*=15.6 Hz, 8H), 1.34 ppm (t, *J*=7.2 Hz, 12 H); ¹³C NMR: δ =171.35, 148.23, 131.18, 79.27, 66.66, 62.21, 59.84, 50.13, 41.96, 14.15 ppm; IR (KBr): $\tilde{\nu}$ =2978, 1740, 1482, 1290, 1264, 1236, 1090, 1050 cm⁻¹; MS (FD): *m/z* (%): 817 [*M*⁺+1] (55), 816 [*M*⁺] (100), 408 [*M*²⁺] (18); HRMS (FD): *m/z*: calcd for C₄₈H₄₈O₁₂: 816.3146; found: 816.3136; elemental analysis calcd (%) for C₄₈H₄₈O₁₂•H₂O: C 69.05, H 6.04; found: C 69.25, H 6.30.

Trimer 3a: M.p. 192.0–194.0 °C; ¹H NMR: δ =4.22 (q, *J*=7.2 Hz, 12H), 3.74 (s, 18H), 3.56 (d, *J*=15.6 Hz, 12H), 3.31 (d, *J*=15.6 Hz, 12H), 1.29 ppm (t, *J*=7.2 Hz, 18H); ¹³C NMR: δ =171.23, 148.06, 131.73, 79.72, 66.62, 62.29, 59.90, 49.11, 41.87, 14.05 ppm; IR (KBr): $\tilde{\nu}$ =2980, 1738, 1482, 1292, 1234, 1184, 1090, 1048 cm⁻¹; MS (FD): *m/z* (%): 1226 [*M*⁺ +2] (46), 1225 [*M*⁺+1] (85), 1224 [*M*⁺] (100), 613 [*M*²⁺] (25); HRMS (FD): *m/z*: calcd for C₇₂H₇₂O₁₈·H₂O: C 69.55, H 6.00; found: C 69.46, H 6.26.

Tetramer 4a: ¹H NMR: δ=4.23 (q, *J*=7.2 Hz, 16 H), 3.75 (s, 24 H), 3.58 (d, *J*=15.6 Hz, 16 H), 3.34 (d, *J*=15.6 Hz, 16 H), 1.31 ppm (t, *J*=7.2 Hz, 24 H); ¹³C NMR: δ=171.28, 148.05, 131.69, 79.74, 66.6a, 62.30, 59.88, 49.02, 41.94, 14.07 ppm; IR (KBr): $\tilde{\nu}$ =2928, 1738, 1480, 1292, 1234, 1186, 1090, 1038 cm⁻¹; MS (FD): *m/z* (%): 1634 [*M*⁺+2] (42), 1633 [*M*⁺+1] (100), 1632 [*M*⁺] (66), 817 [*M*²⁺+1] (39), 816 [*M*²⁺] (27); HRMS (FD): *m/z*: calcd for C₉₆H₉₆O₂₄: 1632.6292; found: 1632.6259.

Bromo macrocycles 2b–4b with ethyl esters: Macrocycles **2b–4b** were prepared from (*Z*)-**1b** (35 mg, 69 µmol) and Cu(OAc)₂ (252 mg, 1.39 mmol) in CH₃CN (6.9 mL). CHCl₃ (3 mL) was added to the crude product after workup, and the mixture was filtered to give dimer **2b** (11.4 mg, 33%) as a white solid. GPC separation of the filtrate gave dimer **2b** (2.2 mg, 6%, total 39%), trimer **3b** (9.2 mg, 26%), tetramer **4b** (4.1 mg, 12%), and higher oligomer (4.6 mg, 13%) as white solids, respectively.

