ARTICLE IN PRESS

Tetrahedron Letters xxx (2015) xxx-xxx

Contents lists available at ScienceDirect

ELSEVIER

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of 2-tetralone derivatives by Bi(OTf)₃-catalyzed intramolecular hydroarylation/isomerization of propargyl alcohols

Jihee Yun^a, Jungmin Park^a, Jaehyun Kim^a, Kooyeon Lee^{a,b,*}

^a Department of Bio-Health Technology, Kangwon National University, Chuncheon 200-701, Republic of Korea ^b Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea

ARTICLE INFO

Article history: Received 27 August 2014 Revised 17 December 2014 Accepted 26 December 2014 Available online xxxx

Keywords: Bi catalyst 2-Tetralone Propargyl alcohol Intramolecular hydroarylation Isomerization

2-Teralones are important scaffolds in biologically active natural products, pharmaceuticals, and other useful materials;¹ however, they are difficult to synthesize.² Existing synthetic methods for 2-tetrlones include the 1,2-transposition of the carbonyl group of 1-tetralones,³ reduction of substituted 2-methoxynaphthalenes,⁴ Rh(II)-catalyzed cyclization of α -diazoketones,⁵ SnCl₄-mediated cyclization of propargyl alcohols,⁶ Pummerer rearrangementmediated cyclization of aryl β-ketosulfoxides,⁷ and the Friedel-Crafts reaction of aromatic acyl chlorides with olefins.⁸ However, these reactions suffer from the use of expensive (rhodium) and harmful (diazoketone and β-ketosulfoxide) reagents, long reaction sequences, and low-to-moderate yields. Therefore, a more efficient method needs to be developed for the synthesis of 2-tetralone considering their importance. Recently, In(III)-promoted cyclization/ isomerization reaction of propargyl alcohols has been reported.⁹ Although this procedure provides an efficient one-step synthetic route for the synthesis of 2-tetralone, the substrate scope of 2-tetralones was narrow. Recently, we reported the intramolecular hydroarylation reactions of aryl alkynes using a Brønsted acid or Au catalyst.^{10,11} In our previous studies, we found that Fe or Bi salts are efficient catalysts for the π -activation of C–C triple bonds.¹² Therefore, we envisioned that Fe or Bi salts are sufficient catalysts for the synthesis of 2-tetralones by intramolecular hydroarylation/ isomerization reactions. Bi is known as an environmentally benign

ABSTRACT

Compared to 1-tetralones, 2-tetralones are expensive, less stable, and difficult to synthesize. A concise Bi-catalyzed method was developed for the synthesis of 2-tetralones from 5-phenylpent-1-yn-3-ol derivatives. Diverse 2-tetralones were obtained in moderate to good yields under mild conditions. © 2015 Elsevier Ltd. All rights reserved.

Scheme 1. Synthesis of 2-tetralone derivatives.

element and has been widely used in synthetic chemistry over the last few years.¹³ In particular, Bi(OTf)₃ is a well-known efficient catalyst for dual activation via σ , π -chelation.¹⁴ In this Letter, we report the Bi(OTf)₃-catalyzed one-step synthesis of 2-tetralones from aryl propargyl alcohols. We have used 5-phenylpent-1-yn-3-ol **1a** as a useful functionality in organic synthesis; as a model reaction, the reaction of **1a** with a catalytic amount of Bi(OTf)₃ afforded 2-tetralone in good yields (Scheme 1).

First, various types of propargyl alcohols **1** were prepared in good to excellent yields by classic methods.¹⁵ The reduction of commercially available cinnamic acids with LAH in THF afforded the corresponding saturated alcohols. Next, the reaction of primary alcohols with PCC in CH₂Cl₂ afforded the corresponding aldehydes in good yields. Finally, the Grignard addition of ethynylmagnesium bromide to the aldehydes afforded the corresponding 5-phenylpent-1-yn-3-ol derivatives **1**.

To optimize the catalyst for the intramolecular hydroarylation/ isomerization of 5-phenylpent-1-yn-3-ol derivatives **1**, diverse Lewis and Brønsted acids were screened using **1a** as the model substrate (Table 1). Various Fe salts were investigated as catalysts for the synthesis of 1-methyl-2-tetralone **2a** in DCE. The reaction of

^{*} Corresponding author. Tel.: +82 33 250 6477; fax: +82 33 250 6470. *E-mail address:* lky@kangwon.ac.kr (K. Lee).

