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Abstract: [Ir(cod)Cl]2 in combination with 1,2-bis(dipentafluo-
rophenylphosphino)ethane catalyzes chemo- and regioselective cy-
clotrimerization of two different alkynes. The reaction of methyl
propiolate with 1-hexyne gave methyl 3,5-di(n-butyl)benzoate as a
single product in 88% yield.
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Polysubstituted benzenes are a common structural com-
ponent of naturally occurring biologically active mole-
cules. The traditional synthesis of polysubstituted
benzene is based on the stepwise introduction of substitu-
ents via electrophilic substitution.2 This process is not
atom-economical or environmentally benign, since a stoi-
chiometric amount of waste is produced as a byproduct.
To overcome these drawbacks, transition-metal-catalyzed
cyclotrimerization to give benzene derivatives has been
studied extensively.3 The regioselective cyclotrimeriza-
tion of two or three different monoynes is a new and effi-
cient route to polysubstituted benzenes. However, it can
be difficult to control the regioselectivity. There are limit-
ed examples of the successful regioselective cyclotrimer-
ization of two or three different monoynes.4 In the course
of our study on iridium-catalyzed cycloaddition of
alkynes,5 we have previously reported the [Ir(cod)Cl]2-
catalyzed highly selective cycloaddition of dimethyl acet-
ylenedicarboxylate (DMAD) with monoynes.5d In that
study, we observed the unique reactivity of
(C6F5)2PCH2CH2P(C6F5)2 (FDPPE) as a ligand. We found
that [Ir(cod)Cl]2/DPPE catalyzed the 2:1 coupling of
DMAD with a monoyne, whereas [Ir(cod)Cl]2/FDPPE
catalyzed the 1:2 coupling of DMAD with a monoyne. In
this communication, we wish to report the [Ir(cod)Cl]2/
FDPPE-catalyzed chemo- and regioselective cyclotrimer-
ization of two different terminal alkynes to give 1,3,5-
trisubstituted benzenes.

Methyl propiolate (1a) reacted with two molecules of 1-
hexyne (2a) to give 3aa in the presence of a catalytic
amount of [Ir(cod)Cl]2 and FDPPE. Previously, we re-
ported that DPPE was an efficient ligand for the
[Ir(cod)Cl]2-catalyzed cycloaddition of alkynes. Howev-

er, the reaction of 1a with 2a catalyzed by [Ir(cod)Cl]2/
DPPE gave no product (3aa); [Ir(cod)Cl]2/PPh3 and
[Ir(cod)Cl]2 alone were examined as catalysts. Only
[Ir(cod)Cl]2/FDPPE gave 3aa. Other transition-metal
complexes combined with FDPPE were also examined for
the reaction of 1a with 2a; [Rh(cod)Cl]2/FDPPE,
Pd(dba)2/FDPPE and Ni(cod)2/FDPPE were inert as cata-
lysts. The molar ratio of 1a to 2a affected the yield of 3aa.
The results are summarized in Table 1. The use of an ex-
cess amount of 2a to 1a is needed to give 3aa in good
yield. The reaction using 3 equivalents of 2a gave 3aa in
88% yield (Table 1, entry 2). The use of 4 equivalents or
2.1 equivalents of 2a to 1a slightly decreased the yield of
3aa (Table 1, entries 1 and 3). On the other hand, the use
of 1 or 2 equivalents of 1a to 2a gave 3aa in poor yields
(Table 1, entries 4 and 5).

We examined the scope of the cross-cyclotrimerization.6

All of the reactions listed in Table 2 gave a single prod-
uct.7 Methyl propiolate (1a) smoothly reacted with vari-
ous 1-alkynes (2b–h) to give 3 in high yields. The results
are summarized in Table 2. The reactions with 1-octyne
(2b) and 1-decyne (2c) gave the corresponding products
in high yields (Table 2, entries 1 and 2). Conjugated
enynes could be used for the reaction. The reaction with
phenylacetylene (2d) required a longer reaction time than
that with ethynylcyclohexene (2e). Teraryl 3ad was ob-

Table 1 Effect of Molar Ratio on the Reaction of 1a with 2aa

Entry 1a (mmol) 2a (mmol) Yield of 3aa (%)b

1 1 4 83

2 1 3 88

3 1 2.1 71

4 2 2 34c

5 4 2 14c

a A mixture of 1a, 2a, [Ir(cod)Cl]2 (0.02 mmol), FDPPE (0.04 mmol), 
and THF (5 mL) was stirred under refluxing THF for 2 h.
b Yields were isolated yields based on 1a.
c Yields were isolated yields based on 2a. 