Dimer 2b: M.p. 240–242 °C (decomp); ¹H NMR: δ =4.28 (q, *J*=7.1 Hz, 8H), 3.56 (d, *J*=15.4 Hz, 8H), 3.45 (d, *J*=15.4 Hz, 8H), 1.35 ppm (t, *J*=7.1 Hz, 12H); ¹³C NMR: δ =170.41, 140.68, 115.53, 78.94, 67.20, 62.50, 48.38, 46.47, 14.13 ppm; IR (KBr): $\tilde{\nu}$ =2977, 2925, 2172, 1740, 1443, 1066, 908, 857 cm⁻¹; MS (FD): *m/z* (%): 1016 [*M*++8] (27), 1015 [*M*++7] (33), 1014 [*M*++6] (67), 1013 [*M*++5] (42), 1012 [*M*++4] (100), 1011 [*M*++3] (31), 1010 [*M*++2] (68), 1016 [*M*+] (22); elemental analysis calcd (%) for C₄₄H₃₆ Br₄O₈·H₂O: C 51.29, H 3.72; found: C 51.23, H 3.55.

Trimer 3b: M.p. 212–214 °C (decomp); ¹H NMR: δ =4.25 (q, *J*=7.1 Hz, 12 H), 3.67 (d, *J*=16.1 Hz, 12 H), 3.42 (d, *J*=16.1 Hz, 12 H), 1.31 ppm (t, *J*=7.1 Hz, 18 H); ¹³C NMR: δ =170.73, 140.57, 115.13, 79.48, 66.94, 62.60, 47.03, 46.75, 14.03 ppm; IR (KBr): $\tilde{\nu}$ =2978, 2924, 2172, 1739, 1443, 1236, 1185, 1061, 799 cm⁻¹; MS (FD): *m/z* (%): 1524 [*M*⁺+12] (28), 1522 [*M*⁺+10] (59), 1520 [*M*⁺+8] (78), 1518 [*M*⁺+6] (100), 1516 [*M*⁺+4] (78), 1514 [*M*⁺+2] (41), 11512 [*M*⁺] (13); elemental analysis calcd (%) for C₆₆H₅₄Br₆O₁₈: C 52.20, H 3.58; found: C 52.39, H 3.86.

Tetramer 4b: M.p. 180–183 °C (decomp); ¹H NMR: δ =4.27 (q, *J*= 7.1 Hz, 16H), 3.65 (d, *J*=16.1 Hz, 16H), 3.48 (d, *J*=16.1 Hz, 16H), 1.34 ppm (t, *J*=7.1 Hz, 24H); ¹³C NMR: δ =170.77, 140.53, 115.25, 79.65, 66.93, 62.63, 47.09, 46.80, 14.11 ppm; IR (KBr): $\tilde{\nu}$ =2925, 2172, 1740, 1631, 1442, 1236, 1058, 799 cm⁻¹; MS (FD): *m/z* (%): 2024.4 [*M*⁺] (100), 1013.1 [*M*²⁺] (43); HRMS (FD): *m/z*: calcd for C₈₈H₇₂Br₈O₁₆: 2015.8287; found: 2048.4442.

Thienyl macrocycles 2c-4c with ethyl esters: Macrocycles 2c-4c were prepared from (Z)-1c (17.6 mg, 34 μ mol) and Cu(OAc)₂ (124 mg, 0.68 mmol) in CH₃CN (3.4 mL). GPC separation of the crude product gave dimer 2c (9.2 mg, 53%), trimer 3a (3.7 mg, 21%), tetramer 4a

(1.9 mg, 11 %), and higher oligomer (0.7 mg, 4 %) as white solids, respectively.

Dimer 2c: M.p. 255.0–259.0 °C; ¹H NMR: δ =7.39 (d, *J*=5.1 Hz, 4H), 7.12 (dd, *J*=3.6 Hz, 5.1 Hz, 4H), 7.06 (d, *J*=3.6 Hz, 4H), 4.20 (q, *J*= 7.1 Hz, 8H), 3.52 (d, *J*=15.4 Hz, 4H), 3.45 (d, *J*=15.4 Hz, 8H), 1.28 ppm (t, *J*=7.1 Hz, 12H); ¹³C NMR: δ =171.12, 139.01, 138.96, 128.19, 127.18, 127.05, 125.70, 79.82, 67.14, 62.17, 49.41, 44.59, 14.07 ppm; IR (KBr): $\tilde{\nu}$ = 3101, 2977, 2924 1736, 1235, 1042, 701 cm⁻¹; MS (FD): *m/z* (%): 1027 [*M*⁺+3] (23), 1026 [*M*⁺+2] (47), 1025 [*M*⁺+1] (72), 1024 [*M*⁺] (100); HRMS (FD): *m/z*: calcd for C₆₀H₄₈O₈S₄: 1024.2253; found: 1024.2232.