Table 1

Optimization of reaction conditions^a

Entry	Catalyst (mol %)	Solvent	Temp (°C)	Time (h)	Yield ^b (%)
1	FeCl ₂ (10)	DCE	80	10	0
2	FeCl ₃ (10)	DCE	80	20	0
3	FeCl ₂ ·4H ₂ O (10)	DCE	80	10	0
4	Fe(ClO ₄) ₃ ·xH ₂ O (10)	DCE	80	20	0
5	$Fe(OTf)_3$ (10)	DCE	80	16	35
6	FeCl ₃ (10)/AgOTf (30)	DCE	80	6	24
7	$Sc(OTf)_3$ (10)	DCE	80	16	0
8	$Cu(OTf)_2$ (10)	DCE	80	16	0
9	In(OTf) ₃ (10)	DCE	80	16	72
10	Bi(NO ₃) ₃ .5H ₂ O (10)	DCE	80	20	0
11	BiCl ₃ (10)	DCE	80	20	0
12	BiCl ₃ (10)/AgOTf (30)	DCE	80	1	78
13	Bi(OTf) ₃ (10)	DCE	80	2	90 (80) ^c
14	$Bi(OTf)_3(5)$	DCE	80	2	76 (60) ^c
15	Bi(OTf) ₃ (10)	DCE	60	20	72
16	PTSA (10)	DCE	80	16	0
17	TfOH (10)	DCE	80	2	12
18	Bi(OTf) ₃ (10)	Toluene	80	9	47
19	Bi(OTf) ₃ (10)	CH_3NO_2	80	10	47
20	Bi(OTf) ₃ (10)	CH ₃ CN	80	10	0
21	Bi(OTf) ₃ (10)	THF	80	10	0
22	Bi(OTf) ₃ (10)	EtOH	80	10	0

^a Reaction conditions: 5-phenylpent-1-yn-3-ol (**1a**, 0.25 mmol), solvent (1.5 mL), under nitrogen atmosphere.

^b Yields are based on **2a**, determined by crude ¹H NMR using dibromomethane as the internal standard.

^c Isolated yield.

1a with catalytic amounts of FeCl₂, FeCl₃, FeCl₂·4H₂O, and $Fe(ClO_4)_3 \cdot xH_2O$ at 80 °C failed (entries 1–4). The reaction of **1a** with Fe(OTf)₃ at 80 °C afforded 2a in 35% yield (entry 5). The reaction of 1a with FeCl₃/AgOTf afforded **2a** in 24% yield (entry 6); however, when $Sc(OTf)_3$, and $Cu(OTf)_2$ were used, the product could not be detected by ¹H NMR analysis (entries 7 and 8). When In(OTf)₃ was used as the catalyst, 2a was obtained in 72% yield (entry 9). When Bi salts such as Bi(NO₃)₃·5H₂O and BiCl₃ were used, the reactions failed (entries 10 and 11). However, when BiCl₃ and AgOTf were used as the co-catalysts, **2a** was obtained in 78% yield (entry 12). To our delight, when $Bi(OTf)_3$ was used as the catalyst, the reaction of **1a** in DCE at 80 °C for 2 h afforded 2a in 90% yield (80% isolated yield, entry 13). When the amount of Bi(OTf)₃ was decreased to 5 mol %, the yield of 2a decreased to 76% (entry 14). Further, at 60 °C, the product was obtained in good yields (72%, entry 15). Brønsted acids such as *p*-toluenesulfonic acid (PTSA) and triflic acid (TfOH), were inefficient (entries 16 and 17). Then, various solvents were screened to determine the optimal solvent for the reaction with Bi(OTf)₃. The use of toluene and CH₃NO₂ resulted in low yields (entries 18 and 19); furthermore, the reactions failed when CH₃CN, THF, and EtOH

With the optimized conditions, the reactions of various types of propargyl alcohols **1** were investigated to demonstrate the efficiency substrate scope of the reaction, and the results are summarized in Table 2. The reaction of **1a** with 10 mol % $Bi(OTf)_3$ afforded **2a** in 80% yield (entry 1). The reaction of propargyl alcohol bearing a 2-methyl group on the phenyl ring (**1b**) afforded the corresponding product, **2b**, in 76% yield (entry 2). The reaction of propargyl alcohol bearing a 3-methyl substituent (**1c**) afforded the corresponding products, **2ca** and **2cb**, in 85% overall yield as a mixture of two regioisomers in a 1.1:1 ratio (entry 3). The cyclization of 5-*p*-tolypent-1-yn-3-ol (**1d**) afforded the corresponding product, **2d**, in a good yield (entry 4). The cyclization of propargyl alcohols

were used (entries 20-22).