CO2Me n-Bu CO2Me

n-Bu n-Bu

+

1a 2a 3aa

[Ir(cod)Cl]2/FDPPE

THF, reflux
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tained in 85% yield (Table 2, entry 3). This reaction is
useful for the synthesis of teraryl compounds. The reac-
tion of 1a with 2e gave 3ae in 72% yield (Table 2, entry
4). Methyl propiolate reacted smoothly with 2f, in which
the phenyl group is away from a triple bond, as in 2a or
2b, to give 3af in 88% yield (Table 2, entry 5). The reac-
tion with monoynes bearing a functional group, such as a
chloro or cyano group, gave 3ag and 3ah in high yields
(Table 2, entries 6 and 7). The reaction of ethynyl p-tolyl
sulfone (1b) with various 1-alkynes (2a,c,d,g) gave the
corresponding products in high yields (Table 2, entries 8–
11).

1,3,5-Trisubstituted benzenes have attracted considerable
attention as basic components in dendrimers.8 The central
core, the surface unit and the branching propagating unit
need this structure. The synthetic approach to 1,3,5-trisub-
stituted benzene via traditional electrophilic substitution
requires long synthetic sequences. For example, 3,5-di-
alkyl benzoate, which is the surface unit of dendrimer, can
be prepared in three steps from benzoate: meta-selective
bromination of benzoate, Sonogashira coupling with 1-
alkyne and hydrogenation of a carbon–carbon triple
bond.9 Our cyclotrimerization provides the most efficient
route to 3,5-disubstituted benzoate.

Aromatic aldehydes are a very useful class of products,
since the highly reactive aldehyde group can be readily

used in numerous carbon–carbon and carbon–nitrogen
bond-forming reactions as well as other transformations.
We first attempted to carefully reduce 3aa to 4aa with
DIBAL-H, but instead obtained a mixture of alcohol and
aldehyde 4aa. We then tried reduction–in situ manganese
dioxide alcohol oxidation (Table 3).7,10 Various 3,5-di-
substituted benzaldehydes 4 were obtained from 3,5-di-
substituted benzoates by this procedure without isolation
of the intermediate alcohols.

It is reasonable to consider that the reaction proceeds via
iridacyclopentadiene11 as an intermediate. Iridacyclopen-
tadiene can be produced as an intermediate either from
two molecules of 2 or from 1 and 2. To obtain additional
mechanistic information, we examined the cyclotrimer-
ization of 1-hexyne. The cyclotrimerization of 1-hexyne
under refluxing toluene in the presence of [Ir(cod)Cl]2 (Ir
atom 4 mol%) and FDPPE gave no benzene derivative.
The formation of an iridacyclopentadiene from two mole-
cules of 1-hexyne is unlikely. The regioselectivity of the
reaction can be explained by the selective formation of an
iridacyclopentadiene from 1 and 2. The reaction of 1 with
2 can give iridacyclopentadiene 5 and 6 (Scheme 1). The
second molecule of 2 reacts with 5 or 6 to give 3 as a final
product. Due to steric considerations, the more hindered
a-carbon of 5 and 6 smoothly couples with unsubstituted
alkyne carbon to give 3. The regioselectivity of the forma-
tion of metallacyclopentadiene has been reported. The re-
action of diphenylacetylene cobalt Cp complex with
methyl propiolate gave a cobaltacyclopentadiene com-
plex, in which a carbomethoxy group occupied the a-po-
sition.12 On this basis, an iridacyclopentadiene 5 is a more