Trimer 3c: M.p. 186.0–189.0°C; ¹H NMR: $\delta = 7.38$ (dd, J = 0.75 Hz, 5.1 Hz, 6H), 7.10 (dd, J = 3.6 Hz, 5.1 Hz, 6H), 7.00 (dd, J = 0.75 Hz, 3.6 Hz, 2H), 4.15 (q, J = 7.1 Hz, 12H), 3.64 (d, J = 15.8 Hz, 12H), 3.42 (d, J = 15.8 Hz, 4H), 1.22 ppm (t, J = 7.1 Hz, 18H); ¹³C NMR: $\delta = 171.22$, 138.92, 138.78, 127.54, 127.18, 127.07, 125.71, 79.73, 66.57, 62.20, 48.54, 44.86, 13.40 ppm; IR (KBr): $\tilde{\nu} = 3106$, 2977, 1736, 1235, 1046, 699 cm⁻¹; MS (FD): m/z (%): 1540 [M^+ +4] (27), 1539 [M^+ +3] (55), 1538 [M^+ +2] (90), 1538 [M^+ +1] (100), 1537 [M^+] (100), 1463 [M^- -CO₂Et] (22); HRMS (FD): m/z: calcd for C₉₀H₇₂O₁₂S₆: 1536.3348; found: 1536.3356.

Tetramer 4c: M.p. 220.0–223.0 °C; ¹H NMR: δ = 7.38 (dd, *J* = 0.72 Hz, 4.9 Hz, 8H), 7.11 (dd, *J* = 3.5 Hz, 4.9 Hz, 8H), 7.01 (dd, *J* = 0.72 Hz, 3.5 Hz, 8H), 4.14 (q, *J* = 7.1 Hz, 16H), 3.68 (d, *J* = 15.9 Hz, 16H), 3.42 (d, *J* = 15.9 Hz, 16H), 1.22 ppm (t, *J* = 7.1 Hz, 24H); ¹³C NMR: δ = 171.21, 139.02, 138.67, 127.33, 127.23, 127.07, 79.50, 66.52, 62.25, 48.56, 44.91, 14.00 ppm; IR (KBr): $\tilde{\nu}$ = 3101, 3074, 2976, 2925, 1736, 1236, 1041, 701 cm⁻¹; MS (FD): *m/z* (%): 2054 [*M*⁺+5] (30), 2053 [*M*⁺+4] (50), 2052 [*M*⁺+3] (80), 2051 [*M*⁺+2] (100), 2050 [*M*⁺+1] (100), 1540 [*M*⁺] (65), 1977 [*M*⁺+1–CO₂Et] (33), 1976 [*M*⁺–CO₂Et] (30); HRMS (FD): *m/z*: calcd for C₁₂₀H₇₂O₁₆S₈: 2048.4464; found: 2048.4442.

Styryl macrocycles 2d–3d with ethyl esters: Macrocycles 2d–3d were prepared from (Z)-1d (24.7 mg, 45 μ mol) and Cu(OAc)₂ (165 mg, 0.91 mmol) in CH₃CN (9.0 mL). Benzene (5 mL) was added to the crude product after workup, and the mixture was filtered to give dimer 2d (10.5 mg, 43%) as a white solid. The filtrate was re-precipitated from CHCl₃/hexane to give 2d (2.9 mg, 12%). GPC separation of the filtrate gave dimer 2d (2.3 mg, 9%, total 64%), trimer 3d (3.2 mg, 13%), and higher oligomer (3.6 mg, 15%) as white solids, respectively.

