Journal Pre-proof

Efficient synthesis of quinazolines by the iron-catalyzed acceptorless dehydrogenative coupling of (2-aminophenyl)methanols and benzamides

Shi-Qi Zhang, Yao Cui, Bin Guo, David J. Young, Ze Xu, Hong-Xi Li

PII: S0040-4020(20)31073-5

DOI: https://doi.org/10.1016/j.tet.2020.131825

Reference: TET 131825

To appear in: Tetrahedron

- Received Date: 3 September 2020
- Revised Date: 24 November 2020

Accepted Date: 27 November 2020

Please cite this article as: Zhang S-Q, Cui Y, Guo B, Young DJ, Xu Z, Li H-X, Efficient synthesis of quinazolines by the iron-catalyzed acceptorless dehydrogenative coupling of (2-aminophenyl)methanols and benzamides, *Tetrahedron*, https://doi.org/10.1016/j.tet.2020.131825.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Graphical Abstract

Efficient synthesis of quinazolines by the iron-catalyzed acceptorless dehydrogenative coupling of (2-aminophenyl)-methanols and benzamides

Leave this area blank for abstract info.

Shi-Qi Zhang^a, Yao Cui^a, Bin Guo^a, David J. Young^b*, Ze Xu^a, Hong-Xi Li^a* ^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.

^b College of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia.

FeCl₂·H₂O (10 mol%) phenanthroline (20 mol%) CsOH (0.7 equiv.) refluxing toluene

Tetrahedron journal homepage: www.elsevier.com

Efficient synthesis of quinazolines by the iron-catalyzed acceptorless dehydrogenative coupling of (2-aminophenyl)methanols and benzamides

Shi-Qi Zhang^a, Yao Cui^a, Bin Guo^a, David J. Young^b*, Ze Xu^a, Hong-Xi Li^a*

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China ^b College of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia.

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online The acceptorless dehydrogenation coupling (ADC) of (2-aminophenyl)methanols with benzamides was achieved with catalytic FeCl₂·4H₂O in an efficient synthesis of quinazolines. This simple catalytic system is atom-economical, environmentally benign and suited to a variety of substrates.

2009 Elsevier Ltd. All rights reserved.

Keywords: Iron catalyst Acceptorless dehydrogenative coupling Quinazoline Phosphine-free Mild conditions

1. Introduction

The quinazoline moiety is at the core of numerous natural products, pharmacologically active molecules and organic functional materials [1-6], and much attention has focused on its synthesis and derivatization [7-13]. Typical methods for constructing 2-substituted quinazolines include (i) oxidative condensation of 2-aminobenzylamines with aldehydes [14-17], or alcohols [18-21], carboxylic acids [22], amines [23-25], α,α,αtrihalotoluenes [26], nitriles [27]; (ii) oxidative cyclization of 2aminobenzophenones with benzylic amines [28-31], or nitriles [32], arylacetic acids [33]; (iii) oxidative cross-coupling of 2aminoarylmethanols with nitriles [34, 35] or oxime ether [36]; (iv) Ullmann-type coupling and oxidation [37-39]; and (v) threecomponent oxidative coupling [40-47] (Scheme 1 (a)). These synthetic protocols often suffer from the use of stoichiometric or excessive amounts of inorganic oxidants, the production of large proportions of hazardous or toxic waste (low atom efficiency) and poor functional-group tolerance [48-51]. In recent years, some effective methodologies to overcome these drawbacks have been reported [52]. From the viewpoint of atom efficiency and safety, metal-catalyzed acceptorless dehydrogenative coupling (ADC) with the liberation of H_2O and H_2 as by-products is an attractive alternative for the synthesis of nitrogen-containing heteroaromatics [53]. The groups of Balaraman and Li have independently developed syntheses of quinazolines by ADC reaction of 2-aminobenzyl alcohols, or aldehydes with benzamides in the presence of $Mn(CO)_5Br/NNN(NNN = N^{1}-(3-$ (dimethylamino)propyl)-N³,N³-dimethylpropane-1,3-diamine) [54] or $[Cp*Ir(6,6'-(OH)_2bpy)(H_2O)]^{2+}$ (6,6'-(OH)_2bpy = [2,2'-

bipyridine]-6,6'-diol; bpy = 2,2-dipyridy) [55] as the catalyst. The groups of Zhang, Paul and Srimain have reported the synthesis of quinazolines via the ADC reaction of 2-aminobenzyl alcohol with nitriles catalyzed by Ru₃(CO)₁₂/Xantphos [56], [Ni(MeTAA)] (MeTAA = tetramethyltetraaza[14]annulene) [57] or [(NNS)Mn(CO)₃]Br (NNS = 2-(ethylthio)-N-(pyridin-2ylmethyl)ethan-1-amine) [58] using t-BuOK as the base. Yi and co-authors demonstrated the ADC reaction of 2-aminophenyl ketones with amines to quinazolines catalyzed by $[(C_6H_6)(PCy_3)(CO)RuH]BF_4/tbphOH$ (tbphOH = 4-(1,1dimethylethyl)-1,2-benzenediol) at 140 °C [59] (Scheme 1 (b)). The reported ADC methodologies required the use of expensive organometallic precursors, toxic phosphine organic ligands, t-BuOK as the base, and/or relatively high temperatures [60-63]. Therefore, it is highly desirable to develop phosphine-free and inexpensive metal catalyzed reaction systems for synthesis of quinazolines under mild reaction conditions. Iron catalysts for ADC are attractive due to their abundance, low price and low toxicity [64]. Following on from our studies of the transition metal-catalysed ADC reaction [65-68], we herein report a cheap and environmentally friendly route to construct quinazolines via iron-catalysed coupling of (2-aminophenyl)methanols with benzamides with CsOH as the base in refluxing toluene.

2. Results and discussion

(2-Aminophenyl)methanol (1a) and benzamide (2a) were chosen as the model substrates to optimize reaction conditions (Table 1). Reaction of 1a with 2a (1.5 equiv.) in the presence of 10 mol% $FeCl_2 \cdot 4H_2O$, 20 mol% 1,10-phenanthroline (phen) and

^{*} Corresponding author. e-mail: david.young@cdu.edu.au

^{*} Corresponding author. e-mail: lihx@suda.edu.cn

Previous work: (a) oxidative coupling

Scheme 1. Synthesis of 2-substituted quinazolines.