Table 2			
Bi-catalyzed	intramolecular	hydroarylation	/isomerization

Entry	Substrate	Product	Time (h)	Yield ^b (%)
1	OH 1a	CH ₃ 2a	2	80
2	CH ₃ OH 1b		2	76
3	H ₃ C OH 1c	$H_{3}C$ CH_{3} C	1	85 (1.1:1)
4	H ₃ C OH 1d	H ₃ C CH ₃ O 2d	1	79
5	OMe OH 1e	CH ₃ OMe	1.5	66
6	MeO OH 1f	MeO 2fa 2fb	1.5	75 (2.8:1)

ARTICLE IN PRESS

J. Yun et al. / Tetrahedron Letters xxx (2015) xxx-xxx

Entry	Substrate	Product	Time (h)	Yield ^b (%)
7	MeO OH 1g	MeO 2g	1	77
8	MeO MeO OH 1h	MeO MeO MeO 2h	0.5	76
9	CI OH 1i		6	28
10	Br OH 1j	Br CH ₃ Br CH ₃ Br 2ia 2ib	6	40 (1.4:1)
11	OH 1k		2	78
12	Me Me _{OH} 11	CH ₃ O Me Me	1	92°
13	CI Me Me _{OH} 1m	CI Me Me 2m	5	34 ^c
14	OH In	CH ₃ O 2n	5	53

Table 2 (continued)

^a The reaction was conducted in anoxic conditions. Reaction conditions: propargyl alcohol (**1a**, 0.25 mmol), Bi(OTf)₃ (10 mol %), solvent (1.5 mL), under nitrogen atmosphere.

^b Isolated yield.

^c 5 mol % of Bi(OTf)₃ was used.

Scheme 2.

with an electron-donating methoxy group smoothly afforded the corresponding products in good yields (entries 5–7). 6,7-Dimethoxy-2-tetralone (**2h**) was obtained in 76% yield when substrate **1h** was cyclized (entry 8). The reaction of substituted propargyl alcohols containing electron-withdrawing groups such as Cl-, or Br-, on the phenyl ring resulted in low yields (entries 9 and 10); however, the reactions failed when propargyl alcohols with trifluoromethyl-, nitrile-, and nitrophenyl substituents were used. The reaction of naphthylene-containing propargyl alcohol **1k** afforded 1-methyl-3,4-dihydrophenanthren-2(1*H*)-one (**2k**) in 78% yield (entry 11). To investigate the Thorpe–Ingold effect, ¹⁶ we also tested the substrates containing the *gem*-dimethyl group on the tethering

Scheme 3. Plausible reaction mechanism.

4

carbon. 5-Methyl-5-phenylhex-1-yn-3-ol (**1**) reacted quickly to produce 1,4,4-trimethyl-2-tetralone (**2**) in excellent yield when using 5 mol % of Bi(OTf)₃ (entry 12); Furthermore, the reactions of 5-(4-chlorophenyl)pent-1-yn-3-ol (**1m**) containing electron-withdrawing groups on the phenyl ring afforded the desired products (**2m**) in 34% yield (entry 13). Furthermore, the cyclization of **1n** containing an ether linkage proceeded to afford the corresponding product, **2n**, in 53% yield (entry 14).

To demonstrate the utility of catalytic hydroarylation/isomerization, we also carried out the reaction of 1-phenylbut-3-yn-2-ol (**10**) and 6-phenylhex-1-yn-3-ol (**1p**). The reaction of **10** afforded naphthalene (**20**) in 33% yield via the 6-endo-dig cyclization/dehydration sequence, however, no reaction occurred when using **1p** (Scheme 2).

Although the mechanism of this reaction has not been fully established at this stage, a possible reaction pathway is shown in Scheme 3. The borderline Bi would coordinate not only to the OH group, but also to the triple bond of propargyl alcohol, leading to a dually activated species. The subsequent cyclization of the dually activated species occurs readily by the intramolecular hydroarylation of the arene with Bi-coordinated alkyne to afford the zwitterionic intermediate. Finally, the isomerization of exo-methylene group followed by the tautomerization of enol affords the product,¹⁷ and releases the catalyst, thus completing the catalytic cycle.

In conclusion, we developed a novel Bi-catalyzed intramolecular hydroarylation/isomerization of aryl propargyl alcohols, mainly affording 2-tetralones in good to high yields under mild reaction conditions. Bi catalysts, are inexpensive, non-toxic, and environmentally benign, and therefore, they are advantageous from the perspective of sustainable chemistry. Further applications of this method to other useful tetralone derivatives including heterocycles are underway.

Acknowledgments

This work was supported by the 2014 Research Grant from the Kangwon National University (No. 120140423) and by the 'Leaders INdustry-university Cooperation' Project, supported by the Ministry of Education, Science & Technology (MEST).