Dimer 2d: M.p. 241.5–242.5 °C; ¹H NMR: δ =7.49 (d, *J*=7.3 Hz, 8H), 7.36 (t, *J*=7.1 Hz, 8H), 7.28 (d, *J*=7.1 Hz, 4H), 7.16 (d, *J*=16.8 Hz, 4H), 6.77 (d, *J*=16.8 Hz, 4H), 4.30 (q, *J*=7.1 Hz, 8H), 3.64 (d, *J*=15.0 Hz, 8H), 3.53 (d, *J*=15.0 Hz, 8H) 1.36 ppm (t, *J*=7.1 Hz, 12H); ¹³C NMR: δ =171.47, 137.74, 137.33, 133.07, 129.65, 128.73, 127.96, 126.55, 125.41, 79.38, 66.65, 62.32, 49.59, 44.39, 14.18 ppm; IR (KBr): $\tilde{\nu}$ =3055, 3025, 2922, 2853, 2169, 1736, 1631, 1448, 1232, 1046, 968 cm⁻¹; MS (FD): *m/z* (%): 1106 [*M*⁺+2] (41), 1105 [*M*⁺+1] (94), 1104 [*M*⁺] (100), 553 [*M*²⁺ +1] (24), 552 [*M*²⁺] (46); HRMS (FD): *m/z*: calcd for C₇₆H₆₄O₈: 1104.4601; found: 1104.4632.

Trimer 3d: M.p. 213.5–214.5 °C; ¹H NMR: δ =7.45 (d, *J*=7.1 Hz, 12H), 7.36 (t, *J*=7.1 Hz, 12H), 7.28 (d, *J*=7.1 Hz, 6H), 7.01 (d, *J*=16.5 Hz, 6H), 6.76 (d, *J*=16.5 Hz, 6H), 4.22 (q, *J*=7.1 Hz, 12H), 3.73 (d, *J*=15.5 Hz, 12H), 3.53 (d, *J*=15.5 Hz, 12H) 1.28 ppm (t, *J*=7.1 Hz, 18H); ¹³C NMR: δ =171.47, 137.78, 137.34, 133.26, 129.15, 128.72, 127.92, 126.51, 125.19, 80.06, 66.59, 62.33, 48.67, 44.38, 14.04 ppm; IR (KBr): $\tilde{\nu}$ = 2925, 2172, 1736, 1629, 1598, 1448, 1250, 1231, 1186, 1038, 966, 751, 692 cm⁻¹; MS (FD): *m/z* (%): 1660 [*M*⁺+4] (30), 1659 [*M*⁺+3] (66), 1658 [*M*⁺+2] (81), 1657 [*M*⁺+1] (100), 1656 [*M*⁺] (70), 829 [*M*²+1] (75), 828 [*M*²⁺] (56); HRMS (FD): *m/z*: calcd for C₁₁₄H₉₆O₁₂: 1656.6902; found: 1656.6921.

Acknowledgements

H.K. acknowledges support from the JSPS KAKENHI (no. 20750024), the Global COE Program (project no. B01: Catalysis as the Basis for Innovation in Materials Science), MEXT, and the JST PRESTO project. We are grateful to Prof. Akihiro Orita (Okayama University of Science) for the kind suggestions and the use of distannoxane catalyst. We thank Prof. Tamotsu Inabe (Hokkaido University) for use of the X-ray structural analysis system and Prof. Hajime Ito (Hokkaido University) for the solid-state fluorescence spectra measurements. MS spectra were measured by Dr. Eri Fukushi and Mr. Kenji Watanabe at the GC-MS NMR Laboratory (Faculty of Agriculture, Hokkaido University).