phenylquinazoline (3aa) in high yield (91% by HPLC analysis, entry 1). Replacing FeCl₂·4H₂O with FeCl₃, FeSO₄·7H₂O, Fe(BF₄)₂·6H₂O, Fe(CH₃COO)₂ or FeC₂O₄ generated **3aa** in 23-73% HPLC yields (entries 2-6). To our surprise, the reaction of 1a with 2a proceeded even without the addition of phen ligand, albeit providing the product in only 31% HPLC yield (entry 7). In the absence of FeCl₂·4H₂O and phen, **3aa** was isolated in 30% yield (entry 8). Increasing the amount of $FeCl_2 \cdot 4H_2O$ from 10 mol% to 15 mol% did not further promote the reaction. The yield of the product was decreased from 91% to 78% when the FeCl₂·4H₂O loading was decreased from 10 mol% to 5 mol% (entries 9-10). Other similar N-heterocyclic organic ligands, such 2,2'-bipyridine (bipy), N,N'-dimethylethane-1,2-diamine as (dmeda), 4,7-diphenyl-1,10-phenanthroline (dphphen), 2,9dimethyl-1,10-phenanthroline (dmphen), 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen) provided the product 3aa in lower yields (entries 11-15). A higher yield was not observed when the molar ratio of phen : $FeCl_2 \cdot 4H_2O$ was changed from 2 : 1 to 3 : 1 (entry 16). While only 55% yield of 3aa was obtained when the FeCl₂·4H₂O/phen ratio was 1 : 1 (entry 17). The screening of different bases revealed that t-BuOK also gave a good yield of 3aa (entry 18). KOH, NaOH, K₃PO₄·3H₂O, and Cs₂CO₃ provided more moderate yields (entries 19-22). No coupling product was formed when weak base Na2CO3 or K2CO3 was employed (entries 23 and 24). The coupling reaction didn't proceed without base (entry 25). A decreased loading of CsOH·H₂O to 70 mol% did not affect the conversion, but reducing its loading to 0.5 equiv. decreased the yield of 3aa to 54% (entries 26-27). The choice of solvent also played an important role. Toluene and xylene were the most suitable solvents at 130 °C (entries 1, 26 and 28). The same coupling cyclization gave a 75% yield in tamyl-alcohol and 48% yield in 1,4-dioxane (entries 29-30). However, this model ADC reaction did not proceed at all in DMSO or DMF (entries 31-32). The product yield was decreased from 91% to 86% when the molar ratio 1a/2a was changed from 1 : 1.5 to 1 : 1.2 (entry 33).

CsOH·H₂O (1 equiv.) in refluxing toluene (at 130 °C) for 24 h resulted in the formation of the desired product 2-

Table 1 Optimizing conditions for the dehydrogenative condensation/coupling reaction of (2-aminophenyl)methanols and benzamides.

OH NH2 [Fe], Ligand					
		1a	Base, Solv.	* 2H ₂ 0 3aa	D + H ₂
Entry ^a	Cat.	Ligand	Base	Solvent	Yield of 3aa (%) ^b
1	FeCl ₂ ·4H ₂ O	phen	CsOH·H ₂ O	toluene	91%
2	FeCl ₃	phen	CsOH·H ₂ O	toluene	69%
3	FeSO ₄ ·7H ₂ O	phen	CsOH·H ₂ O	toluene	40%
4	Fe(BF ₄) ₂ ·6H ₂ O	phen	CsOH·H ₂ O	toluene	23%
5	Fe(CH ₃ COO) ₂	phen	CsOH·H ₂ O	toluene	62%
6	FeC ₂ O ₄	phen	CsOH·H ₂ O	toluene	73%
7	FeCl ₂ ·4H ₂ O	-	CsOH·H ₂ O	toluene	31%
8	-	-	CsOH·H ₂ O	toluene	30%
9 ^b	FeCl ₂ ·4H ₂ O	phen	CsOH·H ₂ O	toluene	91%
10 ^c	FeCl ₂ ·4H ₂ O	phen	CsOH·H ₂ O	toluene	78%
11	FeCl ₂ ·4H ₂ O	bipy	CsOH·H ₂ O	toluene	17%
12	FeCl ₂ ·4H ₂ O	dmeda	CsOH·H ₂ O	toluene	38%
13	FeCl ₂ ·4H ₂ O	dphphen	CsOH·H ₂ O	toluene	58%
14	FeCl ₂ ·4H ₂ O	dmphen	CsOH·H ₂ O	toluene	85%
15	FeCl ₂ ·4H ₂ O	tmphen	CsOH·H ₂ O	toluene	81%
16 ^d	FeCl ₂ ·4H ₂ O	phen	CsOH·H ₂ O	toluene	89%
17 ^e	FeCl ₂ ·4H ₂ O	phen	CsOH·H ₂ O	toluene	55%
18	FeCl ₂ ·4H ₂ O	phen	t-BuOK	toluene	88%
19	FeCl ₂ ·4H ₂ O	phen	КОН	toluene	66%

Journal Pre-proof

20	FeCl ₂ ·4H ₂ O	phen	NaOH	toluene	60%	
21	FeCl ₂ ·4H ₂ O	phen	$K_3PO_4 \cdot 3H_2O$	toluene	72%	
22	FeCl ₂ ·4H ₂ O	phen	Cs_2CO_3	toluene	76%	
23	FeCl ₂ ·4H ₂ O	phen	Na ₂ CO ₃	toluene	Trace	
24	FeCl ₂ ·4H ₂ O	phen	K_2CO_3	toluene	Trace	
25	FeCl ₂ ·4H ₂ O	phen	-	toluene	Trace	
26 ^f	FeCl ₂ ·4H ₂ O	phen	CsOH·H ₂ O	toluene	91%	
27 ^g	FeCl ₂ ·4H ₂ O	phen	CsOH·H ₂ O	toluene	54%	
28	FeCl ₂ ·4H ₂ O	phen	CsOH·H ₂ O	xylene	91%	
29	FeCl ₂ ·4H ₂ O	phen	CsOH·H ₂ O	t-amyl-alcohol	75%	
30	FeCl ₂ ·4H ₂ O	phen	CsOH·H ₂ O	1,4-dioxane	48%	
31	FeCl ₂ ·4H ₂ O	phen	CsOH·H ₂ O	DMSO	Trace	
32	FeCl ₂ ·4H ₂ O	phen	CsOH·H ₂ O	DMF	Trace	
33 ^h	FeCl ₂ ·4H ₂ O	phen	CsOH·H ₂ O	toluene	86%	

^a Reaction conditions: **1a** (1.0 mmol), **2a** (1.5 mmol), Fe catalyst (10 mol% of Fe), ligand (20 mol%), base (1.0 mmol), solvent (2 mL) reflux under N_2 in open system for 24 h, HPLC yields by using diphenyl as the internal standard.

^b Using 15 mol% FeCl₂·4H₂O and 30 mol% phen.

^c Using 5 mol% FeCl₂·4H₂O and 10 mol% phen.

^d Using 30 mol% phen.

^eUsing 10 mol% phen.

^f Using 0.7 equiv. CsOH·H₂O.

- ^g Using 0.5 equiv.CsOH·H₂O.
- ^h Using **2a** (1.2 mmol).