Supplementary data

Supplementary data (experimental procedures and characterization data) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2014.12.129.

References and notes

- (a) Silveira, C. C.; Braga, A. L.; Kaufman, T. S.; Lenardao, E. J. *Tetrahedron* **2004**, 60, 8295–8328; Taber, D. F.; Neubert, T. D.; Rheingold, A. L. J. Am. Chem. Soc. **2002**, 124, 12416.
- (a) Hon, Y.-S.; Devulapally, R. Tetrahedron Lett. 2009, 50, 5713; (b) Hon, Y.-S.; Devulapally, R. Tetrahedron Lett. 2009, 50, 2831.
- 3. Kane, V. V.; Singh, V.; Martin, A. Tetrahedron 1983, 39, 345.
- (a) Shishido, K.; Goto, K.; Miyoshi, S.; Takaishi, Y.; Shibuya, M. J. Org. Chem. 1994, 59, 406; (b) Johansson, A. M.; Mellin, C.; Hacksell, U. J. Org. Chem. 1986, 51, 5252; (c) Covarrubias-Ziga, A.; Cant, F.; Maldonado, L. A. J. Org. Chem. 1998, 63, 2918.
- (a) Mckervey, M. A.; Tuladhar, S. M.; Twohig, M. F. *Chem. Commun.* **1984**, 129;
 (b) Kennedy, M; Mckervey, M. A.; Maquire, A. R.; Tuladhar, S. M.; Twohig, M. F. *J. Chem. Soc., Perkin Trans.* **1 1990**, 1047.
- 6. McMills, M. C.; Wright, D. L.; Weekly, R. M. Synth. Commun. 2002, 32, 2417.
- (a) Oikawa, Y.; Yonemitsu, O. *Tetrahedron* **1974**, *30*, 2653; (b) Makhey, D.; Yu, C.; Liu, L. F.; LaVoie, E. J. Bioorg. Med. Chem. **2000**, *8*, 1171; (c) Oikawa, Y.; Yonemitsu, O. *Tetrahedron Lett.* **1972**, *15*, 3393.
- (a) Cordi, A. A.; Lacoste, J.-M.; Descombes, J.-J.; Courchay, C.; Vanhoutee, P. M. J. Med. Chem. 1995, 38, 4056; (b) Brown, E.; Ragault, M. Tetrahedron 1979, 35, 911; (c) Silveira, C. C.; Machado, A.; Braga, A. L.; Lenardão, E. J. Tetrahedron Lett. 2004, 45, 4077; (d) Kanao, M.; Hashizume, Y.; Ichikawa, K.; Irie, K.; Isoda, S. J. Med. Chem. 1982, 25, 1358; (e) Nevy, J. B.; Hawkinson, D. C.; Grzegorz, B.; Yao, X.; Pollack, R. M. J. Am. Chem. Soc. 1997, 119, 12722.
- 9. Qiu, W.-W.; Surendra, K.; Yin, L.; Corey, E. J. Org. Lett. 2011, 13, 5893.
- 10. Kim, C.-E.; Ryu, T.; Kim, S.; Lee, K.; Lee, C.-H.; Lee, P. H. Adv. Synth. Catal. 2013, 355, 2873.
- 11. Eom, D.; Park, S.; Park, Y.; Lee, K.; Hong, G.; Lee, P. H. Eur. J. Org. Chem. 2013, 2672.
- 12. Park, J.; Yeon, J.; Lee, P. H.; Lee, K. Tetrahedron Lett. 2013, 54, 4414.
- 13. Ollevier, T. Org. Biomol. Chem. 2013, 11, 2740.
- (a) Komeyama, K.; Yamada, T.; Igawa, R.; Takaki, K. *Chem. Commun.* 2012, 6372; (b) Komeyama, K; Takahashi, K.; Takaki, K. *Org. Lett.* 2008, *10*, 5119.
 (a) Houjeiry, T. I.; Poe, S. L.; McQuade, D. T. *Org. Lett.* 2012, *14*, 4394; (b) De
- (a) Houjeiry, T. I.; Poe, S. L.; McQuade, D. T. Org. Lett. **2012**, *14*, 4394; (b) De Mattos Duarte, C.; Verli, H.; De Araujo-Junior, J. X.; De Medeiros, I. A.; Barreiro, E. J.; Fraga, C. A. M. Eur. J. Pharm. Sci. **2004**, *23*, 363.
- 16. Jung, M. E.; Piizzi, G. Chem. Rev. 2005, 105, 1735.
- 17. Ganchegui, B.; Bouquillon, S.; Hénin, F.; Muzart J. Mol. Catal. A: Chem. 2004, 214, 65.