- [1] a) Modern Supramolecular Chemistry: Strategies for Macrocycle Synthesis (Eds.: F. Diederich, P. Stang, R. R. Tykwinski), Wiley-VCH, Weinheim, 2008; b) K. Gloe, Macrocyclic Chemistry: Current Trends and Future Perspectives, Springer, Dordrecht, 2005; c) S. M. Khopkar, Analytical Chemistry of Macrocyclic and Supramolecular Compounds, Springer, Berlin, 2002.
- [2] a) M. Iyoda, J. Yamakawa, M. J. Rahman, Angew. Chem. 2011, 123, 10708; Angew. Chem. Int. Ed. 2011, 50, 10522; b) R. J. Brea, C. Reiriz, J. R. Granja, Chem. Soc. Rev. 2010, 39, 1448; c) J. F. Stoddart, Chem. Soc. Rev. 2009, 38, 1802; d) L. Zang, Y. Che, J. S. Moore, Acc. Chem. Res. 2008, 41, 1596; e) K. Kim, N. Selvapalam, Y. H. Ko, K. M. Park, D. Kim, J. Kim, Chem. Soc. Rev. 2007, 36, 267; f) M. J. Frampton, H. L. Anderson, Angew. Chem. 2007, 119, 1046; Angew. Chem. Int. Ed. 2007, 46, 1028; g) S. E. Gibson, C. Lecci, Angew. Chem. 2006, 118, 1392; Angew. Chem. Int. Ed. 2006, 45, 1364; h) P. A. Vigato, S. Tamburini, Coord. Chem. Rev. 2004, 248, 1717; j) D. T. Bong, T. D. Clark, J. R. Granja, M. R. Ghadiri, Angew. Chem. 2001, 113, 1016; Angew. Chem. Int. Ed. 2001, 40, 988.
- [3] a) R. C. V. Maraval, Chem. Rev. 2006, 106, 5317; b) S. Höger, Angew. Chem. 2005, 117, 3872; Angew. Chem. Int. Ed. 2005, 44, 3806.
- [4] a) W. Zhang, J. S. Moore, Angew. Chem. 2006, 118, 4524; Angew. Chem. Int. Ed. 2006, 45, 4416; b) K. Nakao, M. Nishimura, T. Tamachi, Y. Kuwatani, H. Miyasaka, T. Nishinaga, M. Iyoda, J. Am. Chem. Soc. 2006, 128, 16740; c) S. Höger, Chem. Eur. J. 2004, 10, 1320.
- [5] a) E. L. Spitler, C. A. Johnson II, M. M. Haley, *Chem. Rev.* 2006, 106, 5344; b) I. Hisaki, M. Sonoda, Y. Tobe, *Eur. J. Org. Chem.* 2006, 833.
- [6] Recent examples of butadiyne-linked shape-persistent macrocycles: a) M. C. O'Sullivan, J. K. Sprafke, D. V. Kondratuk, C. Rinfray, T. D. W Claridge, A. Saywell, M. O. Blunt, J. N. O'Shea, P. H. Beton, M. Malfois, H. L. Anderson, Nature 2011, 469, 72; b) J. K. Sprafke, D. V. Kondratuk, M. Wykes, A. L. Thompson, M. Hoffmann, R. Drevinskas, W.-H. Chen, C. K. Yong, J. Kärnbratt, J. E. Bullock, M. Malfois, M. R. Wasielewski, B. Albinsson, L. M. Herz, D. Zigmantas, D. Beljonne, H. L. Anderson, J. Am. Chem. Soc. 2011, 133, 17262; c) L. Shu, M. Müri, R. Krupkea, M. Mayor, Org. Biomol. Chem. 2009, 7, 1081; d) D. M. Opris, A. Ossenbach, D. Lentz, A. D. Schlüter, Org. Lett. 2008, 10, 2091; e) M. Hoffmann, J. Kärnbratt, M.-H. Chang, L. M. Herz, B. Albinsson, H. L. Anderson, Angew. Chem. 2008, 120, 5071; Angew. Chem. Int. Ed. 2008, 47, 4993; f) M. Hoffmann, C. J. Wilson, B. Odell, H. L. Anderson, Angew. Chem. 2007, 119, 3183; Angew. Chem. Int. Ed. 2007, 46, 3122; g) A. Bandyopadhyay, B. Varghese, S. Sankararaman, J. Org. Chem. 2006, 71, 4544; h) C. Zhang, C.-F. Chen, J. Org. Chem. 2007, 72, 9339; i) M. Goichi, S. Tovota, Chem. Lett. 2006, 35, 684; j) P. N. W. Baxter, R. Dali-Youcef, J. Org. Chem. 2005, 70, 4935; k) R. Katoono, H. Kawai, K. Fujiwara, T. Suzuki, Tetrahedron Lett. 2004, 45, 8455; 1) M. Srinivasan, S. Sankararaman, H. Hopf, B. Varghese, Eur. J. Org. Chem. 2003, 660; m) M. Mayor, C. Didschies, Angew. Chem. 2003, 115, 3284; Angew. Chem. Int. Ed. 2003, 42, 3176; n) M. R. Shah, S. Duda, B. Müller, A. Godt, A. Malik, J. Am. Chem. Soc. 2003, 125, 5408.
- [7] a) T. Kawase, H. Kurata, *Chem. Rev.* 2006, *106*, 5250; b) K. Tahara,
 Y. Tobe, *Chem. Rev.* 2006, *106*, 5274.
- [8] a) T. Kawase, Synlett 2007, 2609; b) T. Kawase, K. Tanaka, Y. Seirai,
 N. Shiono, M. Oda, Angew. Chem. 2003, 115, 5755; Angew. Chem. Int. Ed. 2003, 42, 5597.
- [9] a) M. Ohkita, K. Ando, T. Tsuji, *Chem. Commun.* 2001, 2570; b) M. Ohkita, K. Ando, T. Tsuji, *J. Org. Chem.* 2000, 65, 4385.
- [10] a) A. Yagi, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2012, 134, 2962;
 b) S. Hitosugi, W. Nakanishi, H. Isobe, Chem. Asian J. 2012, 7, 1550;