Optimization of the reaction conditions revealed that the best yield was obtained with 1 (1 mmol), 2 (1.5 equiv.) and CsOH·H₂O (0.7 equiv.) in refluxing toluene for 24 h (Table 1, entry 26). The scope of possible substrates was next explored (Table 2). Arylamides 2a-2f and 2j bearing para electron donating substituents on phenyl rings were readily coupled with 1a to give the corresponding quinazolines 3aa-3af and 3aj in 78-91% yield. The use of electron-withdrawing arylamides 2g-2i (para) and 2j-2n (meta) afforded the desired products 3ag-2ai, 3aj-3an in the lower yield range of 60–72%. Steric hindrance of the reactive functionality similarly had a detrimental influence on yield (Table 2, entries 15-16). 2-Methylbenzamide was reacted with 1a to generate 3aq in 71% yield. 2-Naphthamide was converted to the corresponding quinazoline 3ar in a high yield of 92%. Heteroatom-containing substrates like nicotinamide also delivered the corresponding quinazolines 3as and 3at in moderate yields.

Next, the substrate scope of the partner 2-amino-benzyl was studied (Table 2, entries 21–26) and revealed that deactivating groups or steric hindrance similarly had a deleterious influence on yield. The dehydrogenative condensation/coupling reaction of 2-amino-5-methylbenzyl alcohol (1b) with 2a, [1,1'-biphenyl]-4-carboxamide (2f), or 2-naphthamide (2r) gave the desired products 3ba, 3bf and 3br in a good 76-81% yield. Chloro-substituted 1c reacted less efficiently with 2a, 2b or 2r, affording the respective products 3ca, 3cb and 3cr in 54-69% yield. Sterically hindered 1-(2-aminophenyl)ethan-1-ol (1d) coupled with 2a to afford the cyclized product 3da in 43% isolated yield. This dehydrogenative condensation/coupling reaction of 1a (1.11 g, 9 mmol) and 2a (1.63 g, 13.5 mmol) also worked on the gramscale to give 3aa in 41% yield (0.76 g) under the optimized conditions.

Molecular hydrogen as by-product was identified by gas chromatography (GC) during the dehydrogenative condensation/coupling reaction of **1a** and **2a** to give **3aa** (see supporting information, Fig. S1). Likewise, when this model reaction was connected with a second reaction vessel containing 2-vinylnaphthalene and Pd/C, 2-ethylnaphthalene was formed

(Fig. S2), confirming the generation of H_2 (eqn 1, Scheme 2). The reaction of only (2-aminophenyl)methanol with FeCl₂·4H₂O, phen and CsOH·H₂O in refluxing toluene for 24 h afforded the dehydrogenated product 2-aminobenzaldehyde (**1a'**) in 36% isolated yield, together with H₂ (identified by GC analysis) (Fig. S1). This reaction did not proceed without the addition of FeCl₂·4H₂O or phen in refluxing toluene (eqn 2, Scheme 2). The condensation of 2-aminobenzaldehyde **1a'** with **2a** resulted in the formation of **3aa**. This reaction occurred in the absence of FeCl₂·4H₂O and phen, but did not proceed without CsOH (eqn 3, Scheme 2).

Based on the studies above and on relevant literature [54-62], we propose a mechanism for ADC transformation proceeding through a one-pot dehydrogenation of (2-aminophenyl)methanol to the corresponding aldehyde followed by base-promoted condensation with benzamide to form quinazoline (Scheme 3).

Journal Pre-proof

Scheme 3. Proposed mechanism

3. Conclusions

In summary, we have developed a sustainable and operationally simple method for synthesis of quinazoline

Table 2 Synthesis of quinazolines.

derivatives via iron-catalysed acceptorless dehydrogenative condensation/coupling reaction of (2-aminophenyl)methanol with benzamides under mild reaction conditions. A series of substituted benzamides efficiently reacted with various (2-aminophenyl)methanols, furnishing the desired products and only H_2 and H_2O as by-products. This protocol had high functional group tolerance, did not require the use of toxic phosphine ligands, stoichiometric oxidants or t-BuOK as strong base. The construction of other heterocycles catalyzed by iron catalysts is undergoing in our lab.

$\begin{bmatrix} A_1^T \\ NH_2 \end{bmatrix} \xrightarrow{\text{PeCl}_2 \cdot 4H_2O, \text{ phen}} \\ H_2 \xrightarrow{\text{CsOH} \cdot H_2O, \text{ toluene}} \\ \hline \text{refluxing, 24h} \xrightarrow{\text{ReCl}_2 \cdot 4H_2O, \text{ toluene}} \\ \hline \text{Recl}_2 \xrightarrow{\text{Recl}_2 \cdot 4H_2O, \text{ phen}} \\ \hline \text{Recl}_2 \xrightarrow{\text{Recl}_2 \cdot 4H_2O, \text{ toluene}} \\ \hline \text{Recl}_2 \xrightarrow{\text{Recl}_2 \cdot 4H_2O,$								
Entry ^a	1		2		Product		Yield (%) ^b	
1	NH2	1a	NH ₂	2a		3 aa	87%	
2	NH2	1a	NH ₂	2b		3ab	88%	
3	ОН	1a	MeS NH2	2c	N N SMe	3ac	78%	
4	ОН	1a	/Bu NH2	2d	N N M M M	3ad	85%	
5	ОН	1a	Me ₂ N	2e	N N N N N N N N N N N N N N N N N N N	3ae	91%	
6	NH ₂	1 a	Ph NH ₂	2f	N N Ph	3af	89%	
7	NH ₂	1a		2g	N N CI	3ag	68%	
8	ОН	1a	Br NH2	2h	N N Br	3ah	72%	
9	OH NH2	1a	F ₃ C NH ₂	2i	N N CF3	3ai	60%	
10	NH ₂	1a	NH ₂	2j		3aj	84%	
11	OH NH2	1a	MeO NH2	2k	OMe OMe	3ak	63%	

	Journal Pre-proof							
12	NH ₂	1a	CI NH2	21		3al	65%	
13	NH ₂	1a	Br NH2	2m	N Br	3am	70%	
14	NH ₂	1a	F ₃ C NH ₂	2n	CF3	3an	63%	
15	NH ₂	1a	MeO	20	M M Me	3ao	56%	
16	NH ₂	1a	F ₃ C CF ₃	2р	CF3	Зар	51%	
17	NH ₂	1a	NH ₂	2q		3aq	71%	
18	NH ₂	1a	NH ₂	2r	C N CC	3ar	92%	
19	NH ₂	1a	NH2	2s		3as	43%	
20	NH ₂	1a	S NH ₂	2t	N S	3at	53%	
21	NH2	1b	NH ₂	2a	N	3ba	76%	
22	NH2	1b	Ph NH2	2f	N N Ph	3bf	81%	
23	ОН	1b	NH ₂	2r	N N N	3br	81%	
24	CI NH2	1c	NH ₂	2a		3ca	54%	
25	CI NH2	1c	NH ₂	2b	CI N N	3cb	58%	
26	CI NH2	1c	NH ₂	2r		3cr	69%	
27	C HOH	1d	NH ₂	2a		3da	43%	

^a Reaction conditions: 1 (1.0 mmol), 2 (1.5 mmol), FeCl₂·4H₂O (10 mol%), phen (20 mol%) and CsOH·H₂O (0.7 mmol), refluxing in 2 mL toluene under N₂, 24 h. ^b Isolated yield.