Table 2 Reaction of 1 with 2a

Entry E R Time 
(h)

Prod. 
3

Yield 
(%)b

1 CO2Me (1a) n-Hex (2b) 16 3ab 96

2 CO2Me (1a) n-Oct (2c) 5 3ac 84

3c CO2Me (1a) Ph (2d) 14 3ad 85

4 CO2Me (1a) 1-cyclohexenyl (2e) 6 3ae 72

5c CO2Me (1a) Ph(CH2)3 (2f) 4 3af 88

6 CO2Me (1a) Cl(CH2)3 (2g) 5 3ag 82

7 CO2Me (1a) NC(CH2)3 (2h) 4 3ah 90

8 SO2p-Tol (1b) n-Bu (2a) 24 3ba 66

9 SO2p-Tol (1b) n-Oct (2c) 5 3bc 90

10 SO2p-Tol (1b) Ph (2d) 2 3bd 58

11 SO2p-Tol (1b) Cl(CH2)3 (2g) 5 3bg 95

a A mixture of 1 (1 mmol), 2 (3 mmol), [Ir(cod)Cl]2 (0.02 mmol), FD-
PPE (0.04 mmol), and THF (5 mL) was stirred under refluxing THF.
b Yields were isolated yields based on 1.
c Conditions: 1a (2 mmol), 2 (6 mmol), [Ir(cod)Cl]2 (0.04 mmol), FD-
PPE (0.08 mmol), THF (10 mL). 

E R
E

R R

+

1 2 3

[Ir(cod)Cl]2/FDPPE

THF, reflux

Table 3 Reduction–in Situ Manganese Dioxide Alcohol Oxidationa

Entry R Time (h) 
reduction

Time (h) 
oxidation

Product 
4

Yield 
(%)b

1 n-Bu (3aa) 4 30 4aa 88

2 n-Hex (3ab) 5 31 4ab 80

3 Ph (3ad) 4 41 4ad 83

4 1-cyclohexenyl (3ae) 8 24 4ae 68

5 Ph(CH2)3 (3af) 14 34 4af 85

6 Cl(CH2)3 (3ag) 6 31 4ag 82

7c NC(CH2)3 (3ah) 8 9 4ah 58

a A mixture of 3 (1 mmol), LiAlH4 (1.5 mmol), and Et2O (5 mL) was 
stirred at r.t. Then, a mixture of crude alcohol, MnO2 (10 mmol), and 
CH2Cl2 (5 mL) was stirred.
b Yields were isolated yields based on 3.
c A mixture of 3ah (1 mmol), DIBAL-H (3 mmol), and THF (5 mL) 
was stirred at –78 °C. Then, a mixture of crude alcohol, MnO2 (10 
mmol), and CH2Cl2 (5 mL) was stirred. 

CO2Me

R R
3

CH2OH

R R

CHO

R R
4

reduction MnO2

CH2Cl2, r.t.
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likely intermediate. [Ir(cod)Cl]2/FDPPE gave no cyclotri-
merization of two molecules of 1 with one molecule of 2.
The coordination of two molecules of methyl propiolate
(1a) or ethynyl p-tolyl sulfone (1b) to Ir(FDPPE)Cl spe-
cies gives an electron-deficient species. Since an electron-
rich species is more favorable for oxidative addition, the
oxidative cyclization of 1 and 2 to give an iridacyclopen-
tadiene is preferred over that of two molecules of 1 to give
an iridacyclopentadiene.

Scheme 1 Formation of iridacyclopentadiene

In conclusion, we have found chemo- and regioselective
cyclotrimerization of one molecule of 1 with two mole-
cules of 2. This reaction provides a practical synthesis of
3,5-disubstituted benzoates and 3,5-disubstituted phenyl
p-tolyl sulfone. These 1,3,5-trisubstituted benzenes have
various synthetic applications and should be useful build-
ing blocks. For example, such structural units are needed
in the synthesis of dendrimer. We are currently extending
the scope of the reaction and performing mechanistic
studies.
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