FULL PAPER

c) T. J. Sisto, M. R. Golder, E. S. Hirst, R. Jasti, J. Am. Chem. Soc. 2011, 133, 15800; d) T. Iwamoto, Y. Watanabe, T. Sadahiro, T. Haino, S. Yamago, Angew. Chem. 2011, 123, 8492; Angew. Chem. Int. Ed. 2011, 50, 8342; e) Y. Segawa, S. Miyamoto, H. Omachi, S. Matsuura, P. Senel, T. Sasamori, N. Tokitoh, K. Itami, Angew. Chem. 2011, 123, 3302; Angew. Chem. Int. Ed. 2011, 50, 3244; f) H. Omachi, S. Matsuura, Y. Segawa, K. Itami, Angew. Chem. 2010, 122, 10400; Angew. Chem. Int. Ed. 2010, 49, 10202; g) Y. Segawa, H. Omachi, K. Itami, Org. Lett. 2010, 12, 2262; h) S. Yamago, Y. Watanabe, T. Iwamoto, Angew. Chem. 2010, 122, 769; Angew. Chem. Int. Ed. 2010, 49, 757; i) H. Takaba, H. Omachi, Y. Yamamoto, J. Bouffard, K. Itami, Angew. Chem. 2009, 121, 6228; Angew. Chem. Int. Ed. 2009, 48, 6112; j) F. Zhang, G. Götz, H. D. F. Winkler, C. A. Schalley, P. Bäuerle, Angew. Chem. 2009, 121, 6758; Angew. Chem. Int. Ed. 2009, 48, 6632; k) R. Jasti, J. Bhattacharjee, J. B. Neaton, C. R. Bertozzi, J. Am. Chem. Soc. 2008, 130, 17646.