4. Experimental

4.1. General

All reagents were used as obtained from commercial sources without further purification. All solvents were obtained from commercial sources and were purified according to standard procedures. Column chromatography was performed on silica gel. ¹H (400 MHz), ¹³C (101 MHz or 150 MHz) and ¹⁹F (376 MHz) NMR spectra were recorded at ambient temperature on a Varian UNITY plus-400 spectrometer and Bruker Avance III HD spectrometer. HPLC was conducted on a LC-20A with MeCN and H₂O as the mobile phase. High resolution mass spectra (HRMS) were obtained with a MICRO TOF-Q III. IR spectra (KBr disk) were recorded on a Nicolet MagNa-IR550 FT-IR spectrometer (4000-400 cm⁻¹).

4.2. General procedure for synthesis of quinazolines

A 25 mL Schenk tube containing **1** (1.0 mmol), **2** (1.5 mmol), FeCl₂·4H₂O (10 mol%), phen (20 mol%) and CsOH·H₂O (0.7 mmol) was evacuated and flushed with nitrogen three times. Dried toluene (2 mL) was added under an N₂ atmosphere. The tube was then placed in an oil bath at 130 °C. The reaction was continued for 24 h under a slow and steady N₂ flow. After cooling to room temperature, the reaction mixture was partitioned between water and ethyl acetate. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate (3×5 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using petroleum ether and ethyl acetate as eluent.

4.2.1. 2-phenylquinazoline (3aa) [37]

White solid (180 mg, 87%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.47 (s, 1H), 8.62 (d, *J* = 6.8 Hz, 2H), 8.10 (d, *J* = 8.3 Hz, 1H), 7.92 (t, *J* = 9.4 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.54 (d, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 161.0, 160.5, 150.7, 138.0, 134.1, 130.6, 128.6, 128.6, 127.2, 127.1, 123.6. HRMS (CI-TOF) *m*/*z* calcd for C₁₅H₁₂N₂ [M + H]⁺ 207.0917, found 207.0928.

4.2.2. 2-(p-tolyl)quinazoline (3ab) [37]

White solid (195 mg, 88%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.45 (s, 1H), 8.52 (d, *J* = 7.9 Hz, 2H), 8.08 (d, *J* = 8.3 Hz, 1H), 7.89 (t, *J* = 8.4 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.34 (d, *J* = 7.9 Hz, 2H), 2.45 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 161.1, 160.4, 150.7, 140.9, 135.2, 134.1, 129.4, 128.5, 128.5, 127.1, 127.0, 123.5, 21.5. HRMS (CI-TOF) m/z calcd for C₁₅H₁₂N₂ [M + H]⁺ 221.1073, found 221.1079.

4.2.3. 2-(4-(methylthio)phenyl)quinazoline (3ac) [56]

Yellow solid (197 mg, 78%). ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.44 (s, 1H), 8.54 (d, *J* = 8.0 Hz, 2H), 8.06 (d, J = 8.0 Hz, 1H), 7.91 (t, *J* = 8.0 Hz, 2H), 7.69 (t, *J* = 8.0 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 2.56 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 160.7, 160.4, 150.8, 142.0, 134.6, 134.1, 128.9, 128.5, 127.1, 127.0, 125.8, 123.5, 15.3. HRMS (CI-TOF) *m/z* calcd for C₁₅H₁₃N₂S [M + H]⁺ 253.0794; found: 253.0799.

4.2.4. 2-(4-(tert-butyl)phenyl)quinazoline (3ad) [57]

White solid (224 mg, 85%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.48 (s, 1H), 8.55 (d, *J* = 7.8 Hz, 2H), 8.15 (d, *J* = 8.0 Hz, 1H), 7.92 (t, *J* = 8.8 Hz, 2H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.57 (d, *J* = 7.8 Hz, 2H), 1.39 (s, 10H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 160.9, 160.5, 154.2, 150.6, 134.9, 134.3, 128.5, 128.4, 127.2,

127.2, 125.7, 123.4, 34.9, 31.3. HRMS (CI-TOF) m/z calcd for $C_{18}H_{18}N_2$ [M + H]⁺ 263.1543, found 263.1531.

4.2.5. N,N-dimethyl-4-(quinazolin-2-yl)aniline (3ae) [56]

Yellow solid (227 mg, 91%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.38 (s, 1H), 8.53 (d, *J* = 8.6 Hz, 2H), 8.05 (d, *J* = 7.3 Hz, 1H), 7.85 (t, *J* = 7.6 Hz, 2H), 7.52 (t, *J* = 7.3 Hz, 1H), 6.83 (d, *J* = 8.6 Hz, 2H), 3.08 (s, 6H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 161.4, 160.2, 152.2, 150.9, 133.8, 129.9, 128.1, 127.1, 126.1, 125.6, 123.0, 111.7, 40.2. HRMS (CI-TOF) *m/z* calcd for C₁₆H₁₅N₃ [M + H]⁺ 250.1339, found 250.1321.

4.2.6. 2-([1,1'-biphenyl]-4-yl)quinazoline (3af) [40]

White solid (252 mg, 89%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.51 (s, 1H), 8.72 (d, J = 8.2 Hz, 2H), 8.16 (d, J = 8.3 Hz, 1H), 7.94 (t, J = 8.8 Hz, 2H), 7.79 (d, J = 8.2 Hz, 2H), 7.71 (d, J = 7.5 Hz, 2H), 7.64 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H), 7.39 (t, J = 7.2 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 160.6, 150.5, 143.5, 140.5, 136.5, 134.4, 129.1, 128.8, 128.4, 127.7, 127.4, 127.4, 127.2, 127.2, 123.5. HRMS (CI-TOF) m/z calcd for C₂₀H₁₄N₂ [M + H]⁺ 283.1230, found 283.1228.

4.2.7. 2-(4-chlorophenyl)quinazoline (3ag) [57]

White solid (164 mg, 68%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.47 (s, 1H), 8.59 (d, J = 8.4 Hz, 2H), 8.11 (d, J = 8.4 Hz, 1H), 7.94 (t, J = 8.1 Hz, 2H), 7.64 (t, J = 7.5 Hz, 1H), 7.51 (d, J = 8.4 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 160.5, 159.9, 150.5, 137.0, 136.2, 134.4, 129.9, 128.8, 128.5, 127.6, 127.2, 123.6. HRMS (CI-TOF) m/z calcd for C₁₄H₉ClN₂ [M + H]⁺ 241.0527, found 241.0544

4.2.8. 2-(4-bromophenyl)quinazoline (3ah) [57]

White solid (205 mg, 72%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.44 (s, 1H), 8.50 (d, J = 8.4 Hz, 2H), 8.07 (d, J = 8.6 Hz, 1H), 7.91 (t, J = 7.4 Hz, 2H), 7.66 (s, 1H), 7.65–7.57 (m, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 160.59, 160.0, 150.6, 136.8, 134.3, 131.8, 130.1, 128.6, 128.5, 127.5, 127.1, 125.4, 123.6. HRMS (CI-TOF) m/z calcd for C₁₄H₉BrN₂ [M + H]⁺ 285.0022, found 284.9985.