- [11] C. D. Gutsche, *Calixarenes: An Introduction, 2nd Edition*, RSC Publishing, Cambridge, 2008.
- [12] T. Ogoshi, S. Kanai, S. Fujinami, T. Yamagishi, Y. Nakamoto, J. Am. Chem. Soc. 2008, 130, 5022.
- [13] a) R. Gleiter, B. Esser, S. C. Kornmayer, Acc. Chem. Res. 2009, 42, 1108; b) M. Stuparu, V. Gramlich, A. Stanger, A. D. Schlüter, J. Org. Chem. 2007, 72, 424.
- [14] S. M. Biros, J. Rebek, Jr., Chem. Soc. Rev. 2007, 36, 93.
- [15] a) J. Stichler-Bonaparte, B. Bernet, A. Vasella, *Helv. Chim. Acta* 2002, 85, 2235; b) R. Bürli, A. Vasell, *Angew. Chem.* 1997, 109, 1945; *Angew. Chem. Int. Ed. Engl.* 1997, 36, 1852.
- [16] a) H. Sugino, H. Kawai, T. Umehara, K. Fujiwara, T. Suzuki, *Chem. Eur. J.* **2012**, *18*, 13722; b) T. Umehara, H. Kawai, K. Fujiwara, T. Suzuki, *J. Am. Chem. Soc.* **2008**, *130*, 13981; c) H. Kawai, T. Umehara, K. Fujiwara, T. Tsuji, T. Suzuki, *Angew. Chem.* **2006**, *118*, 4387; *Angew. Chem. Int. Ed.* **2006**, *45*, 4281.
- [17] a) H. Kawai, J. Synth. Org. Chem. Jpn. 2007, 65, 677; b) H. Kawai, R. Katoono, K. Nishimura, S. Matsuda, K. Fujiwara, T. Tsuji, T. Suzuki, J. Am. Chem. Soc. 2004, 126, 5034.
- [18] H. Kawai, R. Katoono, K. Fujiwara, T. Tsuji, T. Suzuki, *Chem. Eur. J.* 2005, 11, 815.
- [19] a) A. D. Thomas, L. L. Miller, J. Org. Chem. 1986, 51, 4160; b) J. Kang, G. Hilmersson, J. Santamaria, J. Rebek, Jr., J. Am. Chem. Soc. 1998, 120, 3650.
- [20] H. Hopff, P. Doswald, B. K. Manukian, Helv. Chim. Acta 1961, 44, 1231.
- [21] B. H. Lipshutz, S.-k. Kim, P. Mollard, K. L. Stevens, *Tetrahedron* 1998, 54, 1241.
- [22] L. Syper, J. Mlochowski, K. Kloc, Tetrahedron 1983, 39, 781.
- [23] H. Irngartinger, M. Skipinski, Tetrahedron 2000, 56, 6781.
- [24] a) P. Holý, M. Havranek, M. Pankova, L. Ridvan, J. Zavada, *Tetrahedron* **1997**, *53*, 8195; b) L. Ridvan, J. Zavada, *Tetrahedron* **1997**, *53*, 14793.
- [25] a) T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 4685; b) A. V. Kalinin, S. Scherer, V. Snieckus, Angew. Chem. 2003, 115, 3521; Angew. Chem. Int. Ed. 2003, 42, 3399.
- [26] a) A. S. Kende, P. Fludzinski, J. H. Hill, J. Am. Chem. Soc. 1984, 106, 3551; b) A. S. Kende, P. Fludzinski, Synthesis 1982, 455.
- [27] a) E. J. Corey, P. L. Fuchs, *Tetrahedron Lett.* **1972**, *13*, 3769; b) A. Orita, J. Otera, *Chem. Rev.* **2006**, *106*, 5387.
- [28] C. R. Davis, D. C. Swenson, D. J. Burton, J. Org. Chem. 1993, 58, 6843.
- [29] a) S. Ohira, Synth. Commun. 1989, 19, 561; b) J. Pietruszka, A. Witt, Synthesis 2006, 4266; c) D. Habrant, V. Rauhala, A. M. P. Koskinen, Chem. Soc. Rev. 2010, 39, 2007; d) S. Müller, B. Liepold, G. J. Roth, H. J. Bestmann, Synlett 1996, 521.
- [30] a) B. M. Trost, J. P. N. Papillon, T. Nussbaumer, J. Am. Chem. Soc. 2005, 127, 17921; b) K. C. Nicolaou, K. C. Fylaktakidou, H. Monenschein, Y. Li, B. Weyershausen, H. J. Mitchell, H.-X. Wei, P. Guntupalli, D. Hepworth, K. Sugita, J. Am. Chem. Soc. 2003, 125, 15433.
- [31] a) G. Eglinton, A. R. Galbraith, *Chem. Ind.* **1956**, 737; b) P. Siemsen,
 R. C. Livingston, F. Diederich, *Angew. Chem.* **2000**, *112*, 2740;

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

Angew. Chem. Int. Ed. 2000, 39, 2632; c) R. Berscheid, F. Vögtle, Synthesis 1992, 58.