4.2.9. 2-(4-(trifluoromethyl)phenyl)quinazoline (3ai) [57]

White solid (165 mg, 60%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.53 (s, 1H), 8.77 (d, *J* = 7.9 Hz, 2H), 8.24–8.11 (m, 1H), 7.98 (t, *J* = 8.1 Hz, 2H), 7.80 (d, *J* = 8.0 Hz, 2H), 7.69 (t, *J* = 7.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 160.6, 159.5, 150.6, 141.2, 134.5, 132.2 (d, *J* = 32 Hz), 128.9, 128.7, 128.0, 127.2, 125.6 (q, *J* = 3.8 Hz), 123.8. ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -62.67. HRMS (CI-TOF) *m*/*z* calcd for C₁₅H₉F₃N₂ [M + H]⁺ 275.0791, found 275.0788..

4.2.10. 2-(m-tolyl)quinazoline (3aj) [57]

White solid (186 mg, 84%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.47 (s, 1H), 8.42 (d, J = 10.4 Hz, 2H), 8.11 (d, J = 8.3 Hz, 1H), 7.91 (t, J = 8.1 Hz, 2H), 7.61 (t, J = 7.3 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.33 (d, J = 7.2 Hz, 1H), 2.49 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 161.1, 160.5, 150.7, 138.3, 137.8, 134.2, 131.5, 129.1, 128.6, 127.2, 127.1, 125.8, 123.6, 21.5. HRMS (CI-TOF) *m*/*z* calcd for C₁₅H₁₂N₂ [M + H]⁺ 221.1073, found 221.1078.

4.2.11. 2-(3-methoxyphenyl)quinazoline (3ak) [57]

White solid (150 mg, 63%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.48 (s, 1H), 8.31–8.17 (m, 2H), 8.13 (d, *J* = 8.4 Hz, 1H), 7.93 (t, *J* = 9.5 Hz, 2H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.45 (t, *J* = 7.9 Hz, 1H), 7.08 (d, *J* = 8.0 Hz, 1H), 3.96 (s, 3H). ¹³C NMR (151

MHz, CDCl₃, ppm) δ 160.7, 160.4, 160.0, 150.6, 139.2, 134.2, 129.6, 128.6, 127.4, 127.1, 123.6, 121.2, 117.4, 113.0, 55.5. HRMS (CI-TOF) *m*/*z* calcd for C₁₅H₁₂N₂O [M + H]⁺ 237.1022, found 237.1021.

4.2.12. 2-(3-chlorophenyl)quinazoline (3al) [57]

White solid (157 mg, 65%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.50 (s, 1H), 8.65 (s, 1H), 8.54 (s, 1H), 8.15 (d, J = 8.2 Hz, 1H), 7.96 (t, J = 7.7 Hz, 2H), 7.67 (t, J = 7.3 Hz, 1H), 7.49 (s, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 160.6, 159.4, 150.5, 139.4, 134.8, 134.6, 130.7, 129.9, 128.7, 128.5, 127.8, 127.2, 126.7, 123.7. HRMS (CI-TOF) *m*/*z* calcd for C₁₄H₉ClN₂ [M + H]⁺ 241.0527, found 241.0526.

4.2.13. 2-(3-bromophenyl)quinazoline (3am) [57]

White solid (200 mg, 70%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.50 (s, 1H), 8.81 (s, 1H), 8.60 (d, J = 7.7 Hz, 1H), 8.17 (d, J = 8.5 Hz, 1H), 7.97 (t, J = 7.7 Hz, 2H), 7.67 (dd, J = 14.0, 7.2 Hz, 2H), 7.42 (t, J = 7.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 160.5, 159.3, 150.5, 139.7, 134.6, 133.6, 131.6, 130.2, 128.5, 127.8, 127.2, 127.2, 123.7, 122.9. HRMS (CI-TOF) m/z calcd for C₁₄H₉BrN₂ [M + H]⁺ 285.0022, found 284.9984

4.2.14. 2-(3-(trifluoromethyl)phenyl)quinazoline (3an) [40]

White solid (173 mg, 63%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.50 (s, 1H), 8.94 (s, 1H), 8.84 (d, *J* = 7.8 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 7.95 (t, *J* = 8.1 Hz, 2H), 7.76 (d, *J* = 7.6 Hz, 1H), 7.66 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 160.7, 159.4, 150.6, 138.6, 134.6, 131.7, 131.3, 131.0, 129.1, 128.7, 127.9, 127.2 (dd, *J* = 8.7, 5.0 Hz), 125.6 (q, *J* = 4.0 Hz), 123.8, 122.9. ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -62.54. HRMS (CI-TOF) *m*/*z* calcd for C₁₅H₉F₃N₂ [M + H]⁺ 275.0791, found 275.0809.

4.2.15. 2-(3,5-dimethoxyphenyl)quinazoline (3ao)

White solid (150 mg, 56%). Mp: 77.0–78.0 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.48 (s, 1H), 8.15 (d, J = 8.1 Hz, 1H), 7.94 (t, J = 7.7 Hz, 2H), 7.85 (s, 2H), 7.64 (t, J = 7.2 Hz, 1H), 6.65 (s, 1H), 3.94 (s, 6H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 161.1, 160.4, 150.4, 139.6, 134.4, 128.5, 127.5, 127.1, 123.6, 106.3, 104.1, 55.6. HRMS (CI-TOF) *m*/*z* calcd for C₁₆H₁₄N₂O₂ [M + H]⁺ 267.1128, found 267.1099. IR (KBr disk, cm⁻¹): 3001 (w), 2833 (w), 2026 (m), 1575 (s), 1553 (m), 1489 (w), 1400 (m), 1348 (s), 1306 (m), 1045 (m), 728 (m), 717 (m).

4.2.16. 2-(3,5-bis(trifluoromethyl)phenyl)quinazoline (3ap) [30]

Yellow solid (175 mg, 51%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.49 (s, 1H), 9.13 (s, 2H), 8.14 (d, J = 8.6 Hz, 1H), 8.03–7.93 (m, 3H), 7.70 (t, J = 7.4 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 160.8, 157.9, 150.5, 134.0, 134.7, 132.0 (q, J = 33.5 Hz), 128.7, 128.6(d J = 2.8 Hz), 128.3, 127.2, 124.3, 124.0, 123.8(m), 122.5. ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -62.76, -62.92. HRMS (CI-TOF) m/z calcd for C₁₆H₈F₆N₂ [M + H]⁺ 343.0664, found 343.0653.