- [32] The low over-yield of macrocycles seen in the case of compound 1f (which incorporates a TEG ester) might be attributed to the high solubility of its coupling intermediates in MeCN, which resulted in the formation of a significant quantity of high-molecular-weight oligomers. These oligomers were not obtained during subsequent extraction with CHCl₃ due to their exceptional solubility in the aqueous phase, and therefore went undetected.
- [33] a) J. Otera, *Chem. Rev.* **1993**, *93*, 1449; b) J. Otera, T. Yano, A. Kawabata, H. Nozaki, *Tetrahedron Lett.* **1986**, *27*, 2383; c) A. Orita, K. Sakamoto, Y. Hamada, A. Mitsutome, J. Otera, *Tetrahedron* **1999**, *55*, 2899.
- [34] a) A. R. Wartini, J. Valenzuela, H. A. Staab, F. A. Neugebauer, *Eur. J. Org. Chem.* **1998**, 139; b) S. V. Lindeman, S. V. Rosokha, D. Sun, J. K. Kochi, *J. Am. Chem. Soc.* **2002**, *124*, 843; c) D. Sun, S. V. Lindeman, R. Rathore, J. K. Kochi, *J. Chem. Soc. Perkin Trans.* 2 **2001**, 1585.
- [35] C. Cordes, V. Prelog, E. Troxler, H. H. Westen, *Helv. Chim. Acta* 1968, 51, 1663.
- [36] T. Mori, M. Takamoto, T. Wada, Y. Inoue, *Helv. Chim. Acta* 2001, 84, 2693.
- [37] W. J. Oldham, Jr., Y.-J. Miao, R. J. Lachicotte, G. C. Bazan, J. Am. Chem. Soc. 1998, 120, 419.
- [38] Z. Xie, B. Yang, F. Li, G. Cheng, L. Liu, G. Yang, H. Xu, L. Ye, M. Hanif, S. Liu, D. Ma, Y. Ma, J. Am. Chem. Soc. 2005, 127, 14152.

- [39] a) R. Rathore, A. S. Kumar, S. V. Lindeman, J. K. Kochi, J. Org. Chem. 1998, 63, 5847; b) R. Rathore, J. K. Kochi, J. Org. Chem. 1995, 60, 4399; c) P. Le Maguères, S. V. Lindeman, J. K. Kochi, Organometallics 2001, 20, 115; d) S. Iwashita, E. Ohta, H. Higuchi, H. Kawai, K. Fujiwara, K. Ono, M. Takenaka, T. Suzuki, Chem. Commun. 2004, 2076; e) T. Takeda, H. Kawai, K. Fujiwara, T. Suzuki, Chem. Eur. J. 2007, 13, 7915.
- [40] Gaussian 98 (Revision A.7), M. J. Frisch, H. B. Schlegel, M. A. R. G. E. Scuseria, J. R. Cheeseman, V. G. Zakrzewski, J. J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, A. D. D. J. M. Millam, K. N. Kudin, M. C. Strain, O. Farkas, J., V. B. Tomasi, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, S. C. C. Adamo, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q., K. M. Cui, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. C. J. B. Foresman, J. V. Ortiz, B. B. Stefanov, G. Liu, A., P. P. Liashenko, I. Komaromi, R. Gomperts, R. L. Martin,, T. K. D. J. Fox, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. C. C. Gonzalez, P. M. W. Gill, B. G. Johnson, W., M. W. W. Chen, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, *Gaussian, Inc., Pittsburgh, PA* 1998.
- [41] Spartan'04, Wavefunction, Inc. Irvine, CA 2004.
- [42] a) N. Sakai, J. Mareda, S. Matile, Acc. Chem. Res. 2008, 41, 1354;
 b) A. L. Sisson, M. R. Shah, S. Bhosalea, S. Matile, Chem. Soc. Rev. 2006, 35, 1269.

Received: March 3, 2012 Revised: January 12, 2013 Published online: February 11, 2013

4524 —