4.2.17. 2-(o-tolyl)quinazoline (3aq) [34]

White solid (157 mg, 71%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.52 (s, 1H), 8.12 (d, J = 8.4 Hz, 1H), 8.02–7.86 (m, 3H), 7.67 (t, J = 7.5 Hz, 1H), 7.36 (d, J = 6.6 Hz, 3H), 2.61 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 163.9, 160.0, 150.3, 138.3, 137.4, 134.2, 131.3, 130.6, 129.4, 128.5, 127.6, 127.1, 126.0, 122.9, 21.0. HRMS (CI-TOF) m/z calcd for C₁₅H₁₂N₂ [M + H]⁺ 221.1073, found 221.1062.

4.2.18. 2-(naphthalen-2-yl)quinazoline (3ar) [34]

White solid (236 mg, 92%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.54 (s, 1H), 9.18 (s, 1H), 8.74 (d, J = 8.5 Hz, 1H), 8.18 (d, J = 8.2 Hz, 1H), 8.06 (d, J = 6.6 Hz, 1H), 8.03–7.88 (m, 4H), 7.65 (t, J = 7.3 Hz, 1H), 7.60–7.45 (m, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 160.8, 160.6, 150.6, 135.0, 134.7, 134.4, 133.4, 129.3, 129.1, 128.5, 128.3, 127.7, 127.4, 127.2, 127.2, 126.3, 125.4, 123.6. HRMS (CI-TOF) m/z calcd for C₁₈H₁₂N₂ [M + H]⁺ 257.1073, found 257.1063.

4.2.19. 2-(pyridin-3-yl)quinazoline (3as) [37]

White solid (89 mg, 43%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.84 (s, 1H), 9.50 (s, 1H), 8.95 (d, J = 7.7 Hz, 1H), 8.75 (d, J = 3.5 Hz, 1H), 8.12 (d, J = 8.3 Hz, 1H), 7.97 (t, J = 8.5 Hz, 2H), 7.68 (t, J = 7.4 Hz, 1H), 7.61–7.43 (m, 1H). ¹³C NMR (151 MHz, cdcl₃) δ 160.7, 158.8, 150.6, 150.2, 149.4, 136.5, 134.5, 134.0, 128.7, 127.9, 127.2, 123.9, 123.7. HRMS (CI-TOF) m/z calcd for C₁₃H₉N₃ [M + H]⁺ 208.0869, found 208.0865

4.2.20. 2-(thiophen-2-yl)quinazoline (3at) [37]

White solid (113 mg, 53%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.37 (s, 1H), 8.21 (d, J = 1.6 Hz, 1H), 8.06 (d, J = 8.6 Hz, 1H), 7.96–7.83 (m, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.54 (d, J = 4.7 Hz, 1H), 7.21 (t, J = 4.1 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 160.7, 157.7, 150.3, 143.5, 134.5, 130.2, 129.5, 128.5, 128.0, 127.3, 127.1, 123.3. HRMS (CI-TOF) m/z calcd for C₁₂H₈N₂S [M + H]⁺ 213.0481, found 213.0455

4.2.21. 6-methyl-2-phenylquinazoline (3ba) [56]

Yellow solid (168 mg, 76%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.43 (s, 1H), 8.62 (d, *J* = 7.0 Hz, 2H), 8.07 (d, *J* = 8.5 Hz, 1H), 7.78 (d, *J* = 8.6 Hz, 1H), 7.72 (s, 1H), 7.62–7.48 (m, 3H), 2.59 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 159.8, 149.0, 137.9, 137.3, 137.0, 130.7, 128.7, 128.6, 128.0, 125.9, 123.5, 21.7. HRMS (CI-TOF) *m*/z calcd for C₁₅H₁₂N₂ [M + H]⁺ 221.1073, found 221.1064

4.2.22. 2-([1,1'-biphenyl]-4-yl)-6-methylquinazoline (3bf)

White solid (241 mg, 81%). Mp: 159.9–160.9 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.40 (s, 1H), 8.68 (d, *J* = 8.0 Hz, 2H), 8.03 (d, *J* = 8.5 Hz, 1H), 7.76 (t, *J* = 8.1 Hz, 3H), 7.70 (d, *J* = 6.2 Hz, 3H), 7.48 (t, *J* = 7.4 Hz, 2H), 7.38 (t, *J* = 7.1 Hz, 1H), 2.58 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 160.0, 159.8, 149.3, 143.1, 140.6, 137.5, 136.9, 136.5, 128.9, 128.8, 128.2, 127.6, 127.3, 127.2, 125.8, 123.6, 21.6. HRMS (CI-TOF) *m*/*z* calcd for C₂₁H₁₆N₂ [M + H]⁺ 297.1386, found 297.1383. IR (KBr disk, cm⁻¹): 2831 (w), 2779 (w), 2026 (m), 1631 (s), 1597 (s), 1424 (m), 1367 (s), 1352 (s), 1060 (w), 829 (m), 756 (m), 734 (m).

4.2.23. 6-methyl-2-(naphthalen-2-yl)quinazoline (3br)

Yellow solid (220 mg, 81%). Mp: 179.3–180.3 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.43 (s, 1H), 9.14 (s, 1H), 8.72 (d, *J* = 8.5 Hz, 1H), 8.02 (dd, *J* = 25.5, 8.5 Hz, 3H), 7.90 (d, *J* = 5.4 Hz, 1H), 7.76 (d, *J* = 8.5 Hz, 1H), 7.71 (s, 1H), 7.59–7.45 (m, 2H), 7.26 (s, 1H), 2.58 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 160.2, 159.8, 149.3, 137.6, 136.6, 135.2, 134.6, 133.4, 129.2, 128.8, 128.2, 128.2, 127.7, 127.0, 126.2, 125.9, 125.3, 123.6, 21.7. HRMS (CI-TOF) *m*/*z* calcd for C₁₉H₁₄N₂ [M + H]⁺ 271.1230, found 271.1235. IR (KBr disk, cm⁻¹): 2831 (w), 2779 (w), 2026 (w), 1631 (s), 1596 (s), 1555 (m), 1365 (s), 1354 (s), 1186 (m), 951 (w), 830 (m), 747 (m).

4.2.24. 7-chloro-2-phenylquinazoline (3ca) [40]

Yellow solid (130 mg, 54%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.43 (s, 1H), 8.60 (d, J = 5.2 Hz, 2H), 8.09 (s, 1H), 7.86 (d, J = 8.6 Hz, 1H), 7.64–7.42 (m, 4H). ¹³C NMR (101 MHz,

CDCl₃, ppm) δ 161.9, 160.2, 151.3, 140.4, 137.6, 131.0, 128.7, 128.5, 128.4, 127.8, 122.0. HRMS (CI-TOF) *m*/*z* calcd for C₁₉H₉ClN₂ [M + H]⁺ 240.0454, found 240.0451

4.2.25. 7-chloro-2-(p-tolyl)quinazoline (3cb) [57]

Yellow solid (147 mg, 58%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.43 (d, J = 17.5 Hz, 1H), 8.50 (t, J = 7.3 Hz, 2H), 8.08 (d, J = 8.2 Hz, 1H), 7.95–7.81 (m, 1H), 7.64–7.51 (m, 1H), 7.34 (d, J = 7.7 Hz, 2H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 162.0, 161.2, 160.5, 160.1, 151.4, 150.8, 141.4, 140.9, 140.3, 135.3, 134.9, 134.1, 129.5, 129.4, 128.7, 128.5, 128.4, 128.2, 127.7, 127.1, 127.1, 123.5, 121.9, 21.6. HRMS (CI-TOF) m/z calcd for C₁₅H₁₁ClN₂ [M + H]⁺ 254.0611, found 254.0618.

4.2.26. 7-chloro-2-(naphthalen-2-yl)quinazoline (3cr)

Yellow solid (200 mg, 69%). Mp: 192.3–193.3 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.48 (s, 1H), 9.15 (s, 1H), 8.70 (d, J = 8.6 Hz, 1H), 8.14 (s, 1H), 8.02 (dd, J = 19.3, 7.8 Hz, 2H), 7.89 (t, J = 7.7 Hz, 2H), 7.57 (d, J = 8.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 161.9, 160.2, 151.4, 140.5, 134.9, 133.4, 129.4, 129.3, 128.5, 128.5, 128.4, 127.8, 127.8, 127.3, 126.4, 125.3, 122.0. HRMS (CI-TOF) m/z calcd for C₁₈H₁₁ClN₂ [M + H]⁺ 290.0611, found 290.0601. IR (KBr disk, cm⁻¹): 2831 (w), 2779 (w), 2026 (m), 1631 (s), 1598 (s), 1383 (m), 1364 (m), 1065 (m), 739 (w), 787 (m), 772 (m).

4.2.27. 4-methyl-2-phenylquinazoline (3da) [57]

White solid (91 mg, 41%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.07 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 8.2 Hz, 1H), 7.68 (d, J = 10.4 Hz, 3H), 7.53 (t, J = 7.4 Hz, 1H), 7.20 (t, J = 7.4 Hz, 1H), 6.81 (t, J = 9.0 Hz, 2H), 2.75 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 158.8, 147.2, 146.5, 144.9, 130.2, 129.8, 129.3, 129.2, 126.5, 125.9, 123.5, 121.7, 121.1, 117.5, 117.3, 19.0. HRMS (CI-TOF) m/z calcd for C₁₅H₁₂N₂ [M + H]⁺ 221.1073, found 221.1075.

Acknowledgments

We thank the National Natural Science Foundation of China (21971182 and 21771131), and the "Priority Academic Program Development" of Jiangsu Higher Education Institutions.

Supplementary data

The identification of molecular hydrogen by gas chromatography and ¹H and ¹³C NMR spectra for the isolated products for this article can be found in online version at doi:

References and notes

- [1] K.E. Cox, C. Melander, Med. Chem. Commun. 10 (2019) 1177–1179.
- [2] C. Huang, Y. Fu, H. Fu, Y. Jiang, Y. Zhao, Chem. Commun. (2008) 6333–6335.
- [3] I. Khan, A. Ibrar, N. Abbas, A. Saeed, Eur. J. Med. Chem. 76 (2014) 193–244.
- [4] S. I. Bhat, U. K. Das, D. R. Trivedi, J. Heterocyclic Chem. 52 (2015) 1253–1259.
- [5] Y. Qiu, Y. Zhang, L. Jin, L. Pan, G. Du, D. Ye, D. Wang, Org. Chem. Front. 6 (2019) 3420–3427.
- [6] Q. Yang, Y. Zhang, W. Zeng, Z.-C. Duan, X. Sang, D. Wang, Green Chem. 21 (2019) 5345–5351.
- [7] L. Zhang, J. Li, Z. Hu, J. Dong, X.-M. Zhang, X. Xu, Adv. Synth. Catal. 360 (2018) 1938–1942.
- [8] S.D. Gawande, M.R. Zanwar, V. Kavala, C.-W. Kuo, R.R. Rajawinslin, C.-F. Yao, Adv. Synth. Catal. 357 (2015) 168–176.
 [9] K. Ezaki, K. Kobayashi, Helv. Chim. Acta. 97 (2014) 822–829.
- [10] F. Portela-Cubillo, J.S. Scott, J.C. Walton, J. Org. Chem. 74 (2009) 4934–4942.

- [11] G. Satish, A. Polu, L. Kota, A. Ilangovan, Org. Biomol. Chem. 17 (2019) 4774–4782.
- [12] Y. Ohta, Y. Tokimizu, S. Oishi, N. Fujii, H. Ohno, Org. Lett. 12 (2010) 3963–3965.
- [13] J. Wang, S. Zha, K. Chen, F. Zhang, C. Song, J. Zhu, Org. Lett. 18 (2016) 2062–2065.
- [14] C.U. Maheswari, G.S. Kumar, M. Venkateshwar, R. Arun Kumar, M.L. Kantam, K.R. Reddy, Adv. Synth. Catal. 352 (2010) 341–346.
- [15] H. Yuan, W.-J. Yoo, H. Miyamura, S. Kobayashi, Adv. Synth. Catal. 354 (2012) 2899–2904.
- [16] C.B. Tran, T.A. To, Y.H. Vo, T.T. L. Do, Q.T.P. Nguyen, A.T. Nguyen, T.T. Nguyen, N.T.S. Phan, ChemistrySelect 4 (2019) 880– 883.
- [17] S. Saadati, N. Ghorashi, A. Rostami, F. Kobarfard, Eur. J. Org. Chem. (2018) 4050–4057.
- [18] Z. Zhang, M. Wang, C. Zhang, Z. Zhang, J. Lu, F. Wang, Chem. Commun. 51 (2015) 9205–9207.
- [19] W. Wang, M. Amiri, K. Kozma, J. Lu, L.N. Zakharov, M. Nyman, Eur. J. Org. Chem. 2018 (2018) 4628–4638.
- [20] K. Chakrabarti, M. Majia, S. Kundu, Green Chem. 21 (2019) 1999– 2004.
- [21] D. Zhao, Y.-R. Zhou, Q. S., J.-X. Li, RSC Adv. 4 (2014) 6486-6489.
- [22] X. Chen, T. Chen, F. Ji, Y. Zhou, S.-F. Yin, Catal. Sci. Technol. 5 (2015) 2197–220.
- [23] T. Yamaguchi, Y. Sugiura, E. Yamaguchi, N. Tada, A. Itoh, Asian J. Org. Chem. 6 (2017) 432–435.
- [24] K. Gopalaiah, A. Tiwari, R. Choudhary, K. Mahiya, ChemistrySelect 4 (2019) 5200–5205.
- [25] A.R. Tiwari, B.M. Bhanage, Org. Biomol. Chem. 14 (2016) 10567– 10571.
- [26] T. Chatterjee, D.I. Kim, E.J. Cho, J. Org. Chem. 83 (2018) 7423-7430.
- [27] R. Gujjarappa, N. Vodnala, V.G. Reddy, C.C. Malakar, Eur. J. Org. Chem. (2020) 803–814.
- [28] J. Zhang, C. Yu, S. Wang, C. Wan, Z. Wang, Chem. Commun. 46 (2010) 5244–5246.
- [29] B. Han, C. Wang, R.-F. Han, W. Yu, X.-Y. Duan, R. Fang, X.-L. Yang, Chem. Commun. 47 (2011) 7818–7820.
- [30] K. Gopalaiah, A. Sainia, A. Devi, Org. Biomol. Chem. 15 (2017) 5781–5789.
- [31] L. Wang, J. Cao, Z. Li, Russ. J. Gen. Chem. 87 (2017) 812-815.
- [32] U. P. Saikia, G. Borah, P. Pahari, Eur. J. Org. Chem. (2018) 1211– 1217.
- [33] Y. Yan, Z. Wang, Chem. Commun. 47 (2011) 9513–9515.
- [34] S. Yao, K. Zhou, J. Wang, H. Cao, L. Yu, J. Wu, P. Qiu, Q. Xu, Green Chem. 19 (2017) 2945–2951.
- [35] X.-M. Wan, Z.-L. Liu, W.-Q. Liu, X.-N. Cao, X. Zhu, X.-M. Zhao, B. Song, X.-Q. Hao, G. Liu, Tetrahedron 75 (2019) 2697–2705.
- [36] S.A. Sarode, V.G. Jadhav, J.M. Nagarkar, Tetrahedron Lett. 58 (2017) 779–784.
- [37] C. Wang, S. Li, H. Liu, Y. Jiang, H. Fu, J. Org. Chem. 75 (2010) 7936–7938.
- [38] M.A. Omar, J. Conrad, U. Beifuss, Tetrahedron 70 (2014) 3061–3072.
- [39] V.L. Truong, M. Morrow, Tetrahedron Lett. 51 (2010) 758–760.
- [40] C. Xu, F.-C. Jia, Z.-W. Zhou, S.-J. Zheng, H. Li, A.-X. Wu, J. Org. Chem. 81 (2016) 3000–3006.
- [41] X. Wang, N. Jiao, Org. Lett. 18 (2016) 2150–2153.
- [42] J. Ju, R. Hua, J. Su, Tetrahedron 68 (2012) 9364-9370.
- [43] E. Liang, Y. Wu, J. Chen, W. Xiong, J. Zhao, X. Yao, X. Tang, Tetrahedron 75 (2019) 130783.
- [44] X. Fan, B. Li, S. Guo, Y. Wang, X. Zhang, Chem. Asian J. 9 (2014) 739–743.
- [45] J. Chen, D. Chang, F. Xiao, G.-J. Deng, Green Chem. 20 (2018) 5459– 5463.
- [46] Z. Chen, J. Chen, M. Liu, J. Ding, W. Gao, X. Huang, H. Wu, J. Org. Chem. 78 (2013) 11342–11348.
- [47] Y. Yan, M. Shi, B. Niu, X. Meng, C. Zhu, G. Liu, T. Chen, Y. Liu, RSC Adv. 6 (2016) 36192–36197.
- [48] Y.-Y. Peng, Y. Zeng, G. Qiu, L. Cai, V. W. Pike, J. Heterocyclic Chem. 47 (2010) 1240–1245.
- [49] C.-y. Chen, F. He, G. Tang, H. Yuan, N. Li, J. Wang, R. Faessler, J. Org. Chem. 83 (2018) 2395–2401.
- [50] J. Ma, Y. Wan, C. Hong, M. Li, X. Hu, W. Mo, B. Hu, N. Sun, L. Jin, Z. Shen, Eur. J. Org. Chem. (2017) 3335–3342.
- [51] M. Saha, P. Mukherjee, A.R. Das, Tetrahedron Lett. 58 (2017) 2044– 2049.
- [52] J. Fang, J. Zhou, Z. Fang, RSC Adv. 3 (2013) 334–336.
- [53] Z. Tan, Z. Fu, J. Yang, Y. Wu, L. Cao, H. Jiang, J. Li, M. Zhang, iScience 23 (2020) 101003.

- [54] A. Mondal, M. K. Sahoo, M. Subaramanian, E. Balaraman, J. Org. Chem.85 (2020) 7181–7191.
- [55] H. Fan, W. Zhao, F. Li, ChemistrySelect 2 (2017) 5735– 5739.
- [56] M. Chen, M. Zhang, B. Xiong, Z. Tan, W. Lv, H. Jiang, Org. Lett. 16 (2014) 6028–6031.
- [57] S. Parua, R. Sikari, S. Sinha, G. Chakraborty, R. Mondal, N. D. Paul, J. Org. Chem. 83 (2018) 11154–11166.
- [58] K. Das, A. Mondal, D. Pal, D. Srimani, Org. Lett. 21 (2019) 3223–3227.
- [59] P. T. K. Arachchige, C. S. Yi, Org. Lett. 21 (2019) 3337–3341.
- [60] C. Chaudhari, S.M.A. H. Siddiki, M. Tamura, K.-i. Shimizu, RSC Adv. 4 (2014) 53374–53379.
- [61] W. Yao, Z.-C., Duan, Y. Zhang, X. Sang, X.-F. Xia, D. Wang, Adv. Synth. Catal. 361 (2019) 5695–5703.
- [62] D. Ye, R. Huang, H. Zhu, L.-H. Zou, D. Wang, Org. Chem. Front. 6 (2019) 62–69.
- [63] J. Liu, C. Wang, X. Ma, X. Shi, X. Wang, H. Li, Q. Xu. Catal. Lett. 146 (2016) 2139–2148.
- [64] T. Irrgang, R. Kempe, Chem. Rev. 119 (2019) 2524–2549.
- [65] D.-W. Tan, H.-X. Li, D.-L. Zhu, H.-Y. Li, D. J. Young, J.-L. Yao, J.-P. Lang, Org. Lett. 20 (2018) 608–611.
- [66] M.-J. Zhang, H.-X. Li, D.J. Young, H.-Y. Li, J.-P. Lang, Org. Biomol. Chem. 17 (2019) 3567–3574.
- [67] M.-J. Zhang, D.-W. Tan, H.-X. Li, D.J. Young, H.-F. Wang, H.-Y. Li, J.-P. Lang, J. Org. Chem. 83 (2018) 1204–1215.
- [68] B. Guo, H.-X. Li, S.-Q. Zhang, D.J. Young J.-P. Lang, ChemCatChem 10 (2018) 5627–5636.

Received: ((will be filled in by the editorial staff))

Published online: ((will be filled in by the editorial staff))

Highlights

- ▶ The Fe-catalyzed acceptorless dehydrogenative coupling of (2-aminophenyl)methanols and benzamides produces quinazolines.
- ► This simple catalytic system is atom-economical, environmentally benign.
- ▶ This coupling reaction is suited to various substrates under mild conditions.

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: