

Received 26 February 2019 Accepted 28 March 2019

Edited by G. P. A. Yap, University of Delaware, USA

Keywords: diosmium carbonyl cluster; asymmetric sawhorse complex; mixed carboxylate ligands; axial ligand substitution; crystal structure.

CCDC references: 1869129; 1869128; 1869127; 1869126; 1869125; 1869124; 1869305; 1869130

Supporting information: this article has supporting information at journals.iucr.org/c

© 2019 International Union of Crystallography

Asymmetric diosmium sawhorse complexes

Kylie M. Wilson,^a John W. Swartout,^a Henry A. Touchton,^a Erica N. Lambert,^a James E. Johnstone,^a Ashley K. Archambeau,^a David M. Marolf,^a Emily R. Mikeska,^a Vincent M. Lynch,^b Vladimir N. Nesterov,^c Eric W. Reinheimer,^d Gregory L. Powell^{a*} and Cynthia B. Powell^a

^aChemistry & Biochemistry, Abilene Christian University, ACU Box 28132, Abilene, Texas 79699, USA, ^bChemistry, University of Texas at Austin, 100 E. 24th St., Austin, Texas 78712, USA, ^cDepartment of Chemistry, University of North Texas, 1508 W. Mulberry St., Denton, TX 76201, USA, and ^dRigaku Americas, 9009 New Trails Dr., The Woodlands, Texas 77381, USA. *Correspondence e-mail: powellg@acu.edu

Three asymmetric diosmium(I) carbonyl sawhorse complexes have been prepared by microwave heating. One of these complexes is of the type $Os_2(\mu$ - O_2CR)(μ - O_2CR')(CO)₄ L_2 , with two different bridging carboxylate ligands, while the other two complexes are of the type $Os_2(\mu - O_2CR)_2(CO)_5L$, with one axial CO ligand and one axial phosphane ligand. The mixed carboxylate complex $Os_2(\mu$ -acetate)(μ -propionate)(CO)₄[P(p-tolyl)₃]₂, (1), was prepared by heating $Os_3(CO)_{12}$ with a mixture of acetic and propionic acids, isolating $Os_2(\mu$ acetate)(μ -propionate)(CO)₆, and then replacing two CO ligands with two phosphane ligands. This is the first example of an Os_2 sawhorse complex with two different carboxylate bridges. The syntheses of $Os_2(\mu$ -acetate)₂(CO)₅[P(p $tolyl_3$], (3), and Os₂(μ -propionate)₂(CO)₅[P(p-tolyl)₃], (6), involved the reaction of Os₃(CO)₁₂ with the appropriate carboxylic acid to initially produce $Os_2(\mu$ -carboxylate)₂(CO)₆, followed by treatment with refluxing tetrahydrofuran (THF) to form $Os_2(\mu$ -carboxylate)₂(CO)₅(THF), and finally addition of tri-*p*-tolylphosphane to replace the THF ligand with the $P(p-tolyl)_3$ ligand. Neutral complexes of the type $Os_2(\mu - O_2CR)_2(CO)_5L$ had not previously been subjected to X-ray crystallographic analysis. The more symmetrical disubstituted complexes, *i.e.* $Os_2(\mu$ -formate)_2(CO)_4[P(p-tolyl)_3]_2, (8), $Os_2(\mu$ -acetate)_2(CO)_4[P(p-tolyl)_3]_2, (8), Os_2(\mu-acetate)_2(CO)_4[P(p-tolyl)_3]_2, (8), Os_2(\mu)-acetate)_2(CO)_4[P(p-tolyl)_3]_2, (8), Os_2(\mu)-acetate)_2(CO)_4[P(p-tolyl)_3]_2, (8), Os_2(\mu)-acetate)_2(CO)_4[P(p-tolyl)_3]_2, (8), Os_2(\mu)-acetate)_2(CO)_4[P(p-tolyl)_3]_2, (8), Os_2(\mu)-acetate)_2(CO)_4[P(p-tolyl)_3]_2, (8), Os_2(\mu)-asetate)_2(CO)_4[P(p-tolyl)_3]_2, (8), Os_2(\mu)-asetate)_2(CO)_4[P(p-tolyl)_3]_2, (8), Os_2(\mu)-asetate)_2(CO)_4[P(p-tolyl)_3]_2, (8), Os_2(\mu)-asetate)_2(CO)_4[P(p-tolyl)_3]_2, (8), Os_2(\mu)-asetate)_2(CO)_4[P(p-tolyl)_3]_2, (8), Os_2(\mu)-asetate)_2(D)_2(\mu)-asetate)_2(\mu)-asetate)_2(\mu)-asetate)_2(\mu)-asetate)_2(\mu)-asetate)_2(\mu)-asetate)_2(\mu)-asetate)_2(\mu)-asetate)_2(\mu)-asetate)_2(\mu)-asetate)_2(\mu)-asetate)_2(\mu)-asetate)_2(\mu)-asetate)_2(\mu)-asetate)_2(\mu)-asetate)_2(\mu)-as $tolyl_3]_2$, (4), and $Os_2(\mu$ -propionate)₂(CO)₄[P(p-tolyl)₃]₂, (7), as well as the previously reported symmetrical unsubstituted complexes $Os_2(\mu$ -acetate)₂- $(CO)_6$, (2), and $Os_2(\mu$ -propionate)₂ $(CO)_6$, (5), were also prepared in order to examine the influence of axial ligand substitution on the Os–Os bond distance in these sawhorse molecules. Eight crystal structures have been determined and studied, namely μ -acetato- $1\kappa O: 2\kappa O' - \mu$ -propanoato- $1\kappa O: 2\kappa O'$ -bis[tris(4-methylphenyl)phosphane]- $1\kappa P, 2\kappa P'$ -bis(dicarbonylosmium)(Os - Os) dichloromethane monosolvate, $[Os_2(C_2H_3O_2)(C_3H_5O_2)(C_{21}H_{21}P)_2(CO)_4] \cdot CH_2Cl_2$, (1), bis(μ acetato- $1\kappa O: 2\kappa O'$)bis(tricarbonylosmium)(Os - Os), $[Os_2(C_2H_3O_2)_2(CO)_6]$, (2) (redetermined structure), bis(μ -acetato-1 κO :2 $\kappa O'$)pentacarbonyl-1 $\kappa^2 C$,2 $\kappa^3 C$ -[tris(4-methylphenyl)phosphane- $1\kappa P$]diosmium(Os - Os), [Os₂(C₂H₃O₂)₂(C₂₁H₂₁-P)(CO)₅], (3), bis(μ -acetato-1 κO :2 $\kappa O'$)bis[tris(4-methylphenyl)phosphane]-1 κP ,2 κP bis(dicarbonylosmium)(Os-Os) p-xylene sesquisolvate, [Os₂(C₂H₃O₂)₂(C₂₁H₂₁P)₂- $(CO)_4$]·1.5C₈H₁₀, (**4**), bis(μ -propanoato-1 κO :2 $\kappa O'$)bis(tricarbonylosmium)(Os - Os), $[Os_2(C_3H_5O_2)_2(CO)_6], (5), pentacarbonyl-1\kappa^2C_2\kappa^3C-bis(\mu-propanoato-1\kappa O:2\kappa O')-$ [tris(4-methylphenyl)phosphane- $1\kappa P$]diosmium(Os - Os), [Os₂(C₃H₅O₂)₂(C₂₁H₂₁P)- $(CO)_5$], (6), bis(μ -propanoato-1 κO :2 $\kappa O'$)bis[tris(4-methylphenyl)phosphane]- $1\kappa P, 2\kappa P$ -bis(dicarbonylosmium)(Os - Os) dichloromethane monosolvate, $[Os_2 - Os_2]$ $(C_{3}H_{5}O_{2})_{2}(C_{21}H_{21}P)_{2}(CO)_{4}]\cdot CH_{2}Cl_{2}$, (7), and bis(μ -formato-1 κO :2 $\kappa O'$)bis-[tris(4-methylphenyl)phosphane]- $1\kappa P_{,2\kappa}P$ -bis(dicarbonylosmium)(Os - Os), [Os₂- $(CHO_2)_2(C_{21}H_{21}P)_2(CO)_4], (8).$

1. Introduction

High-temperature reactions of $Os_3(CO)_{12}$ with carboxylic acids produce diosmium(I) sawhorse complexes, $Os_2(\mu$ -

 $O_2CR)_2(CO)_6$, with metal-metal single bonds (Crooks *et al.*, 1969). As shown in Scheme 1, the Os – Os vector forms the top of the sawhorse, while its legs consist of four equatorial CO ligands (Bullitt & Cotton, 1971). Two cis-carboxylate ligands are also bound in equatorial sites, and the remaining two CO ligands are positioned along the metal-metal axis. Johnson, Lewis, and co-workers first reported the preparation of these complexes in 1969, and they demonstrated that both axial CO ligands could be readily replaced by other ligands, including pyridine or tertiary phosphanes (Crooks et al., 1969). In 1987, Deeming and co-workers showed that it is possible to replace only one of the axial CO ligands to produce asymmetric compounds of the type $Os_2(\mu - O_2CR)_2(CO)_5L$ (Deeming et al., 1987). They refluxed a solution of $Os_2(\mu - O_2CR)_2(CO)_6$ in tetrahydrofuran (THF) to form $Os_2(\mu - O_2CR)_2(CO)_5(THF)$, and then replaced the THF ligand with a phosphane ligand (L). No crystal structures of neutral asymmetric Os_2 sawhorse complexes have been reported, but one anionic complex, $[Os_2(\mu - O_2CCH_3)_2Cl(CO)_5]^-$, containing one chloride ligand and one CO ligand in the axial positions, has been isolated and subjected to X-ray crystallographic analysis (Deeming et al., 1987).

The use of microwave heating to prepare diosmium(I) sawhorses was first described in 2013 (Pyper et al., 2013). A few new complexes were prepared and structurally characterized, and it was noted that metal-metal bond distances seemed to be correlated with the strength of the parent carboxylic acid. With increasing acid strength, the Os-Os bond distances get slightly longer. Since then, the microwaveassisted syntheses of several additional sawhorse complexes containing mono- and dicarboxylate ligands have been reported (Fikes et al., 2014; Chor et al., 2016; Gwini et al., 2017). The goals of the current project were twofold: (i) to synthesize a sawhorse complex of the type $Os_2(\mu - O_2CR)(\mu - O_2CR)$ O_2CR' (CO)₆ with two different bridging carboxylate ligands, and (ii) to perform single-crystal diffraction studies of at least one series of complexes with the formulae $Os_2(\mu - O_2CR)_2$ - $(CO)_6$, $Os_2(\mu - O_2CR)_2(CO)_5L$, and $Os_2(\mu - O_2CR)_2(CO)_4L_2$, in order to investigate the trend in Os-Os bond lengths. We now report that these goals have been met.

2. Experimental

2.1. Materials and methods

 $Os_3(CO)_{12}$ and tri-*p*-tolylphosphane were purchased from Strem, while the other reagents were purchased from Sigma– Aldrich. All chemicals were used as received, and all operations were performed without taking precautions to exclude air and moisture. $Os_2(\mu$ -acetate)_2(CO)_6, (2), $Os_2(\mu$ -propionate)_2(CO)_6, (5), and $Os_2(\mu$ -formate)_2(CO)_6, (10), were prepared according to published procedures (Pyper *et al.*, 2013). IR spectra were acquired using a Nicolet Avatar 320 FT–IR spectrometer with a CaF₂ solution cell. ¹H NMR spectra were recorded at 60 MHz on an Anasazi Eft-60 spectrometer. Preparative thin-layer chromatography (TLC) was carried out on Analtech silica gel 60 (0.50 mm) plates. Atlantic Microlab performed the elemental analyses.

2.2. Synthesis and crystallization

2.2.1. Synthesis of (1). $Os_3(CO)_{12}$ (100.5 mg, 0.111 mmol), acetic acid (2.5 ml), and propionic acid (3.0 ml) were placed in a 35 ml glass reaction vessel and sealed with a polytetra-fluoroethylene (PTFE)-lined cap. The mixture was stirred and irradiated in a CEM Discover-SP microwave reactor at 180 °C for 10 min. The excess acids were evaporated under a stream

of compressed air, and the residue was redissolved in dichloromethane. TLC with an eluent of 7:3:1 heptane–dichloromethane–toluene gave four colorless bands, which were collected under UV light. Band 1 ($R_{\rm F} = 0.87$) consisted of 10.9 mg (11.9% yield) of Os₄(μ -H)₄(CO)₁₂. IR ($\nu_{\rm CO}$, CHCl₃): 2085 (m), 2067 (ν s), 2020 (s), 1997 (w) cm⁻¹. Band 2 ($R_{\rm F} =$ 0.79) consisted of 29.4 mg (26.6% yield) of Os₂(μ -acetate)₂(CO)₆. IR ($\nu_{\rm CO}$, CHCl₃): 2100 (m), 2067 (ν s), 2015 (s), 1998 (ν s) cm⁻¹. Band 3 ($R_{\rm F} = 0.74$) consisted of 38.7 mg (34.2% yield) of Os₂(μ -acetate)(μ -propionate)(CO)₆. IR ($\nu_{\rm CO}$, CHCl₃): 2100 (m), 2066 (ν s), 2014 (s), 1997 (ν s) cm⁻¹. Band 4 ($R_{\rm F} = 0.67$) consisted of 22.9 mg (19.9% yield) of

(1) R1 = Me, R2 = Et, $R3/R4 = P(p-tolyl)_3$, $X = CH_2Cl_2$ (2) R1/R2 = Me, R3/R4 = CO(3) R1/R2 = Me, $R3 = P(p-tolyl)_3$, R4 = CO(4) R1/R2 = Me, $R3/R4 = P(p-tolyl)_3$, $X = 1.5C_4H_{10}$ (5) R1/R2 = Et, R3/R4 = CO(6) R1/R2 = Et, $R3 = P(p-tolyl)_3$, R4 = CO(7) R1/R2 = Et, $R3/R4 = P(p-tolyl)_3$, $X = CH_2Cl_2$ (8) R1/R2 = H, $R3/R4 = P(p-tolyl)_3$

Scheme 2

 $Os_2(\mu$ -propionate)₂(CO)₆. IR (ν_{CO} , CHCl₃): 2100 (*m*), 2066 (*vs*), 2014 (*s*), 1997 (*vs*) cm⁻¹. The residue from band 3 was dissolved in 1,2-dichloroethane (25 ml) and acetonitrile

Table 1Experimental details.

H-atom parameters were constrained.

	(1)	(2)	(3)	(4)
Crystal data				
Chemical formula	$[Os_2(C_2H_3O_2)(C_3H_5O_2)-(C_{21}H_{21}P)_2(CO)_4]$ CH ₂ Cl ₂	$[Os_2(C_2H_3O_2)_2(CO)_6]$	$\begin{array}{c} [\mathrm{Os}_2(\mathrm{C}_2\mathrm{H}_3\mathrm{O}_2)_2(\mathrm{C}_{21}\mathrm{H}_{21}\mathrm{P})\text{-}\\ (\mathrm{CO})_5] \end{array}$	$\begin{array}{c} [Os_2(C_2H_3O_2)_2(C_{21}H_{21}P)_2 - \\ (CO)_4] \cdot 1.5C_8H_{10} \end{array}$
Mr	1318.17	666.55	942.88	1378.46
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/n$	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
a, b, c (Å)	18.5007 (4), 18.5396 (4), 14.8090 (3)	7.6949 (5), 14.3612 (10), 13.8623 (9)	10.452 (4), 11.229 (4), 13.045 (5)	12.81225 (16), 14.8455 (2), 16.6818 (2)
α, β, γ (°)	90, 91.9976 (17), 90	90, 105.202 (1), 90	82.813 (6), 89.157 (8), 89.457 (9)	98.1785 (11), 101.7904 (11), 113.3846 (14)
$V(A^3)$ Z	5076.35 (18) 4	1478.29 (17) 4	1518.8 (10) 2	2761.37 (7) 2
Radiation type	Cu Ka	Μο Κα	Μο Κα	Cu Ka
$\mu \ (\mathrm{mm}^{-1})$	11.30	17.22	8.46	9.55
Crystal size (mm)	$0.22 \times 0.06 \times 0.03$	$0.19 \times 0.12 \times 0.07$	$0.27 \times 0.14 \times 0.12$	$0.11 \times 0.07 \times 0.02$
Data collection				
Diffractometer	Rigaku SuperNova AtlasS2 CCD	Bruker APEXII CCD	Rigaku SCX-Mini Mercury 2+ CCD	Rigaku SuperNova AtlasS2 CCD
Absorption correction	Gaussian (CrysAlis PRO; Rigaku OD, 2017)	Multi-scan (SADABS; Bruker, 2008)	Multi-scan (<i>ABSCOR</i> ; Higashi, 2001)	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2017)
T_{\min}, T_{\max}	0.428, 1.000	0.295, 0.747	0.605, 1.00	0.626, 1.000
No. of measured, indepen- dent and observed $[I > 2\sigma(I)]$ reflections	20129, 9265, 8475	14002, 3252, 3003	32350, 6915, 6534	49090, 9768, 8691
R _{int}	0.024	0.046	0.032	0.066
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.602	0.641	0.648	0.595
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.023, 0.055, 1.00	0.023, 0.055, 1.09	0.020, 0.045, 1.02	0.027, 0.068, 1.05
No. of reflections	9265	3252	6915	9768
No. of parameters	632	202	385	678
No. of restraints	112	0	0	0
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.16, -1.05	1.80, -1.33	2.80, -1.05	2.09, -1.11
	(5)	(6)	(7)	(8)
Crystal data				
Chemical formula	$[Os_2(C_3H_5O_2)_2(CO)_6]$	$\begin{array}{c} [\mathrm{Os}_2(\mathrm{C}_3\mathrm{H}_5\mathrm{O}_2)_2(\mathrm{C}_{21}\mathrm{H}_{21}\mathrm{P})\text{-}\\ (\mathrm{CO})_5] \end{array}$	$\begin{array}{c} [Os_2(C_3H_5O_2)_2(C_{21}H_{21}P)_2 \text{-} \\ (CO)_4] \cdot CH_2Cl_2 \end{array}$	$\begin{array}{c} [Os_2(CHO_2)_2(C_{21}H_{21}P)_2\text{-} \\ (CO)_4] \end{array}$
M _r	694.60	970.94	1332.20	1191.17
Crystal system, space group	Orthorhombic, Pbca	Triclinic, P1	Monoclinic, $P2_1/c$	Triclinic, P1
Temperature (K)	100	100 10,0052 (2) 11,6630 (3)	100	200
u, v, c (A)	21.7339 (2)	13.7536 (3)	14.9214 (6)	20.3790 (7)
$lpha,eta,\gamma(^\circ)$	90, 90, 90	88.6185 (19), 86.7627 (18), 86.9563 (19)	90, 91.806 (2), 90	104.393 (1), 91.009 (1), 98.993 (1)
$V(Å^3)$ Z	3305.08 (6) 8	1614.12 (6) 2	5168.8 (3) 4	2264.27 (14) 2
Radiation type	Cu Kα	Cu Kα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	29.08	15.55	5.13	5.73
Crystal size (mm)	$0.08 \times 0.06 \times 0.04$	$0.21 \times 0.14 \times 0.06$	$0.28\times0.12\times0.09$	$0.15\times0.11\times0.04$
Data collection				
Diffractometer	Rigaku SuperNova AtlasS2 CCD	Rigaku SuperNova AtlasS2 CCD	Rigaku SCX-Mini Mercury 2+ CCD	Bruker APEXII CCD
Absorption correction	Multi-scan CrysAlis PRO (Rigaku OD, 2015)	Multi-scan CrysAlis PRO (Rigaku OD, 2015)	Multi-scan (ABSCOR; Higashi, 2001)	Multi-scan (SADABS; Bruker, 2008)
T_{\min}, T_{\max}	0.637, 1.000	0.389, 1.000	0.673, 1.00	0.538, 0.746
No. of measured, indepen- dent and observed $[I > 2\sigma(I)]$ reflections	16571, 3300, 3196	30757, 6461, 6196	54214, 11794, 9639	30910, 9960, 8554
R _{int}	0.027	0.038	0.060	0.058
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.622	0.622	0.649	0.641
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.018, 0.039, 1.03	0.019, 0.046, 1.08	0.036, 0.071, 1.07	0.030, 0.082, 1.06
No. of reflections	3300	6461	11794	9960

research papers

Table 1 (continued)					
	(5)	(6)	(7)	(8)	
No. of parameters	219	402	624	548	
No. of restraints	0	0	20	0	
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.55, -0.93	0.55, -1.21	1.39, -1.32	1.19, -1.09	

Computer programs: CrysAlis PRO (Rigaku OD, 2015, 2017), APEX2 (Bruker, 2009), CrystalClear (Rigaku, 2008), SAINT (Bruker, 2009), SHELXT (Sheldrick, 2015a), SIR97 (Altomare et al., 1999), SHELXL2018 (Sheldrick, 2015b), SHELXL2013 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), and XP in SHELXTL/PC (Sheldrick, 1990).

(5 ml). Tri-p-tolylphosphane (0.0260 g, 0.0854 mmol) was added and the mixture was refluxed for 50 min. The solvent was removed and the residue was dissolved in CH₂Cl₂. TLC with an eluent of 3:2 hexanes-dichloromethane gave two major bands. Band 1 consisted of 9.7 mg of unreacted $Os_2(\mu$ acetate)(μ -propionate)(CO)₆. Band 2 consisted of 36.8 mg of (1) [18.0% yield based on $Os_3(CO)_{12}$]. IR (ν_{CO} , CHCl₃): 2011 (vs), 1967 (m), 1934 (vs) cm⁻¹. ¹H NMR (CDCl₃): δ 7.30 (m, 24H), 2.35 (s, 18H), 1.88 (q, 2H), 1.59 (s, 3H), 0.58 (t, 3H). Analysis calculated (%) for $C_{51}H_{50}O_8Os_2P_2$: C 49.67, H 4.09; found: C 49.78, H 4.04. Single crystals suitable for X-ray diffraction were obtained by slow diffusion of *n*-hexane into a dichloromethane solution at ambient temperature.

2.2.2. Synthesis of (3). A mixture of $Os_3(CO)_{12}$ (80.2 mg, 0.0884 mmol) and acetic acid (6 ml) was stirred and irradiated in a microwave reactor at 180 °C for 10 min. The excess acid was evaporated under a stream of air and the residue was redissolved in tetrahydrofuran (25 ml). This solution was refluxed for 2.5 h with vigorous stirring and then cooled to 0 °C in an ice bath. A second solution consisting of tri-ptolylphosphane (30.4 mg, 0.0999 mmol) dissolved in THF (20 ml) was added dropwise over a period of 1 h to the solution in the ice bath. The resulting mixture was allowed to warm slowly to room temperature and the solvent was then removed by rotary evaporation. The residue was dissolved in CH₂Cl₂ and subjected to TLC with an eluent of 1:1 hexanes-CH₂Cl₂. Four bands were collected. Band 1 ($R_{\rm F} = 0.90$) consisted of 3.7 mg (5.1% yield) of $Os_4(\mu-H)_4(CO)_{12}$. Band 2 $(R_{\rm F} = 0.54)$ consisted of 14.2 mg (16.1% yield) of Os₂(μ acetate)₂(CO)₆, (2). Band 3 ($R_{\rm F} = 0.43$) consisted of 10.8 mg (6.7% yield) of $Os_2(\mu$ -acetate)₂(CO)₄[P(*p*-tolyl)₃]₂, (4). IR $(v_{CO}, CHCl_3)$: 2011 (vs), 1967 (m), 1935 (vs) cm⁻¹. Band 4 $(R_{\rm F} = 0.35)$ consisted of 34.3 mg (27.4% yield) of Os₂(μ acetate)₂(CO)₅[P(*p*-tolyl)₃], (**3**). IR (*v*_{CO}, CHCl₃): 2072 (*vs*), 2001 (vs), 1977 (s), 1923 (m) cm⁻¹. ¹H NMR (CDCl₃): δ 7.39 (m, 12H), 2.40 (m, 9H), 1.54 (s, 6H). Analysis calculated (%) for C₃₀H₂₇O₉Os₂P: C 38.21, H 2.89; found: C 38.57, H 2.99. Single crystals were obtained by slow diffusion of *n*-hexane into a dichloromethane solution at ambient temperature.

2.2.3. Synthesis of (4). A mixture of $Os_3(CO)_{12}$ (49.4 mg, 0.0545 mmol) and acetic acid (7 ml) was stirred and irradiated in a microwave reactor at 185 °C for 10 min. The excess acid was evaporated under a stream of air and the residue was redissolved in a mixture of chloroform (25 ml) and acetonitrile (3 ml). Tri-p-tolylphosphane (81.7 mg, 0.268 mmol) was added and the solution refluxed for 55 min. The solvent was removed and the residue dissolved in CH2Cl2. Three bands were collected after TLC with an eluent of 1.25:1 hexanes-CH₂Cl₂.

The first and second bands contained 2.7 mg of $Os_4(\mu-H)_4$ - $(CO)_{12}$ and 7.1 mg of (2), respectively. Band 3 consisted of 54.0 mg (54.1% yield) of (4). IR (v_{CO}, CHCl₃): 2011 (vs), 1967 (w), 1934 (vs) cm⁻¹. ¹H NMR (CDCl₃): δ 7.35 (m, 24H), 2.36 (m, 18H), 1.60 (t, 6H). Analysis calculated (%) for C₅₀H₄₈-O₈Os₂P₂: C 49.25, H 3.97; found: C 50.02, H 4.08. Single crystals were obtained by slow evaporation of a p-xylene solution at ambient temperature.

2.2.4. Synthesis of (6). The procedure described above for the synthesis of (3) was employed. $Os_3(CO)_{12}$ (80.6 mg, 0.0889 mmol), propionic acid (6.5 ml), and tri-p-tolylphosphane (39.3 mg, 0.129 mmol) were used. TLC with an eluent of 1:1 hexanes-CH2Cl2 produced three bands. Band 1 consisted of 13.1 mg (17.8% yield) of $Os_4(\mu-H)_4(CO)_{12}$. Band 2 consisted of 3.6 mg (2.2% yield) of $Os_2(\mu$ -propionate)₂- $(CO)_4[P(p-tolyl)_3]_2$, (7). Band 3 consisted of 57.8 mg (44.6%) yield) of Os₂(μ -propionate)₂(CO)₅[P(p-tolyl)₃], (6). IR (ν_{CO} , CHCl₃): 2072 (*vs*), 2002 (*vs*), 1976 (*s*), 1923 (*m*) cm⁻¹. ¹H NMR (CDCl₃): § 7.40 (m, 12H), 2.39 (m, 9H), 2.05 (q, 4H), 0.86 (t, 6H). Analysis calculated (%) for C₃₂H₃₁O₉Os₂P: C 39.58, H 3.22; found: C 39.97, H 3.36. Single crystals were obtained by slow diffusion of *n*-hexane into a dichloromethane solution at ambient temperature.

2.2.5. Synthesis of (7). The procedure described above for the synthesis of (4) was employed. $Os_3(CO)_{12}$ (78.4 mg, 0.0865 mmol), propionic acid (8 ml), and tri-p-tolylphosphane (123.7 mg, 0.406 mmol) were used. Two TLC bands were collected. Band 1 consisted of 7.4 mg of $Os_4(\mu-H)_4(CO)_{12}$. Band 2 consisted of 89.9 mg (55.5% yield) of $Os_2(\mu$ -propionate)₂(CO)₄[P(p-tolyl)₃]₂, (7). IR (v_{CO}, CHCl₃): 2011 (vs), 1967 (w), 1934 (vs) cm⁻¹. ¹H NMR (CDCl₃): δ 7.36 (m, 24H), 2.36 (m, 18H), 1.83 (q, 4H), 0.59 (t, 6H). Analysis calculated (%) for C₅₂H₅₂O₈Os₂P₂: C 50.07, H 4.20; found: C 50.02, H 4.18. Single crystals were obtained by slow diffusion of n-hexane into a dichloromethane solution at ambient temperature.

2.2.6. Synthesis of (8). $Os_2(\mu$ -formate)₂(CO)₆ (59.6 mg, 0.0933 mmol) and tri-p-tolylphosphane (142 mg, 0.467 mmol) were dissolved in a mixture of chloroform (25 ml) and acetonitrile (3 ml). The solution was refluxed for 1 h. The solvent was removed and the residue was dissolved in CH₂Cl₂. TLC with an eluent of 1:1 hexanes-CH₂Cl₂ produced one major band, which consisted of 73.8 mg (66.4% yield) of $Os_2(\mu$ -formate)₂(CO)₄[P(*p*-tolyl)₃]₂, (8). IR (ν_{CO} , CHCl₃): 2012 (vs), 1969 (w), 1938 (vs) cm⁻¹. Analysis calculated (%) for C₄₈H₄₄O₈Os₂P₂: C 48.40, H 3.72; found: C 47.36, H 3.65%. Single crystals were obtained by slow evaporation of a concentrated dichloromethane solution at ambient temperature.

2.2.7. Crystallization of (5). Single crystals of (2) were obtained by slow diffusion of *n*-hexane into a dichloromethane solution at ambient temperature. Single crystals of (5) were obtained by slow diffusion of *n*-pentane into a chloroform solution at ambient temperature.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed in calculated positions and refined using a riding model. For (1), both bridging carboxylate positions encompassed acetate and propionate moieties disordered in 50:50 ratios with respect to one another. Bond distances between the carboxylate C atoms and the methyl and ethyl groups were restrained to idealized values, and the anisotropic displacement parameters of the acetate and propionate C and O atoms were restrained. For (7), the methyl group of one propionate ligand is disordered so that there are two alternative orientations for that terminal C atom (C45 and C45A). The occupancy ratio refined to 0.726 (13):0.274 (13). The geometry of the two components was restrained to be equivalent, atoms C45 and C45A were restrained to approximate isotropic behavior, and similar anisotropic displacement parameters were used for both atoms.

3. Results and discussion

3.1. Synthesis and spectroscopy

A combination of $Os_3(CO)_{12}$, acetic acid, and propionic acid was used to successfully synthesize the first example of a mixed carboxylate sawhorse complex, namely $Os_2(\mu$ -acetate)- $(\mu$ -propionate)(CO)_6, which was sandwiched between $Os_2(\mu$ acetate)_2(CO)_6 and $Os_2(\mu$ -propionate)_2(CO)_6 on the preparative TLC plates. We have observed that the latter two compounds decompose slowly over a period of several weeks. However, upon replacing the two axial CO ligands in these compounds with phosphane ligands, the resulting complexes are stable for months or years. Thus, we chose to immediately

Figure 2

The structure of the core portion of complex (1), showing the 50:50 disorder of the bridging acetate and propionate ligands. The phosphane ligands have been omitted for clarity.

convert the asymmetric product $Os_2(\mu$ -acetate)(μ -propionate)(CO)₆ into $Os_2(\mu$ -acetate)(μ -propionate)(CO)₄[P(*p*-tolyl)₃]₂, (**1**), before conducting further studies. As expected, the overall yield was low at 18%. Two three-membered series of $Os_2(\mu$ -O₂CR)₂(CO)_{6-n}L_n complexes, in which L is tri-*p*-tolylphosphane and n = 0, 1, or 2, were prepared by similar methods. One such series consists of complexes (**2**), (**3**), and (**4**), for which R = Me (acetate) and n = 0, 1, and 2, respectively. The other series consists of complexes (**5**), (**6**), and (**7**), for which R = Et (propionate) and n = 0, 1, and 2, respectively. The yields for complexes (**2**), (**5**), and (**10**) with no phosphane ligands (n = 0) were 90% or greater (Pyper *et al.*, 2013). The yields for the three disubstituted complexes (**4**), (**7**), and (**8**), with n = 2, were between 54 and 66%. The yields for the two

Figure 1

The molecular structure of the metal complex in (1). H atoms and solvent molecules have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

Table 2

Carbonyl stretching frequencies of the diosmium sawhorse complexes (1)–(10) of the type $Os_2(O_2CR)_2(CO)_{6-n}L_n$ for which n = 0, 1, or 2, and L is tri-*p*-tolylphosphane.

Complex	$\nu_{\rm CO}~({\rm cm}^{-1})$
$Os_2(acetate)_2(CO)_6$, (2)	2100 (m), 2067 (vs),
	2015 (s), 1998 (vs)
$Os_2(propionate)_2(CO)_6$, (5)	2099 (m), 2066 (vs),
	2014 (s), 1997 (vs)
$Os_2(benzoate)_2(CO)_6$, (9)	2099(m), 2066(vs),
	2015 (s), 1998 (vs)
$Os_2(formate)_2(CO)_6$, (10)	2104 (m), 2071 (vs),
2()2()0()	2021 (s), 2004 (vs)
$Os_2(acetate)_2(CO)_5[P(p-tolyl)_3], (3)$	2072 (vs), 2001 (vs),
2()2()5L (5)5B)()	1977 (s), 1923 (m)
$Os_2(propionate)_2(CO)_5[P(p-tolyl)_3], (6)$	2072 (vs), 2002 (vs),
$-2(\mathbf{r} + \mathbf{r} + \cdots + 2(1 - 1))(\mathbf{r} + 1)(1)$	1976 (s), 1923 (m)
$Os_2(acetate)(propionate)(CO)_4[P(p-tolyl)_2]_2, (1)$	2011 (vs), 1967 (m),
$(1 - 1)^{-1} (1 $	1934 (vs)
$Os_2(acetate)_2(CO)_4[P(p-tolyl)_3]_2$, (4)	2011 (vs), 1967 (m),
0-2()2()4[- (F)-)3]2; (-)	1934 (vs)
$Os_2(propionate)_2(CO)_4[P(n-tolyl)_2]_2$ (7)	2011 (vs) 1967 (m)
052(propromate)2(00)4[r (p tor)7)3]2; (r)	1934 (vs)
$Os_2(formate)_2(CO)_2[P(p-to[v])_2]_2$ (8)	2017 (vs) 1972 (m)
$(0)_{2(10111110)_{2}(100)_{4[1}}, (0)_{3[2]}, (0)$	1941 (vs)
	1) 11 (15)

asymmetric complexes (3) and (6), with n = 1, were clearly the lowest at 27 and 45%, respectively.

All of the complexes display characteristic IR carbonyl stretching frequencies in the range 1900–2110 cm⁻¹. The v_{CO} frequencies of complexes (1)–(10) are reported in Table 2. The degree of phosphane substitution is easily determined by examination of the IR spectra. Complexes with no phosphane ligands (n = 0) display four absorption maxima with an m/vs/s/vs pattern. Complexes with one phosphane ligand (n = 1) show four absorption maxima, but the pattern is vs/vs/s/m. Complexes with two phosphane ligands (n = 2) display only

Figure 4 The molecular structure of (**3**), with displacement ellipsoids drawn at the 50% probability level.

Figure 5

The molecular structure of (4), with displacement ellipsoids drawn at the 50% probability level. H atoms and solvent molecules have been omitted for clarity.

three absorption maxima with a vs/m/vs pattern. The v_{CO} frequencies for the formate complexes are higher than those containing the other carboxylate ligands. This is most likely due to the fact that formate is the weakest base among these ligands, which results in a lesser amount of Os-CO π -backbonding and comparatively stronger C-O bonds in the formate complexes.

3.2. X-ray crystallography

X-ray data were collected at 100 K for five of the new complexes [*i.e.* (1), (3), (5), (6), and (7)], at 200 K for two [*i.e.* (2) and (8)], and at 293 K for complex (4). The data collection temperature for previously reported complexes (9) and (10) was 100 K. Using the same temperature for all of the diffraction experiments would have been ideal for the purposes of comparing the structural details, however, the bond lengths and angles associated with the Os atoms at the

The molecular structure of (5), with displacement ellipsoids drawn at the 50% probability level.

Table 3	}						
Os-Os	bond	lengths	(Å)	for	eight	$Os_2(O_2CR)_2(CO)_{6-n}L_n$	sawhorse
complex	tes (L i	is tri- <i>p</i> -to	olylpł	iosp	hane).		

Carboxylate group	n = 0	<i>n</i> = 1	<i>n</i> = 2
Formate	2.7545 (2)	_	2.7388 (2)
Acetate	2.7419 (3)	2.7624 (8)	2.7534 (2)
Propionate	2.7523 (2)	2.7479 (2)	2.7677 (3)

core of these complexes are unlikely to vary significantly over this temperature range.

The complexes reported herein all have the typical sawhorse molecular geometry, with two cis-carboxylate ligands, four equatorial CO ligands, two axial CO or phosphane ligands, and a metal-metal single bond. The molecular structure of the metal complex in (1) is illustrated in Fig. 1. Not surprisingly, there is disorder associated with the methyl group of the acetate ligand and the ethyl group of the propionate ligand such that each appears at both carboxylate positions 50% of the time. The disordered ligands are shown in Fig. 2. The molecular geometries of (2), (3), and (4) are illustrated in Figs. 3, 4, and 5, respectively. A crystal structure of (2) was reported in 1971 (Bullitt & Cotton, 1971), but we chose to repeat this analysis in order to obtain more precise structural details. The molecular structures of (5), (6), and (7) are illustrated in Figs. 6, 7, and 8, respectively. The complexes $Os_2(\mu$ formate)₂(CO)₆, (10), and Os₂(μ -formate)₂(CO)₄[P(p-tolyl)₃]₂, (8), were also included in this study. The crystal structure of (10) was reported several years ago (Pyper et al., 2013). The molecular structure of (8) is illustrated in Fig. 9.

We assumed that the Os—Os bond distances in each series would steadily change with an increasing number of phosphane ligands. Clearly, that was not the case. The Os—Os bond distances for (2)–(8) and Os₂(μ -formate)₂(CO)₆ are listed in Table 3. The values range from 2.7388 (2) Å for (8) to 2.7677 (3) Å for (7). Replacing one axial carbonyl ligand with one phosphane ligand resulted in an increase in the Os—Os

Figure 8

The molecular structure of (7), with displacement ellipsoids drawn at the 50% probability level. Tolyl H atoms and solvent molecules have been omitted for clarity.

bond distance for the acetate series [complexes (2) and (3)], but a decrease in the Os-Os distance for the propionate series [complexes (5) and (6)]. Replacing a second axial CO ligand with another phosphane ligand resulted in a decrease in the Os-Os bond distance for the acetate series [(3) and (4)], but an increase in the Os-Os distance for the propionate series [(6) and (7)]. There was an overall increase in the Os-Os distance in both the acetate and propionate complexes when two CO ligands were replaced by two phosphane ligands, but this distance decreased in the formate complexes. No logical pattern could be deduced.

As mentioned above, it was suggested previously that the Os–Os bond distances in diosmium(I) carbonyl sawhorse complexes are correlated with the strength of the parent carboxylic acid (Pyper *et al.*, 2013). Metal–metal distances became slightly longer as the acid strength increased (or as the strength of the conjugate base decreased). At that time, however, only three such sawhorse complexes had been subjected to X-ray crystallographic analysis, namely $Os_2(\mu$ -acetate)₂(CO)₆, (**2**), $Os_2(\mu$ -benzoate)₂(CO)₆, (**9**), and $Os_2(\mu$ -formate)₂(CO)₆, (**10**). In addition, the 1971 crystal structure of

Figure 7

The molecular structure of (6), with displacement ellipsoids drawn at the 50% probability level. All tolyl H atoms have been omitted for clarity.

Figure 9 The molecular structure of (

The molecular structure of (8), with displacement ellipsoids drawn at the 50% probability level. All tolyl H atoms have been omitted for clarity.

Table 4 Os—Os bond lengths (Å) and parent acid pK_a values for four Os₂(O₂CR)₂(CO)₆ complexes.

Compound	Acid p $K_{\rm a}$	Os-Os
$Os_2(formate)_2(CO)_6$, (10)	3.75	2.7545 (2)
$Os_2(benzoate)_2(CO)_6$, (9A)	4.19	2.7495 (3)
$Os_2(benzoate)_2(CO)_6$, (9B)	4.19	2.7470 (3)
$Os_2(acetate)_2(CO)_6$, (2)	4.76	2.7419 (3)
$Os_2(propionate)_2(CO)_6$, (5)	4.88	2.7523 (2)

the acetate complex was somewhat rudimentary by present day standards. After obtaining the crystal structure of $Os_2(\mu$ propionate)₂(CO)₆ and redetermining the structure of $Os_2(\mu$ acetate)₂(CO)₆, we can now report that there is no apparent correlation between the Os-Os bond distance and the basicity of the carboxylate ligands. Table 4 lists the Os-Os bond distance along with the parent acid pK_a for the Os₂(μ -O₂CR)₂(CO)₆ complexes, in which R is H, Me, Et, and Ph. The two complexes containing the carboxylate groups with the highest and lowest basicity, *i.e.* propionate and formate, respectively, have the two longest Os-Os bonds, while the acetate complex (with the second highest carboxylate basicity) has the shortest Os-Os bond. Neither the basicity of the carboxylate ligands nor the number of phosphane ligands have a predictable influence on the metal-metal bond length.

There are two independent molecules per unit cell in the previously reported crystal structure of $Os_2(\mu$ -benzoate)₂-(CO)₆, (9) (Pyper *et al.*, 2013). One of these molecules, *i.e* (9A), has an Os-Os bond distance of 2.7495 (3) Å, while the other, *i.e* (9B), has an Os-Os bond distance of 2.7470 (3) Å. These molecules also have significantly different average C_{eq} -Os-Os- C_{eq} (where C_{eq} is an equatorial carbonyl C atom) torsion angles. The longer Os-Os bond length is associated with the molecule that has the smaller torsion angle. We wondered whether this might be a general trend, so we plotted Os-Os bond distance *versus* the average C_{eq} -Os- $Os-C_{eq}$ torsion angle for the complexes in this study. We

Figure 10

Plots of average C_{eq} —Os—Os— C_{eq} torsion angle *versus* Os—Os bond distance for (**A**) five Os₂(O₂CR)₂(CO)₆ sawhorse molecules and (**B**) six Os₂(O₂CR)₂(CO)_{6-n}L_n sawhorse molecules. Data points are numbered according to the list of complexes in Table 5. Error bars represent twice the s.u. values for both distances and angles.

Table 5

Os—Os bond lengths (Å) and average C_{eq} —Os—Os—Os— C_{eq} torsion angles (°) for 11 Os₂(O₂CR)₂(CO)_{6-n}L_n sawhorse molecules (*L* is tri-*p*-tolylphosphane).

Compound	Bond length	Average torsion angle
Without phosphane ligands		
$Os_2(acetate)_2(CO)_6$, (2)	2.7419 (3)	9.2 (8)
$Os_2(propionate)_2(CO)_6$, (5)	2.7523 (2)	4.0 (5)
$Os_2(benzoate)_2(CO)_6$, (9A)	2.7495 (3)	1.2 (9)
$Os_2(benzoate)_2(CO)_6$, (9B)	2.7470 (3)	10.8 (6)
$Os_2(formate)_2(CO)_6$, (10)	2.7545 (2)	2.9 (3)
With phosphane ligands		
$Os_2(acetate)(propionate)(CO)_4[P(p-tolyl)_3]_2, (1)$	2.7623 (2)	6.3 (6)
$Os_2(acetate)_2(CO)_5[P(p-tolyl)_3], (3)$	2.7624 (8)	9.2 (9)
$Os_2(acetate)_2(CO)_4[P(p-tolyl)_3]_2, (4)$	2.7534 (2)	13 (3)
$Os_2(propionate)_2(CO)_5[P(p-tolyl)_3], (6)$	2.7479 (2)	19.1 (3)
$Os_2(propionate)_2(CO)_4[P(p-tolyl)_3]_2, (7)$	2.7677 (3)	6.8 (4)
$Os_2(formate)_2(CO)_4[P(p-tolyl)_3]_2, (8)$	2.7388 (2)	21.7 (5)

assumed that crystal packing forces are primarily responsible for the torsional twists in these complexes, and we thought the presence of relatively bulky phosphane ligands would have a significantly different effect on the arrangement of molecules in the crystal lattice *versus* the absence of such ligands. Thus, we divided the complexes into two categories: (i) those containing one or two axial phosphane ligands and (ii) those with only CO ligands in axial positions. The data are listed in Table 5. A plot of average C_{eq} —Os—Os— C_{eq} torsion angle *versus* Os—Os bond length with two different trend lines, one for the five molecules with no phosphane ligands and another for the six molecules with phosphane ligands, is given in Fig. 10. For both series, there is a steady decrease in the Os—Os bond length as the average torsion angle increases. The slopes of the two trend lines differ by less than 5%.

4. Conclusions

Three new asymmetric diosmium(I) carbonyl sawhorse complexes were prepared and structurally characterized, including the first sawhorse complex that contains two different carboxylate ligands and the first two sawhorse complexes containing only one tri-p-tolylphosphane ligand. A total of eight crystal structures of Os2 sawhorse complexes have been reported herein, and the Os-Os bond distances in these complexes range from 2.7419 (3) to 2.7677 (3) Å. Several factors may influence the length of the Os–Os single bonds, but it appears as if torsional twisting around the Os-Os axis has a more significant effect than the basicity of the carboxylate ligands or the number of axial phosphane ligands. In general, as the average C_{eq} -Os-Os- C_{eq} torsion angle increases, the Os-Os bond distance decreases. More structural data involving additional sawhorse complexes is needed to confirm this trend, but it is noteworthy that the complex $Os_2(\mu$ -pivalate)₂(CO)₄(PPh₃)₂ contains the largest average C_{eq} -Os-Os- C_{eq} torsion angle (25°) and the shortest OsOs bond length (2.7198 Å) of any Os_2 sawhorse complex to date (Chor *et al.*, 2016).

Acknowledgements

We are grateful to Dr Joseph Reibenspies of Texas A&M University and Professor Michael Richmond of the University of North Texas for helpful discussions.

Funding information

Funding for this research was provided by: The Welch Foundation (grant No. R-0021) and the ACU Office of Undergraduate Research.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. **32**, 115–119.
- Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.
- Bullitt, J. G. & Cotton, F. A. (1971). Inorg. Chim. Acta, 5, 406-412.

- Chor, B. Y., Ganguly, R. & Leong, W. K. (2016). J. Organomet. Chem. 804, 114–117.
- Crooks, G. R., Johnson, B. F. G., Lewis, J., Williams, I. G. & Gamlen, G. (1969). J. Chem. Soc. A, pp. 2761–2766.
- Deeming, A. J., Randle, N. P., Hursthouse, M. B. & Short, R. L. (1987). J. Chem. Soc. Dalton Trans. pp. 2473–2477.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fikes, A. G., Gwini, N., Yoon, S. H., Nesterov, V. N. & Powell, G. L. (2014). J. Organomet. Chem. 772-773, 188-191.
- Gwini, N., Marolf, D. M., Yoon, S. H., Fikes, A. G., Dugan, A. C., Powell, G. L., Lynch, V. M., Nesterov, V. N. & McCandless, G. T. (2017). J. Organomet. Chem. 849–850, 324–331.
- Higashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Pyper, K. J., Jung, J. Y., Newton, B. S., Nesterov, V. N. & Powell, G. L. (2013). J. Organomet. Chem. 723, 103–107.
- Rigaku (2008). CrystalClear. Rigaku Inc., The Woodlands, Texas, USA.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
- Rigaku OD (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1990). XP in SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Acta Cryst. (2019). C75 [https://doi.org/10.1107/S2053229619004236]

Asymmetric diosmium sawhorse complexes

Kylie M. Wilson, John W. Swartout, Henry A. Touchton, Erica N. Lambert, James E. Johnstone, Ashley K. Archambeau, David M. Marolf, Emily R. Mikeska, Vincent M. Lynch, Vladimir N. Nesterov, Eric W. Reinheimer, Gregory L. Powell and Cynthia B. Powell

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2017) for 1@CH2Cl2, 4@1.5C8H10; *APEX2* (Bruker, 2009) for (2), (8); *CrystalClear* (Rigaku, 2008) for (3), 7@CH2Cl2; *CrysAlis PRO* (Rigaku OD, 2015) for (5), (6). Cell refinement: *CrysAlis PRO* (Rigaku OD, 2017) for 1@CH2Cl2, 4@1.5C8H10; *SAINT* (Bruker, 2009) for (2), (8); *CrystalClear* (Rigaku, 2008) for (3), 7@CH2Cl2; *CrysAlis PRO* (Rigaku OD, 2015) for (5), (6). Data reduction: *CrysAlis PRO* (Rigaku OD, 2017) for 1@CH2Cl2, 4@1.5C8H10; *SAINT* (Bruker, 2009) for (2), (8); *CrystalClear* (Rigaku, 2008) for (3), 7@CH2Cl2; *CrysAlis PRO* (Rigaku OD, 2015) for (5), (6). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for 1@CH2Cl2, (2), (5), (6), (8); *SIR97* (Altomare *et al.*, 1999) for (3), 7@CH2Cl2; SHELXT2014 (Sheldrick, 2015a) for 4@1.5C8H10. Program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b) for 1@CH2Cl2, (2), 4@1.5C8H10, (5), (6), (8); *SHELXL2013* (Sheldrick, 2015a) for (3); *SHELXL2013* (Sheldrick, 2013) for 7@CH2Cl2. Molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) for 1@CH2Cl2, (2), 4@1.5C8H10, (5), (6), (8); *XP* in *SHELXTL/PC* (Sheldrick, 1990) for (3), 7@CH2Cl2. Software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009) for 1@CH2Cl2, (2), 4@1.5C8H10, (5), (6), (8); *XP* in *SHELXTL/PC* (Sheldrick, 1990) for (3), 7@CH2Cl2. Software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009) for 1@CH2Cl2, (2), 4@1.5C8H10, (5), (6), (8); *XP* in *SHELXTL/PC* (Sheldrick, 1990) for (3), 7@CH2Cl2.

 μ -Acetato-1 κ O:2 κ O'- μ -propanoato-1 κ O:2 κ O'-bis[tris(4-methylphenyl)phosphane]-1 κ P,2 κ P'-bis(dicarbonylosmium)(Os—Os) dichloromethane monosolvate (1@CH2Cl2)

Crystal data

 $[Os_2(C_2H_3O_2)(C_3H_5O_2)(C_{21}H_{21}P)_2(CO)_4] \cdot CH_2CI_2$ $M_r = 1318.17$ Monoclinic, $P2_1/c$ a = 18.5007 (4) Å b = 18.5396 (4) Å c = 14.8090 (3) Å $\beta = 91.9976$ (17)° V = 5076.35 (18) Å³ Z = 4

Data collection Rigaku SuperNova AtlasS2 CCD diffractometer Detector resolution: 5.2387 pixels mm⁻¹ ω scans F(000) = 2576 $D_x = 1.725 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 12326 reflections $\theta = 4.5-73.3^{\circ}$ $\mu = 11.30 \text{ mm}^{-1}$ T = 100 KPlank, colorless $0.22 \times 0.06 \times 0.03 \text{ mm}$

Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2017) $T_{min} = 0.428, T_{max} = 1.000$ 20129 measured reflections 9265 independent reflections

8475 reflections with $I > 2\sigma(I)$	$h = -21 \rightarrow 22$
$R_{\rm int} = 0.024$	$k = -19 \rightarrow 22$
$\theta_{\rm max} = 68.3^\circ, \theta_{\rm min} = 5.6^\circ$	$l = -17 \rightarrow 14$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.023$	H-atom parameters constrained
$wR(F^2) = 0.055$	$w = 1/[\sigma^2(F_o^2) + (0.0214P)^2 + 5.3085P]$
S = 1.00	where $P = (F_o^2 + 2F_c^2)/3$
9265 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
632 parameters	$\Delta \rho_{\rm max} = 1.16 \text{ e } \text{\AA}^{-3}$
112 restraints	$\Delta \rho_{\rm min} = -1.05 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Os1	0.24602 (2)	0.48548 (2)	0.15721 (2)	0.01357 (4)	
Os2	0.23338 (2)	0.49256 (2)	0.34230 (2)	0.01296 (4)	
P1	0.25891 (4)	0.50855 (4)	-0.00045 (5)	0.01549 (15)	
P2	0.21444 (4)	0.53185 (4)	0.49394 (5)	0.01377 (14)	
O1	0.39063 (12)	0.41219 (15)	0.17787 (16)	0.0266 (5)	
O2	0.17142 (14)	0.34201 (14)	0.13616 (17)	0.0276 (5)	
O3	0.36509 (14)	0.40392 (17)	0.39324 (17)	0.0354 (6)	
O4	0.14255 (14)	0.35845 (14)	0.35453 (16)	0.0290 (5)	
O5	0.28772 (13)	0.59099 (13)	0.17664 (14)	0.0217 (5)	
O6	0.29035 (13)	0.59111 (14)	0.32777 (15)	0.0253 (5)	
O7	0.14672 (11)	0.54428 (13)	0.15336 (14)	0.0211 (5)	
O8	0.14444 (12)	0.55903 (14)	0.30353 (14)	0.0220 (5)	
C1	0.33496 (17)	0.44046 (18)	0.16955 (19)	0.0187 (6)	
C2	0.20033 (16)	0.39689 (19)	0.1439 (2)	0.0204 (7)	
C3	0.31432 (18)	0.4387 (2)	0.3731 (2)	0.0221 (7)	
C4	0.17734 (17)	0.40972 (19)	0.3493 (2)	0.0210 (7)	
C5	0.29965 (17)	0.62065 (17)	0.2519 (2)	0.0218 (6)	
C8	0.12202 (15)	0.57186 (17)	0.2239 (2)	0.0188 (6)	
C10	0.29294 (16)	0.56904 (16)	0.5577 (2)	0.0152 (6)	
C11	0.28798 (17)	0.58869 (19)	0.6477 (2)	0.0206 (7)	
H11	0.243680	0.581524	0.677009	0.025*	
C12	0.34607 (17)	0.6185 (2)	0.6957 (2)	0.0214 (7)	
H12	0.341304	0.631017	0.757372	0.026*	
C13	0.41184 (16)	0.63028 (18)	0.6541 (2)	0.0190 (6)	
C14	0.41764 (17)	0.6085 (2)	0.5653 (2)	0.0222 (7)	
H14	0.462308	0.614585	0.536482	0.027*	
C15	0.35921 (17)	0.57797 (19)	0.5174 (2)	0.0218 (7)	

H15	0.364641	0.563058	0.456666	0.026*
C16	0.47439 (17)	0.6672 (2)	0.7040 (2)	0.0244 (7)
H16A	0.470386	0.719545	0.695725	0.037*
H16B	0.520114	0.650346	0.680050	0.037*
H16C	0.473149	0.655727	0.768528	0.037*
C17	0.14668 (16)	0.60298 (17)	0.49880 (19)	0.0154 (6)
C18	0.07374 (17)	0.58515 (19)	0.4842 (2)	0.0206 (6)
H18	0.060220	0.536103	0.475853	0.025*
C19	0.02107 (17)	0.6382 (2)	0.4817 (2)	0.0227 (7)
H19	-0.028264	0.624888	0.472896	0.027*
C20	0.03913(18)	0.7107(2)	0.4918(2)	0.0223(7)
C21	0.00000000000000000000000000000000000	0.72843(19)	0.5041(2)	0.0225(7)
H21	0.125531	0 777660	0.510092	0.028*
C22	0.16513 (17)	0.67526 (19)	0.510092 0.5079(2)	0.0204 (6)
H22	0.214458	0.688563	0.516747	0.024*
C23	-0.0188(2)	0.00000000000000000000000000000000000	0.310747 0.4890 (3)	0.024 0.0327 (8)
H23A	-0.049023	0.762871	0.541756	0.0327 (0)
H23A H23B	-0.049025	0.762671	0.341730	0.049
H23D	0.048930	0.702028	0.433094	0.049*
C24	0.003800	0.013022	0.409009	0.049
C24	0.18198(15) 0.20280(16)	0.40340(18) 0.20107(18)	0.5708(2)	0.0137(0)
U25	0.20280 (10)	0.33137 (18)	0.5019(2)	0.0173(0)
П23 С26	0.231403 0.19271(16)	0.376490	0.512025	0.021
C20	0.162/1 (10)	0.33970 (18)	0.0231(2)	0.0180 (0)
H20	0.190/32	0.291013	0.014333	0.022
C27	0.14207(10) 0.12002(17)	0.33819(19)	0.69/4(2)	0.0197 (6)
C28	0.12092 (17)	0.42973 (19)	0.7069 (2)	0.0200 (6)
H28	0.093335	0.443309	0.757079	0.024*
C29	0.13952 (10)	0.48100(17)	0.0441(2)	0.01/5 (6)
H29	0.123336	0.529865	0.650930	0.021*
C30	0.1246 (2)	0.3029 (2)	0.7678 (2)	0.0283 (8)
H30A	0.088624	0.268937	0.742620	0.042*
H30B	0.105160	0.327067	0.820513	0.042*
H30C	0.168693	0.276563	0.786020	0.042*
C31	0.33106 (17)	0.57266 (19)	-0.0201 (2)	0.0186 (6)
C32	0.32189 (18)	0.6459 (2)	-0.0017 (2)	0.0253 (7)
H32	0.276132	0.662835	0.016272	0.030*
C33	0.3785 (2)	0.6941 (2)	-0.0092 (3)	0.0325 (8)
H33	0.370747	0.743849	0.002209	0.039*
C34	0.4469 (2)	0.6705 (2)	-0.0335 (2)	0.0291 (8)
C35	0.45630 (17)	0.5974 (2)	-0.0506 (2)	0.0254 (7)
H35	0.502391	0.580222	-0.067077	0.030*
C36	0.39947 (16)	0.54921 (19)	-0.0440(2)	0.0199 (6)
H36	0.407204	0.499497	-0.055853	0.024*
C37	0.5092 (2)	0.7229 (3)	-0.0398 (3)	0.0418 (10)
H37A	0.524938	0.738388	0.021061	0.063*
H37B	0.493568	0.765050	-0.075331	0.063*
H37C	0.549566	0.699297	-0.069177	0.063*
C38	0.28317 (16)	0.43215 (18)	-0.0719 (2)	0.0182 (6)

C39	0.29060 (16)	0.44399 (19)	-0.1646 (2)	0.0198 (6)	
H39	0.281898	0.490645	-0.189198	0.024*	
C40	0.31044 (17)	0.3884 (2)	-0.2204(2)	0.0228 (7)	
H40	0.315867	0.397591	-0.282905	0.027*	
C41	0.32270 (17)	0.3190 (2)	-0.1872(2)	0.0243 (7)	
C42	0.31542 (19)	0.3075 (2)	-0.0951(2)	0.0268 (7)	
H42	0.323761	0.260721	-0.070694	0.032*	
C43	0.29603 (18)	0.3638 (2)	-0.0380(2)	0.0239(7)	
H43	0.291638	0.354882	0.024786	0.029*	
C44	0 3426 (2)	0.2582(2)	-0.2490(3)	0.0353 (9)	
H44A	0 298789	0.239353	-0.279777	0.053*	
H44B	0.366032	0.219575	-0.213472	0.053*	
H44C	0.375911	0.275952	-0.293940	0.053*	
C45	0.17989 (16)	0.27332 0.54470 (18)	-0.0635(2)	0.0176 (6)	
C46	0.18411(17)	0.59718 (19)	-0.1303(2)	0.0213(7)	
H46	0.229091	0.619892	-0.140735	0.0213 (7)	
C47	0.229091 0.12309(19)	0.6165(2)	-0.1818(2)	0.020	
Сч7 Н47	0.12505 (15)	0.652924	-0.226577	0.0247 (7)	
C/8	0.120739 0.05649 (18)	0.032924 0.5835 (2)	-0.1689(2)	0.030	
C40	0.05049(18) 0.05235(17)	0.5855(2) 0.5325(2)	-0.1039(2)	0.0231(7)	
U49	0.03233(17) 0.007187	0.3323(2) 0.510340	-0.1011(2) -0.000312	0.0234 (7)	
П 4 9 С 5 0	0.007187 0.11202 (17)	0.510549	-0.090312	0.028°	
C30	0.11295(17) 0.109709	0.31307 (19)	-0.0483(2)	0.0194 (0)	
П30 С51	0.108708	0.478004	-0.002139	0.023	
	-0.0085(2)	0.6020 (2)	-0.2291 (3)	0.0539 (9)	
HOIA	-0.044/45	0.563639	-0.225184	0.051*	
HOIR	0.006362	0.606502	-0.291/12	0.051*	
HSIC	-0.029325	0.647717	-0.209418	0.051*	0.5
C6	0.3157 (7)	0.7001 (3)	0.2532 (14)	0.0286 (17)	0.5
H6A	0.342512	0.714118	0.199177	0.034*	0.5
H6B	0.345090	0.713084	0.30/904	0.034*	0.5
C6A	0.0584 (7)	0.6216 (7)	0.211 (2)	0.0189 (16)	0.5
H6AA	0.018924	0.607821	0.250609	0.023*	0.5
H6AB	0.039896	0.620471	0.147180	0.023*	0.5
C7	0.2419 (6)	0.7378 (6)	0.2532 (8)	0.063 (2)	0.5
H7A	0.214154	0.725351	0.197841	0.095*	0.5
H7B	0.249011	0.790100	0.256045	0.095*	0.5
H7C	0.215462	0.721881	0.305863	0.095*	0.5
C7A	0.0886 (4)	0.6989 (4)	0.2361 (5)	0.0257 (13)	0.5
H7AA	0.106583	0.698975	0.299141	0.039*	0.5
H7AB	0.049730	0.734591	0.228465	0.039*	0.5
H7AC	0.128106	0.711250	0.196543	0.039*	0.5
C9	0.0655 (7)	0.6299 (7)	0.214 (2)	0.021 (2)	0.5
H9A	0.089199	0.676991	0.210375	0.031*	0.5
H9B	0.034882	0.629016	0.266930	0.031*	0.5
H9C	0.035730	0.621372	0.159332	0.031*	0.5
C9A	0.3324 (6)	0.6948 (3)	0.2543 (14)	0.033 (2)	0.5
H9AA	0.333486	0.713028	0.316480	0.050*	0.5
H9AB	0.303331	0.727181	0.215434	0.050*	0.5

H9AC	0.381832	0.692543	0.232696	0.050*	0.5
C11	0.48305 (6)	0.58572 (8)	0.18071 (9)	0.0549 (3)	
C12	0.53460 (8)	0.58296 (8)	0.37000 (8)	0.0608 (3)	
C1S	0.5169 (2)	0.5330 (2)	0.2713 (3)	0.0395 (9)	
H1SA	0.481463	0.494723	0.284202	0.047*	
H1SB	0.562162	0.509281	0.253386	0.047*	

Atomic displacement parameters $(Å^2)$

	x x 11	T 700	T 722	T 10	T T 2	* 722
	U^{II}	U ²²	U ³³	U^{12}	U ¹³	U ²³
Os1	0.01404 (7)	0.01543 (8)	0.01151 (7)	0.00011 (5)	0.00434 (4)	-0.00057 (5)
Os2	0.01369 (7)	0.01444 (7)	0.01095 (7)	0.00000 (5)	0.00317 (4)	-0.00072 (4)
P1	0.0169 (3)	0.0175 (4)	0.0124 (3)	0.0012 (3)	0.0049 (3)	0.0001 (3)
P2	0.0151 (3)	0.0143 (4)	0.0121 (3)	-0.0008(3)	0.0034 (2)	-0.0010 (3)
01	0.0203 (11)	0.0335 (14)	0.0263 (12)	0.0080 (10)	0.0039 (9)	0.0033 (10)
O2	0.0334 (13)	0.0205 (13)	0.0295 (13)	-0.0090 (11)	0.0077 (10)	-0.0056 (10)
03	0.0286 (13)	0.0515 (18)	0.0260 (13)	0.0224 (13)	-0.0002 (10)	-0.0031 (12)
O4	0.0401 (14)	0.0239 (14)	0.0227 (12)	-0.0141 (11)	-0.0018 (10)	0.0025 (10)
05	0.0304 (11)	0.0176 (11)	0.0176 (10)	-0.0033 (9)	0.0062 (9)	0.0000 (8)
06	0.0334 (12)	0.0223 (12)	0.0204 (11)	-0.0097 (10)	0.0047 (9)	-0.0003 (9)
07	0.0204 (10)	0.0292 (13)	0.0140 (10)	0.0079 (9)	0.0044 (8)	0.0002 (9)
08	0.0236 (10)	0.0280 (13)	0.0144 (10)	0.0109 (9)	0.0043 (8)	0.0005 (9)
C1	0.0218 (15)	0.0235 (17)	0.0112 (14)	-0.0058 (13)	0.0052 (11)	-0.0006 (12)
C2	0.0169 (14)	0.0287 (19)	0.0157 (15)	0.0035 (13)	0.0049 (11)	-0.0005 (13)
C3	0.0264 (16)	0.0301 (19)	0.0102 (14)	-0.0017 (14)	0.0037 (12)	-0.0056 (13)
C4	0.0207 (15)	0.0274 (19)	0.0150 (15)	0.0039 (14)	0.0015 (11)	0.0001 (13)
C5	0.0217 (14)	0.0228 (15)	0.0213 (13)	-0.0045 (12)	0.0070 (11)	0.0020 (12)
C8	0.0170 (12)	0.0218 (14)	0.0178 (13)	0.0010 (11)	0.0031 (10)	0.0017 (11)
C10	0.0164 (13)	0.0123 (14)	0.0170 (14)	0.0011 (11)	0.0009 (11)	0.0013 (11)
C11	0.0176 (14)	0.0292 (18)	0.0155 (15)	-0.0015 (13)	0.0068 (11)	-0.0009 (13)
C12	0.0216 (15)	0.0292 (19)	0.0137 (14)	-0.0021 (13)	0.0041 (12)	-0.0009 (13)
C13	0.0176 (14)	0.0178 (16)	0.0214 (15)	0.0003 (12)	0.0000 (12)	0.0003 (12)
C14	0.0167 (14)	0.0308 (19)	0.0194 (15)	-0.0034 (13)	0.0043 (12)	-0.0019 (13)
C15	0.0221 (15)	0.0274 (18)	0.0163 (15)	-0.0023 (13)	0.0058 (12)	-0.0045 (13)
C16	0.0200 (15)	0.0319 (19)	0.0210 (16)	-0.0016 (14)	-0.0011 (12)	-0.0046 (14)
C17	0.0176 (14)	0.0177 (16)	0.0112 (13)	0.0013 (12)	0.0044 (11)	0.0005 (11)
C18	0.0209 (15)	0.0207 (17)	0.0204 (15)	-0.0020 (13)	0.0038 (12)	-0.0024 (13)
C19	0.0161 (14)	0.0316 (19)	0.0206 (15)	0.0049 (13)	0.0006 (11)	-0.0021 (14)
C20	0.0275 (17)	0.0259 (18)	0.0138 (15)	0.0086 (14)	0.0038 (12)	-0.0020 (13)
C21	0.0300 (17)	0.0179 (17)	0.0225 (16)	0.0029 (14)	0.0024 (13)	0.0003 (13)
C22	0.0192 (14)	0.0211 (17)	0.0211 (16)	-0.0012 (13)	0.0034 (12)	0.0003 (13)
C23	0.0331 (18)	0.031 (2)	0.034 (2)	0.0141 (16)	0.0027 (15)	-0.0015 (16)
C24	0.0144 (13)	0.0179 (16)	0.0149 (14)	-0.0024 (12)	0.0001 (10)	0.0004 (12)
C25	0.0166 (14)	0.0203 (16)	0.0150 (14)	-0.0005 (12)	0.0017 (11)	-0.0012 (12)
C26	0.0195 (14)	0.0160 (15)	0.0185 (15)	0.0022 (12)	0.0020 (11)	0.0016 (12)
C27	0.0174 (14)	0.0246 (17)	0.0173 (15)	-0.0021 (13)	0.0026 (11)	0.0032 (13)
C28	0.0215 (14)	0.0229 (17)	0.0163 (14)	-0.0039 (13)	0.0084 (11)	0.0001 (12)
C29	0.0211 (14)	0.0161 (15)	0.0155 (14)	0.0007 (12)	0.0032 (11)	-0.0025 (12)

C30	0.0313 (18)	0.0267 (19)	0.0276 (18)	0.0020 (15)	0.0097 (14)	0.0102 (15)
C31	0.0192 (14)	0.0238 (17)	0.0130 (14)	-0.0009 (13)	0.0046 (11)	0.0004 (12)
C32	0.0227 (16)	0.0243 (18)	0.0298 (18)	-0.0013 (14)	0.0120 (13)	-0.0014 (14)
C33	0.036 (2)	0.027 (2)	0.035 (2)	-0.0071 (16)	0.0158 (16)	-0.0067 (16)
C34	0.0285 (17)	0.036 (2)	0.0235 (17)	-0.0094 (16)	0.0093 (14)	-0.0027 (15)
C35	0.0181 (15)	0.039 (2)	0.0198 (16)	-0.0037 (14)	0.0052 (12)	0.0003 (14)
C36	0.0191 (14)	0.0253 (17)	0.0154 (14)	0.0031 (13)	0.0039 (11)	-0.0001 (12)
C37	0.035 (2)	0.045 (3)	0.046 (2)	-0.0175 (19)	0.0157 (18)	-0.008 (2)
C38	0.0144 (13)	0.0227 (17)	0.0175 (15)	0.0011 (12)	0.0037 (11)	-0.0046 (12)
C39	0.0176 (14)	0.0239 (17)	0.0180 (15)	0.0022 (12)	0.0017 (11)	0.0000 (13)
C40	0.0194 (15)	0.033 (2)	0.0158 (15)	0.0035 (14)	0.0012 (12)	-0.0054 (13)
C41	0.0199 (15)	0.0294 (19)	0.0233 (17)	0.0059 (14)	-0.0012 (12)	-0.0074 (14)
C42	0.0335 (18)	0.0208 (18)	0.0261 (18)	0.0065 (14)	0.0022 (14)	-0.0035 (14)
C43	0.0259 (16)	0.0259 (18)	0.0202 (16)	0.0049 (14)	0.0046 (12)	0.0000 (14)
C44	0.040 (2)	0.039 (2)	0.0268 (19)	0.0196 (18)	-0.0029 (15)	-0.0118 (16)
C45	0.0193 (14)	0.0196 (16)	0.0143 (14)	0.0038 (12)	0.0046 (11)	-0.0016 (12)
C46	0.0222 (15)	0.0220 (17)	0.0203 (15)	0.0034 (13)	0.0080 (12)	0.0009 (13)
C47	0.0291 (17)	0.0248 (18)	0.0206 (16)	0.0087 (14)	0.0062 (13)	0.0022 (13)
C48	0.0235 (16)	0.0309 (19)	0.0209 (16)	0.0086 (14)	0.0005 (13)	-0.0056 (14)
C49	0.0189 (14)	0.0318 (19)	0.0198 (15)	0.0004 (14)	0.0060 (12)	-0.0065 (14)
C50	0.0202 (14)	0.0267 (18)	0.0116 (14)	0.0024 (13)	0.0047 (11)	-0.0020 (12)
C51	0.0270 (17)	0.045 (2)	0.0293 (19)	0.0083 (17)	-0.0011 (14)	0.0026 (17)
C6	0.036 (4)	0.023 (3)	0.027 (3)	-0.012 (3)	0.005 (4)	0.001 (2)
C6A	0.018 (3)	0.021 (3)	0.018 (3)	0.003 (2)	0.001 (3)	-0.002 (3)
C7	0.071 (5)	0.042 (4)	0.077 (5)	0.008 (4)	0.019 (5)	-0.001 (4)
C7A	0.030 (3)	0.020 (3)	0.027 (3)	0.004 (2)	0.000 (3)	-0.003 (3)
C9	0.017 (3)	0.026 (4)	0.019 (4)	0.004 (3)	-0.001 (3)	-0.002 (4)
C9A	0.043 (5)	0.021 (3)	0.036 (4)	-0.008 (3)	0.020 (5)	-0.005 (3)
Cl1	0.0407 (5)	0.0619 (8)	0.0615 (7)	0.0047 (5)	-0.0063 (5)	0.0222 (6)
Cl2	0.0862 (9)	0.0585 (8)	0.0396 (6)	-0.0064 (7)	0.0283 (6)	-0.0143 (5)
C1S	0.045 (2)	0.030 (2)	0.044 (2)	-0.0006 (18)	0.0034 (18)	0.0017 (18)

Geometric parameters (Å, °)

Os1—Os2	2.7623 (2)	C30—H30A	0.9800
Os1—P1	2.3937 (7)	C30—H30B	0.9800
Os1—O5	2.119 (2)	С30—Н30С	0.9800
Os1—O7	2.135 (2)	C31—C32	1.396 (5)
Os1—C1	1.848 (3)	C31—C36	1.395 (4)
Os1—C2	1.854 (4)	С32—Н32	0.9500
Os2—P2	2.3981 (7)	C32—C33	1.384 (5)
Os2—O6	2.124 (2)	С33—Н33	0.9500
Os2—O8	2.119 (2)	C33—C34	1.398 (5)
Os2—C3	1.844 (3)	C34—C35	1.390 (6)
Os2—C4	1.858 (4)	C34—C37	1.514 (5)
P1-C31	1.818 (3)	С35—Н35	0.9500
P1—C38	1.833 (3)	C35—C36	1.386 (5)
P1—C45	1.834 (3)	С36—Н36	0.9500

P2—C10	1.839 (3)	C37—H37A	0.9800
P2—C17	1.823 (3)	С37—Н37В	0.9800
P2—C24	1.820 (3)	С37—Н37С	0.9800
O1—C1	1.158 (4)	C38—C39	1.402 (4)
O2—C2	1.153 (4)	C38—C43	1.382 (5)
O3—C3	1.169 (4)	С39—Н39	0.9500
O4—C4	1.152 (4)	C39—C40	1.379 (5)
O5—C5	1.255 (4)	C40—H40	0.9500
O6—C5	1.268 (4)	C40—C41	1.393 (5)
O7—C8	1.263 (4)	C41—C42	1.392 (5)
O8—C8	1.259 (4)	C41—C44	1.506 (5)
C5—C6	1.502 (4)	C42—H42	0.9500
C5—C9A	1.502 (4)	C42—C43	1,398 (5)
C8—C6A	1.502 (4)	C43—H43	0.9500
C8—C9	1 502 (4)	C44—H44A	0.9800
C10—C11	1.302(1) 1 388(4)	C44—H44B	0.9800
C10-C15	1.300 (1)	C44 - H44C	0.9800
C11 H11	0.9500	$C_{44} = 1144C$	1 392 (5)
C_{11} C_{12}	1.382(5)	$C_{45} = C_{40}$	1.392(3) 1 395(5)
C12 $H12$	1.382 (3)	C46 H46	1.393(3)
C12 - C12	1,400 (4)	C_{40} C_{40} C_{47}	0.9300
C12-C13	1.400(4)	C40-C47	1.387 (3)
	1.585 (5)	C47 = C49	0.9500
	1.515 (4)	C4/-C48	1.395 (5)
	0.9500	C48—C49	1.384 (5)
C14—C15	1.393 (5)	C48—C51	1.510(5)
C15—H15	0.9500	C49—H49	0.9500
C16—H16A	0.9800	C49—C50	1.390 (5)
C16—H16B	0.9800	С50—Н50	0.9500
C16—H16C	0.9800	C51—H51A	0.9800
C17—C18	1.399 (4)	C51—H51B	0.9800
C17—C22	1.388 (5)	C51—H51C	0.9800
C18—H18	0.9500	C6—H6A	0.9900
C18—C19	1.384 (5)	C6—H6B	0.9900
С19—Н19	0.9500	C6—C7	1.533 (17)
C19—C20	1.392 (5)	С6А—Н6АА	0.9900
C20—C21	1.392 (5)	C6A—H6AB	0.9900
C20—C23	1.510 (5)	C6A—C7A	1.579 (18)
C21—H21	0.9500	С7—Н7А	0.9800
C21—C22	1.393 (5)	C7—H7B	0.9800
С22—Н22	0.9500	C7—H7C	0.9800
C23—H23A	0.9800	С7А—Н7АА	0.9800
С23—Н23В	0.9800	C7A—H7AB	0.9800
С23—Н23С	0.9800	С7А—Н7АС	0.9800
C24—C25	1.388 (5)	С9—Н9А	0.9800
C24—C29	1.404 (4)	C9—H9B	0.9800
C25—H25	0.9500	C9—H9C	0.9800
C25—C26	1.386 (4)	C9A—H9AA	0.9800
С26—Н26	0.9500	C9A—H9AB	0.9800
020 1120	0.2000	C// 11//1D	0.7000

C26—C27	1.396 (4)	С9А—Н9АС	0.9800
C27—C28	1.391 (5)	Cl1—C1S	1.758 (4)
C27—C30	1.505 (5)	Cl2—C1S	1.751 (4)
C28—H28	0.9500	C1S—H1SA	0.9900
C28—C29	1.389 (5)	C1S—H1SB	0.9900
С29—Н29	0.9500		
P1—Os1—Os2	166.94 (2)	С24—С29—Н29	119.7
O5—Os1—Os2	82.20 (6)	C28—C29—C24	120.7 (3)
O5—Os1—P1	85.37 (6)	С28—С29—Н29	119.7
O5—Os1—O7	80.86 (9)	С27—С30—Н30А	109.5
O7—Os1—Os2	84.24 (6)	С27—С30—Н30В	109.5
O7—Os1—P1	89.86 (6)	С27—С30—Н30С	109.5
C1—Os1—Os2	91.67 (9)	H30A—C30—H30B	109.5
C1—Os1—P1	93.36 (9)	H30A—C30—H30C	109.5
C1—Os1—O5	94.86 (12)	H30B-C30-H30C	109.5
C1—Os1—O7	174.43 (11)	C32—C31—P1	120.6 (2)
C1—Os1—C2	90.66 (14)	C32—C31—C36	118.0 (3)
C2—Os1—Os2	95.37 (9)	C36—C31—P1	121.0 (3)
C2—Os1—P1	96.60 (10)	C31—C32—H32	119.5
C2—Os1—O5	174.02 (11)	C33—C32—C31	121.0 (3)
C2—Os1—O7	93.48 (12)	С33—С32—Н32	119.5
P2—Os2—Os1	164.55 (2)	С32—С33—Н33	119.6
O6—Os2—Os1	83.16 (6)	C32—C33—C34	120.8 (4)
O6—Os2—P2	85.57 (6)	С34—С33—Н33	119.6
O8—Os2—Os1	81.41 (6)	C33—C34—C37	120.9 (4)
O8—Os2—P2	86.54 (6)	C35—C34—C33	118.2 (3)
O8—Os2—O6	81.70 (10)	C35—C34—C37	121.0 (3)
C3—Os2—Os1	97.08 (9)	С34—С35—Н35	119.5
C3—Os2—P2	94.43 (9)	C36—C35—C34	121.0 (3)
C3—Os2—O6	95.14 (13)	С36—С35—Н35	119.5
C3—Os2—O8	176.62 (13)	С31—С36—Н36	119.5
C3—Os2—C4	89.32 (15)	C35—C36—C31	120.9 (3)
C4—Os2—Os1	94.74 (9)	С35—С36—Н36	119.5
C4—Os2—P2	95.67 (10)	С34—С37—Н37А	109.5
C4—Os2—O6	175.27 (12)	С34—С37—Н37В	109.5
C4—Os2—O8	93.80 (12)	С34—С37—Н37С	109.5
C31—P1—Os1	111.82 (10)	Н37А—С37—Н37В	109.5
C31—P1—C38	102.51 (14)	Н37А—С37—Н37С	109.5
C31—P1—C45	104.85 (15)	Н37В—С37—Н37С	109.5
C38—P1—Os1	117.36 (11)	C39—C38—P1	118.6 (3)
C45—P1—Os1	117.19 (10)	C43—C38—P1	122.8 (2)
C45—P1—C38	101.28 (14)	C43—C38—C39	118.6 (3)
C10—P2—Os2	117.15 (10)	С38—С39—Н39	119.8
C17—P2—Os2	112.33 (10)	C40—C39—C38	120.5 (3)
C17—P2—C10	103.91 (14)	С40—С39—Н39	119.8
C24—P2—Os2	115.85 (10)	С39—С40—Н40	119.2
C24—P2—C10	102.25 (13)	C39—C40—C41	121.5 (3)

C24 P2 C17	$103\ 71\ (14)$	C41 C40 H40	110.2
$C_{24} = 12 = C_{17}$	105.71(14) 125.2(2)	C_{40} C_{41} C_{40}	117.2 121.2(3)
$C_{5} = 0.05 = 0.031$	123.2(2) 123.0(2)	$C_{40} = C_{41} = C_{44}$	121.2(3)
$C_{3}^{8} = 00 = 0.82$	123.0(2) 121.26(10)	$C_{42} = C_{41} = C_{40}$	117.9(3)
$C_{0}^{8} = 0^{8} = 0^{2}$	121.30(19) 126.24(10)	$C_{42} = C_{41} = C_{44}$	121.0 (3)
$C_{0} = 0_{0} = 0_{0}$	120.24(19)	C41 - C42 - H42	119.5
$O_1 = C_1 = O_{S_1}$	1/9.0(3)	$C_{41} = C_{42} = C_{43}$	121.0 (3)
02-02-081	1/9.5 (3)	C43 - C42 - H42	119.5
03-03-082	1/9.1 (3)	$C_{38} = C_{43} = C_{42}$	120.6 (3)
04—C4—Os2	1/9.3 (3)	C38—C43—H43	119.7
05-05-06	124.9 (3)	C42—C43—H43	119.7
O5—C5—C6	118.0 (8)	C41—C44—H44A	109.5
O5—C5—C9A	118.7 (9)	C41—C44—H44B	109.5
O6—C5—C6	116.4 (8)	C41—C44—H44C	109.5
O6—C5—C9A	116.2 (9)	H44A—C44—H44B	109.5
O7—C8—C6A	116.4 (12)	H44A—C44—H44C	109.5
O7—C8—C9	118.8 (12)	H44B—C44—H44C	109.5
O8—C8—O7	125.5 (3)	C46—C45—P1	123.6 (2)
O8—C8—C6A	118.0 (12)	C46—C45—C50	118.6 (3)
O8—C8—C9	115.4 (11)	C50—C45—P1	117.5 (2)
C11—C10—P2	120.9 (2)	C45—C46—H46	119.8
C11—C10—C15	118.0 (3)	C47—C46—C45	120.5 (3)
C15—C10—P2	121.1 (2)	C47—C46—H46	119.8
C10-C11-H11	119.3	C46—C47—H47	119.4
C12—C11—C10	121.5 (3)	C46—C47—C48	121.2 (3)
C12—C11—H11	119.3	C48—C47—H47	119.4
C11—C12—H12	119.7	C47—C48—C51	120.6 (3)
C11—C12—C13	120.6 (3)	C49—C48—C47	118.1 (3)
C13—C12—H12	119.7	C49—C48—C51	121.3 (3)
C12—C13—C16	121.2 (3)	C48—C49—H49	119.3
C14-C13-C12	118.0(3)	C48 - C49 - C50	121.4 (3)
C14-C13-C16	120.8 (3)	C_{50} C_{49} H_{49}	1193
C13 - C14 - H14	119.4	$C_{45} - C_{50} - H_{50}$	119.8
C_{13} C_{14} C_{15}	121 2 (3)	$C_{49} = C_{50} = C_{45}$	120.3(3)
C_{15} C_{14} H_{14}	110.4	C_{49} C_{50} H_{50}	119.8
C10-C15-C14	120.7 (3)	$C_{48} = C_{51} = H_{51} = H_{51}$	109.5
C10-C15-H15	110 7	$C_{48} = C_{51} = H_{51R}$	109.5
$C_{10} = C_{15} = H_{15}$	119.7	C48 - C51 - H51C	109.5
$C_{14} = C_{15} = M_{15}$	100.5	U51A C51 U51R	109.5
C13 C16 H16P	109.5	H51A = C51 = H51C	109.5
C_{12} C_{16} U_{16} C_{16}	109.5	H51P C51 H51C	109.5
	109.5		109.5
H16A - C16 - H16C	109.5	C_{3} C_{6} U_{6} U_{6}	110.0
H10A - C10 - H10C	109.5	C5—C6—H6B	110.0
H10B - U10 - H10U	109.5		105.7 (8)
$C_{10} - C_{17} - P_2$	118.9 (3)		108.7
$C_{22} = C_{17} = C_{18}$	122.5(2)		110.6
$C_{22} = C_{11} = C_{10} = U_{10}$	118.4 (3)		110.6
C17—C18—H18	119.6	С8—С6А—Н6АА	110.8
C19—C18—C17	120.7 (3)	C8—C6A—H6AB	110.8

C19—C18—H18	119.6	C8—C6A—C7A	105.0 (9)
C18—C19—H19	119.4	Н6АА—С6А—Н6АВ	108.8
C18—C19—C20	121.1 (3)	С7А—С6А—Н6АА	110.8
C20—C19—H19	119.4	С7А—С6А—Н6АВ	110.8
C19—C20—C23	120.6 (3)	С6—С7—Н7А	109.5
C_{21} $-C_{20}$ $-C_{19}$	118.0 (3)	С6—С7—Н7В	109.5
C21—C20—C23	121.3 (3)	С6—С7—Н7С	109.5
C20—C21—H21	119.4	H7A—C7—H7B	109.5
C_{20} C_{21} C_{22}	121.1 (3)	H7A - C7 - H7C	109.5
C22—C21—H21	119.4	H7B-C7-H7C	109.5
$C_{17} - C_{22} - C_{21}$	120 5 (3)	C6A - C7A - H7AA	109.5
C17—C22—H22	119.7	C6A—C7A—H7AB	109.5
C21—C22—H22	119.7	C6A - C7A - H7AC	109.5
C20—C23—H23A	109.5	H7AA - C7A - H7AB	109.5
C20-C23-H23B	109.5	H7AA - C7A - H7AC	109.5
C20-C23-H23C	109.5	H7AB-C7A-H7AC	109.5
$H_{23A} - C_{23} - H_{23B}$	109.5	C8-C9-H9A	109.5
$H_{23A} - C_{23} - H_{23C}$	109.5	C8 - C9 - H9B	109.5
$H_{23}R_{-C_{23}}H_{23}C_{-H_{23}}C_{-H_{2$	109.5	C8 - C9 - H9C	109.5
$C_{25} - C_{24} - P_{2}$	109.5 120 5 (2)	H9A - C9 - H9B	109.5
$C_{25} = C_{24} = C_{29}$	120.3(2) 117.9(3)	H9A - C9 - H9C	109.5
C_{29} C_{24} P_{2}	121.5(2)	H9B - C9 - H9C	109.5
$C_{24} = C_{25} = H_{25}$	119.2		109.5
$C_{24} = C_{25} = C_{24}$	119.2 121 5 (3)	C_{5} C_{9A} H9AB	109.5
$C_{20} = C_{23} = C_{24}$	119.2		109.5
$C_{20} = C_{20} = H_{20}$	119.2	H9AA = C9A = H9AB	109.5
$C_{25} - C_{26} - C_{27}$	120.6 (3)		109.5
$C_{23} = C_{20} = C_{27}$	120.0 (3)	H9AB - C9A - H9AC	109.5
$C_{27} = C_{20} = 1120$	120.9 (3)		109.5
$C_{20} = C_{27} = C_{30}$	120.9(3) 118 3 (3)	Cl1—Cl5—HISR	108.9
$C_{20} = C_{27} = C_{20}$	120.8(3)	C^{12} C^{15} C^{11}	113.2(3)
$C_{20} = C_{27} = C_{30}$	120.8 (3)	$Cl_2 = Cl_2 = Cl_3 = Cl_3$	108.9
C_{29} C_{28} C_{27}	119.5 121.0(3)	$Cl_2 = Cl_2 = HISR$	108.9
$C_{29} = C_{28} = C_{27}$	121.0 (3)	HISA CIS HISB	108.9
029-028-1128	119.5	1115A—C15—1115B	107.7
O_{s1} _P1_C31_C32	-73.8(3)	C17 - C18 - C19 - C20	13(5)
O_{s1} P1 $-C_{31}$ C36	98.8 (2)	C17 - C13 - C20 C18 - C17 - C22 - C21	1.3(5)
O_{s1} P1 C38 C39	179.6(2)	C18 C19 C22 C21	1.2(5)
O_{s1} P1 C_{38} C43	-1.9(3)	C18 - C19 - C20 - C21	-180.0(3)
O_{s1} P1 C45 C46	1.7(3)	C10 C20 C21 C22	-1.2(5)
$O_{s1} = P1 = C45 = C50$	-44.7(3)	$C_{10} = C_{20} = C_{21} = C_{22}$	0.4(5)
0s1 - 05 - 05	20(5)	$C_{20} = C_{21} = C_{22} = C_{17}$	-20(5)
$0_{s1} - 0_{5} - 0_{5} - 0_{6}$	-168.6(6)	$C_{22} = C_{17} = C_{18} = C_{17}$	2.0(3)
$0_{1} - 0_{5} - 0_{5} - 0_{0}$	177 4 (6)	C_{23} C_{20} C_{21} C_{22} C_{24} P_{2} C_{10} C_{11}	-480(3)
0s1 07 C8 08	-122(5)	$C_{24} = 12 = C_{10} = C_{11}$	1316(3)
0_{1} 07 08 064	12.2(3) 1706(8)	C_{24} P_{2} C_{17} C_{18}	-522(2)
$O_{S1} = O_7 = C_0 = C_0 A$	162 1 (8)	$C_{24} = 12 = C_{17} = C_{10}$	32.3(3) 13/1(3)
$O_{0}2$ D2 C10 C11	$-175 \circ (2)$	C_{24} C_{25} C_{26} C_{27}	-1.6(5)
US2-F2-UIU-UII	-1/3.0(2)	U24-U23-U20-U27	-1.0(3)

0 0 D0 010 010			1.0.(1)
Os2—P2—C10—C15	3.9 (3)	C25—C24—C29—C28	1.8 (4)
Os2—P2—C17—C18	73.6 (2)	C25—C26—C27—C28	1.5 (5)
Os2—P2—C17—C22	-100.1 (3)	C25—C26—C27—C30	-175.6 (3)
Os2—P2—C24—C25	33.0 (3)	C26—C27—C28—C29	0.2 (5)
Os2—P2—C24—C29	-151.4 (2)	C27—C28—C29—C24	-1.8 (5)
Os2—O6—C5—O5	-12.3 (5)	C29—C24—C25—C26	-0.1 (4)
Os2—O6—C5—C6	158.4 (6)	C30—C27—C28—C29	177.3 (3)
Os2—O6—C5—C9A	172.2 (6)	C31—P1—C38—C39	-57.5 (3)
Os2—O8—C8—O7	3.7 (5)	C31—P1—C38—C43	121.0 (3)
Os2—O8—C8—C6A	-179.1 (8)	C31—P1—C45—C46	16.3 (3)
Os2—O8—C8—C9	-170.7 (8)	C31—P1—C45—C50	-169.4 (2)
P1-C31-C32-C33	174.5 (3)	C31—C32—C33—C34	-1.5 (6)
P1-C31-C36-C35	-173.8 (2)	C32—C31—C36—C35	-1.0(5)
P1-C38-C39-C40	178.5 (2)	C32—C33—C34—C35	0.6 (6)
P1-C38-C43-C42	-179.0 (3)	C32—C33—C34—C37	-178.7 (4)
P1-C45-C46-C47	173.2 (3)	C33—C34—C35—C36	0.1 (5)
P1-C45-C50-C49	-173.0 (3)	C34—C35—C36—C31	0.1 (5)
P2-C10-C11-C12	-178.3 (3)	C36—C31—C32—C33	1.7 (5)
P2-C10-C15-C14	177.7 (3)	C37—C34—C35—C36	179.3 (3)
P2-C17-C18-C19	-175.9 (2)	C38—P1—C31—C32	159.6 (3)
P2-C17-C22-C21	174.9 (2)	C38—P1—C31—C36	-27.8 (3)
P2-C24-C25-C26	175.6 (2)	C38—P1—C45—C46	-90.0 (3)
P2-C24-C29-C28	-173.9 (2)	C38—P1—C45—C50	84.3 (3)
O5—C5—C6—C7	86.2 (12)	C38—C39—C40—C41	0.9 (5)
O6—C5—C6—C7	-85.2 (12)	C39—C38—C43—C42	-0.5 (5)
O7—C8—C6A—C7A	-111.4 (13)	C39—C40—C41—C42	-1.0(5)
O8—C8—C6A—C7A	71.2 (17)	C39—C40—C41—C44	178.5 (3)
C10—P2—C17—C18	-158.9 (2)	C40—C41—C42—C43	0.4 (5)
C10—P2—C17—C22	27.5 (3)	C41—C42—C43—C38	0.4 (5)
C10—P2—C24—C25	-95.6 (3)	C43—C38—C39—C40	-0.1 (5)
C10—P2—C24—C29	80.0 (3)	C44—C41—C42—C43	-179.1 (3)
C10-C11-C12-C13	0.6 (5)	C45—P1—C31—C32	54.2 (3)
C11—C10—C15—C14	-2.6 (5)	C45—P1—C31—C36	-133.2 (3)
C11—C12—C13—C14	-2.7 (5)	C45—P1—C38—C39	50.7 (3)
C11—C12—C13—C16	176.0 (3)	C45—P1—C38—C43	-130.8 (3)
C12—C13—C14—C15	2.1 (5)	C45—C46—C47—C48	-0.9 (5)
C13—C14—C15—C10	0.6 (6)	C46—C45—C50—C49	1.6 (5)
C15—C10—C11—C12	2.1 (5)	C46—C47—C48—C49	2.2 (5)
C16—C13—C14—C15	-176.6 (3)	C46—C47—C48—C51	-176.4 (3)
C17—P2—C10—C11	59.7 (3)	C47—C48—C49—C50	-1.6 (5)
C17—P2—C10—C15	-120.7 (3)	C48—C49—C50—C45	-0.3 (5)
C17—P2—C24—C25	156.6 (2)	C50—C45—C46—C47	-1.1 (5)
C17—P2—C24—C29	-27.9 (3)	C51—C48—C49—C50	176.9 (3)

 $Bis(\mu$ -acetato- $1\kappa O: 2\kappa O')$ bis(tricarbonylosmium)(Os—Os) (2)

Crystal data

 $\begin{bmatrix} Os_2(C_2H_3O_2)_2(CO)_6 \end{bmatrix} \\ M_r &= 666.55 \\ \text{Monoclinic, } P2_1/n \\ a &= 7.6949 (5) \text{ Å} \\ b &= 14.3612 (10) \text{ Å} \\ c &= 13.8623 (9) \text{ Å} \\ \beta &= 105.202 (1)^\circ \\ V &= 1478.29 (17) \text{ Å}^3 \\ Z &= 4 \end{bmatrix}$

Data collection

Deploy ADEVIL CCD	2252 independent reflections
Druker APEAII CCD	5252 independent reflections
diffractometer	3003 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.046$
Absorption correction: multi-scan	$\theta_{\text{max}} = 27.1^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
(SADABS; Bruker, 2008)	$h = -9 \rightarrow 9$
$T_{\min} = 0.295, \ T_{\max} = 0.747$	$k = -18 \rightarrow 18$
14002 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0082P)^2 + 2.0911P]$
$R[F^2 > 2\sigma(F^2)] = 0.023$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.055$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.09	$\Delta \rho_{\rm max} = 1.80 \text{ e} \text{ Å}^{-3}$
3252 reflections	$\Delta \rho_{\rm min} = -1.33 \text{ e } \text{\AA}^{-3}$
202 parameters	Extinction correction: SHELXL2018
0 restraints	(Sheldrick, 2015b),
Hydrogen site location: inferred from	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
neighbouring sites	Extinction coefficient: 0.00198 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 1192

 $\theta = 2.8 - 33.1^{\circ}$

T = 200 K

 $\mu = 17.22 \text{ mm}^{-1}$

Block, colorless

 $0.19 \times 0.12 \times 0.07 \text{ mm}$

 $D_{\rm x} = 2.995 {\rm Mg} {\rm m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 9606 reflections

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Os1	0.42547 (2)	0.22664 (2)	0.05236 (2)	0.01655 (7)	
Os2	0.77231 (2)	0.21800 (2)	0.17010 (2)	0.01619 (7)	
08	0.6745 (4)	0.3123 (2)	0.2608 (2)	0.0223 (7)	
09	0.5294 (4)	0.3337 (2)	-0.0211 (2)	0.0239 (7)	
O7	0.4059 (4)	0.3352 (2)	0.1523 (2)	0.0233 (7)	
O10	0.8002 (4)	0.3386 (2)	0.0881 (2)	0.0253 (7)	
03	0.0418 (5)	0.2846 (3)	-0.0685 (3)	0.0424 (10)	
O2	0.4741 (6)	0.0738 (3)	-0.0875 (3)	0.0430 (10)	
O4	0.8856 (6)	0.0922 (3)	0.0236 (3)	0.0391 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C7	0.5235 (6)	0.3522 (3)	0.2335 (3)	0.0190 (9)
05	0.7127 (6)	0.0534 (3)	0.2927 (3)	0.0417 (9)
01	0.3004 (6)	0.0859 (3)	0.1800 (3)	0.0462 (10)
06	1.1610 (5)	0.2535 (4)	0.2995 (3)	0.0459 (10)
C4	0.8448 (6)	0.1390 (3)	0.0800 (3)	0.0262 (10)
C1	0.3453 (6)	0.1378 (3)	0.1300 (4)	0.0271 (10)
C5	0.7343 (6)	0.1147 (3)	0.2464 (3)	0.0243 (10)
C8	0.4787 (7)	0.4249 (3)	0.2994 (3)	0.0288 (10)
H8A	0.579579	0.432174	0.358999	0.043*
H8B	0.370674	0.406277	0.319369	0.043*
H8C	0.456292	0.484157	0.263170	0.043*
C9	0.6840 (6)	0.3691 (3)	0.0140 (3)	0.0211 (9)
C2	0.4554 (7)	0.1320 (3)	-0.0357 (3)	0.0269 (10)
C3	0.1837 (7)	0.2639 (3)	-0.0252 (4)	0.0260 (10)
C6	1.0190 (7)	0.2415 (4)	0.2537 (4)	0.0263 (10)
C10	0.7308 (8)	0.4540 (4)	-0.0362 (4)	0.0350 (12)
H10A	0.830534	0.486855	0.009782	0.053*
H10B	0.625795	0.495203	-0.055015	0.053*
H10C	0.766953	0.435746	-0.096241	0.053*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Os1	0.01386 (11)	0.01834 (11)	0.01733 (10)	0.00051 (6)	0.00388 (7)	-0.00074 (5)
Os2	0.01358 (11)	0.01921 (11)	0.01643 (10)	0.00390 (6)	0.00506 (7)	0.00252 (5)
08	0.0225 (17)	0.0263 (16)	0.0179 (14)	0.0063 (13)	0.0052 (12)	-0.0054 (12)
09	0.0249 (17)	0.0267 (17)	0.0201 (14)	-0.0001 (14)	0.0058 (13)	0.0088 (12)
O7	0.0233 (17)	0.0236 (16)	0.0233 (14)	0.0049 (13)	0.0064 (13)	-0.0021 (12)
O10	0.0228 (17)	0.0235 (17)	0.0281 (16)	-0.0032 (13)	0.0042 (13)	0.0067 (13)
O3	0.020 (2)	0.059 (3)	0.043 (2)	0.0106 (17)	-0.0002 (18)	-0.0021 (17)
O2	0.051 (2)	0.038 (2)	0.0347 (19)	0.0136 (19)	0.0013 (17)	-0.0148 (16)
O4	0.049 (2)	0.043 (2)	0.0332 (18)	0.0186 (19)	0.0241 (17)	-0.0037 (16)
C7	0.021 (2)	0.019 (2)	0.0194 (19)	-0.0005 (17)	0.0094 (17)	0.0012 (15)
O5	0.056 (3)	0.036 (2)	0.0348 (19)	-0.0006 (19)	0.0159 (18)	0.0141 (16)
O1	0.044 (2)	0.041 (2)	0.061 (3)	-0.0100 (19)	0.026 (2)	0.0172 (19)
O6	0.017 (2)	0.072 (3)	0.043 (2)	-0.001 (2)	-0.0022 (19)	0.007 (2)
C4	0.021 (2)	0.032 (3)	0.027 (2)	0.008 (2)	0.0091 (19)	0.0094 (19)
C1	0.017 (2)	0.029 (3)	0.034 (2)	-0.0016 (19)	0.005 (2)	-0.0031 (19)
C5	0.024 (2)	0.027 (2)	0.022 (2)	0.005 (2)	0.0078 (18)	0.0005 (18)
C8	0.036 (3)	0.026 (2)	0.027 (2)	0.000(2)	0.014 (2)	-0.0064 (18)
C9	0.023 (2)	0.019 (2)	0.024 (2)	0.0017 (18)	0.0106 (18)	0.0015 (16)
C2	0.025 (2)	0.029 (2)	0.024 (2)	0.003 (2)	0.0008 (19)	-0.0003 (18)
C3	0.023 (3)	0.026 (2)	0.030 (2)	-0.0003 (19)	0.009 (2)	-0.0031 (18)
C6	0.025 (3)	0.031 (2)	0.025 (2)	0.004 (2)	0.012 (2)	0.0021 (19)
C10	0.040 (3)	0.030 (3)	0.038 (3)	-0.002 (2)	0.014 (2)	0.010(2)

Geometric parameters (Å, °)

Os1—Os2	2.7419 (3)	O3—C3	1.139 (6)
Os1—O9	2.113 (3)	O2—C2	1.135 (6)
Os1—O7	2.118 (3)	O4—C4	1.137 (6)
Os1—C1	1.876 (5)	C7—C8	1.486 (6)
Os1—C2	1.881 (5)	O5—C5	1.128 (6)
Os1—C3	1.963 (5)	O1—C1	1.131 (6)
Os2—O8	2.116 (3)	O6—C6	1.124 (7)
Os2—O10	2.114 (3)	C8—H8A	0.9800
Os2—C4	1.877 (5)	C8—H8B	0.9800
Os2—C5	1.889 (5)	C8—H8C	0.9800
Os2—C6	1.976 (5)	C9—C10	1.494 (6)
O8—C7	1.262 (5)	C10—H10A	0.9800
О9—С9	1.268 (5)	C10—H10B	0.9800
O7—C7	1.269 (5)	C10—H10C	0.9800
O10—C9	1.251 (5)		
O9—Os1—Os2	83.54 (8)	C6—Os2—O10	87.60 (17)
O9—Os1—O7	83.14 (13)	C7—O8—Os2	123.7 (3)
O7—Os1—Os2	82.46 (8)	C9—O9—Os1	122.9 (3)
C1—Os1—Os2	92.46 (14)	C7—O7—Os1	124.4 (3)
C1—Os1—O9	174.06 (16)	C9—O10—Os2	125.3 (3)
C1—Os1—O7	92.00 (17)	O8—C7—O7	124.4 (4)
C1—Os1—C2	89.8 (2)	O8—C7—C8	118.6 (4)
C1—Os1—C3	95.3 (2)	O7—C7—C8	117.0 (4)
C2—Os1—Os2	95.05 (14)	O4—C4—Os2	178.3 (4)
C2—Os1—O9	94.95 (18)	O1—C1—Os1	177.4 (4)
C2—Os1—O7	177.01 (18)	O5—C5—Os2	179.3 (5)
C2—Os1—C3	95.8 (2)	С7—С8—Н8А	109.5
C3—Os1—Os2	166.67 (14)	C7—C8—H8B	109.5
C3—Os1—O9	87.81 (17)	C7—C8—H8C	109.5
C3—Os1—O7	86.47 (17)	H8A—C8—H8B	109.5
O8—Os2—Os1	83.26 (8)	H8A—C8—H8C	109.5
O10—Os2—Os1	82.12 (8)	H8B—C8—H8C	109.5
O10—Os2—O8	84.12 (13)	O9—C9—C10	117.8 (4)
C4—Os2—Os1	92.53 (14)	O10—C9—O9	124.8 (4)
C4—Os2—O8	175.04 (16)	O10—C9—C10	117.4 (4)
C4—Os2—O10	92.72 (16)	O2—C2—Os1	178.7 (4)
C4—Os2—C5	90.8 (2)	O3—C3—Os1	178.3 (5)
C4—Os2—C6	94.9 (2)	O6—C6—Os2	178.2 (5)
C5—Os2—Os1	95.71 (14)	C9—C10—H10A	109.5
C5—Os2—O8	92.21 (16)	C9—C10—H10B	109.5
C5—Os2—O10	175.92 (16)	С9—С10—Н10С	109.5
C5—Os2—C6	94.1 (2)	H10A—C10—H10B	109.5
C6—Os2—Os1	167.58 (15)	H10A—C10—H10C	109.5
C6—Os2—O8	88.79 (17)	H10B—C10—H10C	109.5

Bis(μ -acetato-1 κ O:2 κ O')pentacarbonyl-1 κ ²C,2 κ ³C-[tris(4-methylphenyl)phosphane-1 κ P]diosmium(Os—Os) (3)

Z = 2

F(000) = 892

 $\theta = 1.8 - 27.5^{\circ}$

 $\mu = 8.46 \text{ mm}^{-1}$

Prism, colorless

 $0.27 \times 0.14 \times 0.12 \text{ mm}$

 $\theta_{\rm max} = 27.4^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$

6915 independent reflections 6534 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.032$

 $h = -13 \rightarrow 13$ $k = -14 \rightarrow 14$ $l = -16 \rightarrow 16$

 $D_{\rm x} = 2.062 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4436 reflections

Crystal data

$$\begin{split} & [\text{Os}_2(\text{C}_2\text{H}_3\text{O}_2)_2(\text{C}_{21}\text{H}_{21}\text{P})(\text{CO})_5] \\ & M_r = 942.88 \\ & \text{Triclinic, } P\overline{1} \\ & a = 10.452 \text{ (4) } \text{\AA} \\ & b = 11.229 \text{ (4) } \text{\AA} \\ & c = 13.045 \text{ (5) } \text{\AA} \\ & a = 82.813 \text{ (6)}^\circ \\ & \beta = 89.157 \text{ (8)}^\circ \\ & \gamma = 89.457 \text{ (9)}^\circ \\ & V = 1518.8 \text{ (10) } \text{\AA}^3 \end{split}$$

Data collection

Rigaku SCX-Mini Mercury 2+ CCD
diffractometer
Radiation source: sealed tube
ω–scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
$T_{\min} = 0.605, \ T_{\max} = 1.00$
32350 measured reflections

Refinement

Refinement on F^2 H-atom parameters constrained Least-squares matrix: full $w = 1/[\sigma^2(F_0^2) + (0.013P)^2 + 4.878P]$ $R[F^2 > 2\sigma(F^2)] = 0.020$ where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.045$ $(\Delta/\sigma)_{\rm max} = 0.003$ $\Delta \rho_{\rm max} = 2.80 \text{ e} \text{ Å}^{-3}$ S = 1.02 $\Delta \rho_{\rm min} = -1.05 \ {\rm e} \ {\rm \AA}^{-3}$ 6915 reflections 385 parameters Extinction correction: SHELXL2013 0 restraints (Sheldrick, 2015a), Hydrogen site location: inferred from $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ neighbouring sites Extinction coefficient: 0.00017 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.1347 (3)	0.4868 (3)	0.1894 (2)	0.0127 (6)	
C2	0.0634 (3)	0.4462 (3)	0.2789 (2)	0.0145 (6)	
H2	0.0367	0.5015	0.3245	0.017*	
C3	0.0318 (3)	0.3263 (3)	0.3013 (2)	0.0157 (6)	
H3	-0.0176	0.3007	0.3616	0.019*	
C4	0.0714 (3)	0.2420 (3)	0.2368 (3)	0.0151 (6)	
C5	0.1440 (3)	0.2823 (3)	0.1486 (3)	0.0168 (6)	
Н5	0.1730	0.2264	0.1042	0.020*	

C6	0.1744 (3)	0.4033 (3)	0.1250(2)	0.0143 (6)
H6	0.2229	0.4290	0.0642	0.017*
C7	0.0330 (4)	0.1124 (3)	0.2607 (3)	0.0238 (8)
H7A	0.0324	0.0893	0.3356	0.036*
H7B	0.0944	0.0618	0.2281	0.036*
H7C	-0.0527	0.1019	0.2338	0.036*
C8	0.2576 (3)	0.6603 (3)	0.0404 (2)	0.0125 (6)
C9	0.3909 (3)	0.6544 (4)	0.0417 (3)	0.0263 (8)
Н9	0.4338	0.6500	0.1058	0.032*
C10	0.4618 (3)	0.6549 (4)	-0.0489(3)	0.0275 (8)
H10	0.5525	0.6521	-0.0456	0.033*
C11	0.3020 0.4039(3)	0.6592(3)	-0.1441(2)	0.0159(6)
C12	0.1000(3)	0.6652(3)	-0.1455(3)	0.0109(0)
H12	0.2701 (3)	0.6704	-0.2097	0.0205 (7)
C13	0.2271 0.1983 (3)	0.6658 (3)	-0.0549(3)	0.029
H13	0.1935 (5)	0.6697	-0.0581	0.0198 (7)
C14	0.1070 0.4829(3)	0.6576(3)	-0.2416(3)	0.021
С14 H14A	0.4029 (3)	0.0370 (5)	-0.2590	0.0215 (7)
H14R	0.3249	0.7333	-0.2090	0.032
	0.5480	0.5940	-0.2308	0.032*
C15	0.5480	0.3940 0.7157(3)	0.2308 0.1202 (2)	0.032°
C15	0.0113(3)	0.7137(3)	0.1292(2) 0.1045(3)	0.0123(0) 0.0173(7)
U16	0.0042 (3)	0.8461	0.1045 (5)	0.0173(7) 0.021*
C17	-0.1124(2)	0.0001	0.0908	0.021°
U17	-0.1154 (5)	0.0903 (3)	0.0909 (3)	0.0100(7)
П1/ С19	-0.1100	0.9830	0.0755 0.1024(2)	0.022°
C10	-0.2277(3)	0.8330(3)	0.1024(2) 0.1246(2)	0.0180(7)
U19 U10	-0.2203(3)	0.7104 (3)	0.1240 (5)	0.0182 (7)
П19 С20	-0.2909	0.0030	0.1312 0.1274 (2)	0.022°
C20	-0.1024 (3)	0.0512(5)	0.1574 (5)	0.0108 (7)
П20 С21	-0.0997	0.3001	0.1318	0.020°
U21	-0.3555 (3)	0.8995 (4)	0.0937 (3)	0.0271 (8)
H2IA H2ID	-0.4068	0.8674	0.0414	0.041*
H21B	-0.3415	0.9855	0.0734	0.041*
HZIC	-0.4003	0.88/4	0.1606	0.041*
C22	0.4281 (3)	0.6810(3)	0.2888 (2)	0.0152 (6)
C23	0.3029 (3)	0.8/60(3)	0.2091 (3)	0.0162 (6)
C24	0.2352 (3)	0.5818 (3)	0.5051 (3)	0.0148 (6)
C25	0.2099 (3)	0.4613 (3)	0.5673 (3)	0.0219 (7)
H25A	0.1252	0.4330	0.5505	0.033*
H25B	0.2127	0.4693	0.6412	0.033*
H25C	0.2753	0.4034	0.5505	0.033*
C26	0.0355 (3)	0.8338 (3)	0.4138 (2)	0.0113 (6)
C27	-0.1052 (3)	0.8548 (3)	0.4291 (3)	0.0161 (6)
H27A	-0.1508	0.8404	0.3667	0.024*
H27B	-0.1198	0.9379	0.4423	0.024*
H27C	-0.1368	0.7999	0.4881	0.024*
C28	0.3296 (3)	0.9928 (3)	0.4006 (3)	0.0169 (7)
C29	0.4871 (3)	0.8127 (3)	0.4656 (3)	0.0198 (7)

C30	0.3235 (3)	0.9004 (3)	0.6145 (3)	0.0176 (7)
01	0.5308 (2)	0.6419 (2)	0.28700 (19)	0.0244 (6)
O2	0.3279 (2)	0.9606 (2)	0.1523 (2)	0.0252 (6)
03	0.2162 (2)	0.5898 (2)	0.40969 (17)	0.0177 (5)
O4	0.2747 (2)	0.6648 (2)	0.55293 (18)	0.0173 (5)
05	0.0720 (2)	0.7938 (2)	0.33261 (17)	0.0159 (5)
O6	0.1085 (2)	0.8585 (2)	0.48501 (17)	0.0141 (4)
07	0.3398 (3)	1.0848 (2)	0.3535 (2)	0.0280 (6)
08	0.5950(2)	0.7955 (3)	0.4569 (2)	0.0335 (7)
09	0.3396 (3)	0.9413 (2)	0.6878 (2)	0.0300 (6)
Os1	0.26266 (2)	0.74048 (2)	0.30025 (2)	0.01069 (4)
Os2	0.31080 (2)	0.84058 (2)	0.47863 (2)	0.01191 (4)
P1	0.16761 (7)	0.64666 (7)	0.16222 (6)	0.01095 (15)
				· · · · ·

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0122 (14)	0.0121 (15)	0.0139 (15)	0.0001 (11)	-0.0031 (12)	-0.0014 (12)
C2	0.0146 (15)	0.0164 (16)	0.0136 (15)	-0.0008 (12)	0.0003 (12)	-0.0056 (12)
C3	0.0140 (15)	0.0195 (16)	0.0132 (15)	-0.0031 (12)	-0.0002 (12)	-0.0005 (12)
C4	0.0150 (15)	0.0132 (15)	0.0176 (16)	-0.0012 (12)	-0.0043 (12)	-0.0026 (12)
C5	0.0182 (16)	0.0178 (16)	0.0158 (16)	-0.0001 (13)	0.0012 (13)	-0.0071 (13)
C6	0.0133 (14)	0.0185 (16)	0.0110 (15)	0.0002 (12)	0.0014 (12)	-0.0019 (12)
C7	0.0291 (19)	0.0160 (17)	0.0263 (19)	-0.0043 (14)	0.0014 (15)	-0.0025 (14)
C8	0.0136 (14)	0.0121 (14)	0.0116 (15)	-0.0018 (11)	0.0014 (12)	-0.0007 (11)
C9	0.0159 (17)	0.051 (2)	0.0130 (17)	0.0006 (16)	-0.0027 (13)	-0.0080 (16)
C10	0.0116 (16)	0.052 (3)	0.0196 (18)	0.0007 (16)	-0.0013 (13)	-0.0082 (17)
C11	0.0187 (16)	0.0151 (15)	0.0136 (15)	-0.0004 (12)	0.0014 (12)	-0.0008 (12)
C12	0.0182 (16)	0.033 (2)	0.0107 (16)	-0.0011 (14)	-0.0025 (13)	0.0016 (14)
C13	0.0139 (15)	0.0313 (19)	0.0137 (16)	-0.0017 (14)	-0.0017 (12)	-0.0003 (14)
C14	0.0198 (17)	0.0288 (19)	0.0150 (16)	-0.0015 (14)	0.0024 (13)	0.0001 (14)
C15	0.0113 (14)	0.0171 (15)	0.0091 (14)	-0.0002 (12)	-0.0003 (11)	-0.0033 (12)
C16	0.0161 (15)	0.0174 (16)	0.0183 (16)	-0.0029 (12)	-0.0039 (13)	-0.0011 (13)
C17	0.0229 (17)	0.0164 (16)	0.0170 (16)	0.0029 (13)	-0.0032 (13)	-0.0033 (13)
C18	0.0151 (15)	0.0289 (18)	0.0105 (15)	0.0042 (13)	-0.0001 (12)	-0.0045 (13)
C19	0.0134 (15)	0.0254 (18)	0.0158 (16)	-0.0011 (13)	0.0012 (12)	-0.0026 (13)
C20	0.0161 (15)	0.0191 (16)	0.0153 (16)	-0.0019 (13)	0.0003 (12)	-0.0020 (13)
C21	0.0188 (17)	0.035 (2)	0.027 (2)	0.0091 (15)	-0.0022 (15)	-0.0020 (16)
C22	0.0166 (16)	0.0174 (16)	0.0123 (15)	-0.0021 (12)	-0.0022 (12)	-0.0043 (12)
C23	0.0130 (15)	0.0172 (16)	0.0191 (17)	-0.0014 (12)	-0.0008 (12)	-0.0049 (13)
C24	0.0105 (14)	0.0169 (16)	0.0169 (16)	0.0047 (12)	-0.0002 (12)	-0.0018 (12)
C25	0.0248 (18)	0.0175 (17)	0.0226 (18)	-0.0001 (14)	0.0013 (14)	0.0010 (14)
C26	0.0126 (14)	0.0067 (13)	0.0139 (15)	-0.0001 (11)	0.0000 (11)	0.0015 (11)
C27	0.0107 (14)	0.0164 (16)	0.0218 (17)	0.0017 (12)	-0.0004 (12)	-0.0046 (13)
C28	0.0143 (15)	0.0186 (17)	0.0184 (16)	-0.0022 (12)	-0.0020 (12)	-0.0046 (13)
C29	0.0188 (17)	0.0204 (17)	0.0231 (18)	-0.0023 (13)	-0.0044 (14)	-0.0137 (14)
C30	0.0168 (16)	0.0174 (16)	0.0194 (17)	0.0034 (13)	-0.0039 (13)	-0.0048 (13)
01	0.0170 (12)	0.0357 (15)	0.0218 (13)	0.0083 (11)	-0.0028 (10)	-0.0093 (11)

O2	0.0264 (13)	0.0222 (13)	0.0249 (14)	-0.0046 (10)	0.0025 (11)	0.0052 (11)
O3	0.0231 (12)	0.0169 (12)	0.0133 (11)	-0.0057 (9)	-0.0018 (9)	-0.0018 (9)
O4	0.0220 (12)	0.0143 (11)	0.0154 (12)	0.0015 (9)	-0.0033 (9)	-0.0015 (9)
O5	0.0109 (10)	0.0222 (12)	0.0156 (11)	0.0009 (9)	-0.0002 (9)	-0.0064 (9)
O6	0.0108 (10)	0.0178 (11)	0.0147 (11)	0.0008 (9)	-0.0002 (8)	-0.0055 (9)
O7	0.0348 (15)	0.0190 (13)	0.0297 (15)	-0.0072 (11)	-0.0022 (12)	-0.0004 (11)
08	0.0141 (13)	0.0394 (16)	0.0526 (19)	0.0008 (11)	-0.0028 (12)	-0.0274 (14)
09	0.0373 (15)	0.0333 (15)	0.0224 (14)	0.0082 (12)	-0.0084 (12)	-0.0151 (12)
Os1	0.00957 (6)	0.01199 (7)	0.01086 (7)	-0.00047 (4)	0.00070 (4)	-0.00293 (4)
Os2	0.01044 (6)	0.01276 (7)	0.01335 (7)	-0.00026 (4)	-0.00131 (5)	-0.00473 (5)
P1	0.0100 (3)	0.0127 (4)	0.0104 (4)	-0.0016 (3)	0.0017 (3)	-0.0024 (3)

Geometric parameters (Å, °)

C1—C6	1.392 (4)	C18—C19	1.395 (5)
C1—C2	1.406 (4)	C18—C21	1.511 (5)
C1—P1	1.820 (3)	C19—C20	1.397 (5)
C2—C3	1.383 (4)	C19—H19	0.9500
C2—H2	0.9500	C20—H20	0.9500
C3—C4	1.398 (5)	C21—H21A	0.9800
С3—Н3	0.9500	C21—H21B	0.9800
C4—C5	1.399 (5)	C21—H21C	0.9800
C4—C7	1.507 (5)	C22—O1	1.157 (4)
C5—C6	1.394 (5)	C22—Os1	1.858 (3)
С5—Н5	0.9500	C23—O2	1.159 (4)
С6—Н6	0.9500	C23—Os1	1.857 (3)
С7—Н7А	0.9800	C24—O3	1.256 (4)
С7—Н7В	0.9800	C24—O4	1.260 (4)
С7—Н7С	0.9800	C24—C25	1.512 (5)
C8—C13	1.391 (4)	C25—H25A	0.9800
C8—C9	1.394 (5)	C25—H25B	0.9800
C8—P1	1.825 (3)	C25—H25C	0.9800
C9—C10	1.386 (5)	C26—O5	1.255 (4)
С9—Н9	0.9500	C26—O6	1.269 (4)
C10—C11	1.385 (5)	C26—C27	1.502 (4)
C10—H10	0.9500	C27—H27A	0.9800
C11—C12	1.400 (5)	C27—H27B	0.9800
C11—C14	1.508 (5)	С27—Н27С	0.9800
C12—C13	1.391 (5)	C28—O7	1.139 (4)
С12—Н12	0.9500	C28—Os2	1.887 (3)
С13—Н13	0.9500	C29—O8	1.148 (4)
C14—H14A	0.9800	C29—Os2	1.875 (3)
C14—H14B	0.9800	C30—O9	1.126 (4)
C14—H14C	0.9800	C30—Os2	1.979 (3)
C15—C20	1.395 (4)	O3—Os1	2.128 (2)
C15—C16	1.399 (4)	O4—Os2	2.122 (2)
C15—P1	1.834 (3)	O5—Os1	2.127 (2)
C16—C17	1.388 (5)	O6—Os2	2.124 (2)

C16—H16	0.9500	Os1—P1	2.4261 (10)
C17—C18	1.392 (5)	Os1—Os2	2.7624 (8)
C17—H17	0.9500		
C6—C1—C2	118.4 (3)	H21A—C21—H21B	109.5
C6—C1—P1	123.4 (2)	C18—C21—H21C	109.5
C2—C1—P1	118.3 (2)	H21A—C21—H21C	109.5
C3—C2—C1	120.6 (3)	H21B—C21—H21C	109.5
С3—С2—Н2	119.7	O1—C22—Os1	176.5 (3)
C1—C2—H2	119.7	O2—C23—Os1	179.9 (4)
C2—C3—C4	121.2 (3)	O3—C24—O4	125.8 (3)
C2—C3—H3	119.4	03-C24-C25	116.7 (3)
С4—С3—Н3	119.4	Q4—C24—C25	117.5 (3)
$C_{3}-C_{4}-C_{5}$	118.1 (3)	C24—C25—H25A	109.5
C3-C4-C7	120.5(3)	C24—C25—H25B	109.5
C5-C4-C7	121.3 (3)	H25A—C25—H25B	109.5
C6-C5-C4	120.8(3)	C_{24} C_{25} H_{25}	109.5
С6—С5—Н5	119.6	$H_{25}^{-} = H_{25}^{-} = H_{$	109.5
C4-C5-H5	119.6	$H_{25R} = C_{25} = H_{25C}$	109.5
C1 - C6 - C5	120.8 (3)	05-026-06	105.5 125.1(3)
C1 - C6 - H6	119.6	$05 - C^{26} - C^{27}$	125.1(3) 118 1(3)
C5-C6-H6	119.6	05 - 020 - 027	116.7(3)
C4 - C7 - H7A	109.5	$C_{20} = C_{27} = H_{27}$	109.5
C_{4} C_{7} H_{7}^{7} H_{7}^{7}	109.5	C_{26} C_{27} H_{27R}	109.5
$H_{7A} = C_7 = H_{7B}$	109.5	$H_{27A} = C_{27} = H_{27B}$	109.5
$\Gamma = \Gamma =$	109.5	1127A - C27 - 1127B	109.5
$H_{7A} = C_7 = H_7C$	109.5	H_{27} C_{27} H_{27} H_{27}	109.5
H7B C7 H7C	109.5	H27R C27 H27C	109.5
11/D - C / - 11/C	107.5	$\frac{112}{D} - \frac{12}{C} - \frac{112}{C}$	109.3
$C_{13} = C_{8} = C_{9}$	117.0(3) 122.5(2)	0^{-1} -2^{-	179.4(3)
$C_{13} = C_{0} = C_{11}$	122.3(2)	00 - 029 - 032	179.5(3)
$C_{2} = C_{3} = C_{1}$	119.3(2) 121.0(2)	$C_{24} = C_{30} = C_{32}$	175.3(3)
$C_{10} = C_{9} = C_{8}$	121.0 (5)	$C_{24} = 03 = 081$	123.3(2)
C_{10} C_{20} H_{20}	119.5	$C_{24} = 04 = 0s_{2}$	122.0(2)
$C_{0} = C_{0} = C_{0}$	119.3	$C_{20} = 05 = 051$	123.1(2)
$C_{11} = C_{10} = C_{9}$	121.8 (5)	$C_{20} = 00 = 0.052$	125.45(19)
C_{10} C_{10} H_{10}	119.1	$C_{23} = O_{81} = C_{22}$	90.85 (14)
$C_{2} = C_{10} = H_{10}$	119.1	$C_{23} = 0.5$	90.20 (12)
C10-C11-C12	117.2 (3)	$C_{22} = 0.1 = 0.3$	172.36 (12)
C10-C11-C14	120.8 (3)	$C_{23} = 0.1 = 0.3$	1//.66 (12)
C12 - C11 - C14	122.0 (3)	$C_{22} = 0s_1 = 03$	89.97 (12)
C13—C12—C11	121.4 (3)	05-0s1-03	82.89 (9)
C13—C12—H12	119.3	C_{23} —Os1—P1	90.97 (11)
C11—C12—H12	119.3	C22—Os1—P1	98.03 (10)
C12—C13—C8	120.9 (3)	US-USI-PI	84.88 (7)
C12—C13—H13	119.6	O3—Os1—P1	91.10(7)
C8—C13—H13	119.6	C23—Os1—Os2	96.20 (10)
C11—C14—H14A	109.5	C22—Os1—Os2	94.14 (10)
C11—C14—H14B	109.5	O5—Os1—Os2	82.15 (6)

H14A C14 H14P	100.5	$O_2 O_2 I O_2$	91.55(7)
HI4A - CI4 - HI4B	109.5	$O_3 = O_{S1} = O_{S2}$	81.33(7)
	109.5	P1 = OS1 = OS2	103.78(2)
H14A-C14-H14C	109.5	$C_{29} = O_{82} = C_{28}$	89.92 (15)
H14B - C14 - H14C	109.5	$C_{29} = O_{s2} = C_{30}$	94.50 (14)
C20—C15—C16	118.1 (3)	C28—Os2—C30	95.08 (14)
C20—C15—P1	123.0 (2)	C29—Os2—O4	93.53 (13)
C16—C15—P1	118.6 (2)	C28—Os2—O4	173.31 (11)
C17—C16—C15	120.7 (3)	C30—Os2—O4	90.37 (12)
C17—C16—H16	119.6	C29—Os2—O6	174.59 (11)
C15—C16—H16	119.6	C28—Os2—O6	92.36 (12)
C16—C17—C18	121.5 (3)	C30—Os2—O6	90.19 (11)
С16—С17—Н17	119.3	O4—Os2—O6	83.72 (9)
C18—C17—H17	119.3	C29—Os2—Os1	91.62 (10)
C17—C18—C19	117.8 (3)	C28—Os2—Os1	90.16 (10)
C17—C18—C21	121.0 (3)	C30—Os2—Os1	171.95 (10)
C19—C18—C21	121.2 (3)	O4—Os2—Os1	84.02 (7)
C18—C19—C20	121.2 (3)	O6—Os2—Os1	83.47 (6)
С18—С19—Н19	119.4	C1—P1—C8	103.95 (14)
C20-C19-H19	119.4	C1—P1—C15	104.43 (14)
C_{15} C_{20} C_{19} C	120.6 (3)	C8 - P1 - C15	104.85(14)
$C_{15} = C_{20} = H_{20}$	119 7	C1 - P1 - Os1	116 59 (11)
C19 - C20 - H20	119.7	$C8$ _P1_Os1	115.81 (11)
$C_{19} = C_{20} = H_{20}$	100.5	C_15 P1 O_{c1}	100.00(11)
$C_{10} = C_{21} = H_{21R}$	109.5	015-11-031	109.99 (10)
C10-C21-H21B	109.5		
$C \in C 1 = C 2 = C 2$	1 1 (5)	P1 C15 C20 C10	1714(2)
$C_0 - C_1 - C_2 - C_3$	-1.1(3)	P1 = C13 = C20 = C19	1/1.4(2)
P1 - C1 - C2 - C3	1/1.7(2)	C18 - C19 - C20 - C15	0.6(5)
C1 - C2 - C3 - C4	1.0 (5)	04—024—03—0s1	6.4 (5)
$C_2 - C_3 - C_4 - C_5$	0.0 (5)	$C_{25} - C_{24} - O_{3} - O_{81}$	-172.8(2)
C2—C3—C4—C/	-178.3 (3)	O3—C24—O4—Os2	2.3 (4)
C3—C4—C5—C6	-0.9 (5)	C25—C24—O4—Os2	-178.5 (2)
C7—C4—C5—C6	177.3 (3)	O6—C26—O5—Os1	6.5 (4)
C2-C1-C6-C5	0.2 (5)	C27—C26—O5—Os1	-173.6(2)
P1—C1—C6—C5	-178.6 (2)	O5—C26—O6—Os2	1.6 (4)
C4—C5—C6—C1	0.8 (5)	C27—C26—O6—Os2	-178.3 (2)
C13—C8—C9—C10	0.4 (6)	C6—C1—P1—C8	-0.2 (3)
P1-C8-C9-C10	174.8 (3)	C2-C1-P1-C8	-178.9 (2)
C8—C9—C10—C11	-1.1 (6)	C6—C1—P1—C15	109.5 (3)
C9—C10—C11—C12	1.4 (6)	C2-C1-P1-C15	-69.2 (3)
C9—C10—C11—C14	-179.0 (4)	C6-C1-P1-Os1	-128.9 (2)
C10-C11-C12-C13	-1.2 (5)	C2-C1-P1-Os1	52.3 (3)
C14—C11—C12—C13	179.3 (3)	C13—C8—P1—C1	82.1 (3)
C11—C12—C13—C8	0.6 (6)	C9—C8—P1—C1	-92.0 (3)
C9—C8—C13—C12	-0.2(5)	C13—C8—P1—C15	-27.3(3)
P1-C8-C13-C12	-174.4(3)	C9-C8-P1-C15	158.6 (3)
C_{20} C_{15} C_{16} C_{17}	1.5 (5)	C13 - C8 - P1 - Os1	-1487(2)
P1-C15-C16-C17	-1723(3)	C9-C8-P1-Os1	37 2 (3)
C_{15} C_{16} C_{17} C_{18}	0.7(5)	C_{20} C_{15} P_{1} C_{1}	61(3)
	··· (·)	020 010 $11 - 01$	0.1 (0)

C16—C17—C18—C19	-2.2(5)	C16—C15—P1—C1	179.7 (3)
C16—C17—C18—C21	1 /6.4 (3)	C20—C15—P1—C8	-71.3(3)
C17—C18—C19—C20	1.5 (5)	C16—C15—P1—C8	
C21—C18—C19—C20	-177.0 (3)	C20—C15—P1—Os1	-119.7 (3)
C16—C15—C20—C19	-2.2 (5)	C16—C15—P1—Os1	53.8 (3)

 $Bis(\mu-acetato-1\kappa O: 2\kappa O') bis[tris(4-methylphenyl)phosphane]-1\kappa P, 2\kappa P-bis(dicarbonylosmium)(Os-Os) p-xylene sesquisolvate (4@1.5C8H10)$

Crystal data

1

$[Os_{2}(C_{2}H_{3}O_{2})_{2}(C_{21}H_{21}P)_{2}(CO)_{4}]\cdot1.5C_{8}H_{10}$ $M_{r} = 1378.46$ Triclinic, $P\overline{1}$ a = 12.81225 (16) Å b = 14.8455 (2) Å c = 16.6818 (2) Å $a = 98.1785 (11)^{\circ}$ $\beta = 101.7904 (11)^{\circ}$ $\gamma = 113.3846 (14)^{\circ}$	Z = 2 F(000) = 1362 $D_x = 1.658 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 23482 reflections $\theta = 3.7-73.2^{\circ}$ $\mu = 9.55 \text{ mm}^{-1}$ T = 293 K Rectangular plate, clear pale yellow
V = 2761.37 (7) Å ³	$0.11 \times 0.07 \times 0.02 \text{ mm}$
Data collection	
Rigaku SuperNova AtlasS2 CCD diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 5.2387 pixels mm ⁻¹ ω scans Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2017)	$T_{\min} = 0.626, T_{\max} = 1.000$ 49090 measured reflections 9768 independent reflections 8691 reflections with $I > 2\sigma(I)$ $R_{int} = 0.066$ $\theta_{\max} = 66.6^{\circ}, \theta_{\min} = 3.4^{\circ}$ $h = -15 \rightarrow 15$ $k = -17 \rightarrow 17$ $l = -19 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.068$ S = 1.05	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0326P)^2 + 0.5818P]$ where $P = (F_o^2 + 2F_c^2)/3$
9/08 renections	$(\Delta/\sigma)_{\rm max} = 0.009$

Special details

0 restraints

678 parameters

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm max} = 2.09 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -1.11 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Os1	0.52561 (2)	0.31103 (2)	0.17940 (2)	0.01350 (5)
Os2	0.72811 (2)	0.49183 (2)	0.22971 (2)	0.01374 (5)

P1	0.32377 (7)	0.18569 (6)	0.15247 (6)	0.01582 (17)
P2	0.87312 (7)	0.66724 (6)	0.28705 (5)	0.01529 (17)
01	0.6466 (2)	0.2025 (2)	0.27154 (18)	0.0273 (6)
O2	0.5582 (2)	0.2355 (2)	0.01363 (17)	0.0262 (6)
03	0.8908 (2)	0.3974 (2)	0.28500 (19)	0.0293 (6)
04	0.7791 (2)	0.4713 (2)	0.06201 (18)	0.0302 (6)
05	0.4957 (2)	0.37716 (19)	0.28926 (16)	0.0191 (5)
06	0.6814 (2)	0.4997 (2)	0.34497 (16)	0.0229 (6)
07	0.4501 (2)	0.39783 (19)	0.11990 (16)	0.0201 (5)
08	0.6001 (2)	0.54765 (18)	0.19350 (17)	0.0210 (5)
C1	0.5991 (3)	0.2435 (3)	0.2357 (2)	0.0202 (8)
C2	0.5478 (3)	0.2634(3)	0.0782(2)	0.0191 (8)
C3	0.8295 (3)	0.4349(3)	0.2647(2)	0.0205 (8)
C4	0 7596 (3)	0.4799(3)	0.1262(2)	0.0202(8)
C5	0.7590(3) 0.5784(3)	0.4483(3)	0.1202(2) 0.3484(2)	0.0208(8)
C6	0.5499(4)	0.4710(3)	0.4293(3)	0.0280(0)
H6A	0.3133 (1)	0.466933	0.416934	0.042*
H6R	0.471410	0.537999	0.461884	0.042*
H6C	0.553870	0.337999	0.460874	0.042
C7	0.555877	0.422038	0.400074 0.1434(2)	0.042
C8	0.4981(3) 0.4266(4)	0.4950(3)	0.1434(2) 0.1082(3)	0.0214(8) 0.0332(10)
U8 A	0.423870	0.5430 (3)	0.1082 (5)	0.0502 (10)
LIOA	0.423870	0.542089	0.130633	0.050*
	0.402793	0.014344	0.139033	0.050*
	0.347401 0.2214(2)	0.311/09	0.112302 0.1172(2)	0.030°
C9	0.2214(3) 0.1024(2)	0.2385(3)	0.1172(2) 0.1778(2)	0.0184(7)
	0.1954 (5)	0.2931 (3)	0.1778(2)	0.0198 (7)
HIU C11	0.216126	0.292314	0.234216	0.024*
	0.1323 (3)	0.3483 (3)	0.1547 (2)	0.0224 (8)
HII	0.114982	0.384548	0.195946	0.027*
C12	0.0959 (3)	0.3506 (3)	0.0702(3)	0.0229 (8)
C13	0.1244 (3)	0.2967 (3)	0.0105 (3)	0.0268 (8)
H13	0.101210	0.297283	-0.045899	0.032*
C14	0.1866 (3)	0.2418 (3)	0.0330 (2)	0.0233 (8)
H14	0.205414	0.206952	-0.008293	0.028*
C15	0.0313 (4)	0.4125 (3)	0.0454 (3)	0.0313 (9)
H15A	-0.005020	0.424502	0.088157	0.047*
H15B	-0.028828	0.376251	-0.007556	0.047*
H15C	0.086583	0.476050	0.039950	0.047*
C16	0.2803 (3)	0.0689 (3)	0.0732 (2)	0.0183 (7)
C17	0.1659 (3)	0.0121 (3)	0.0176 (2)	0.0228 (8)
H17	0.108135	0.034979	0.018611	0.027*
C18	0.1379 (3)	-0.0777 (3)	-0.0388(2)	0.0237 (8)
H18	0.061579	-0.114091	-0.075470	0.028*
C19	0.2219 (3)	-0.1146 (3)	-0.0416 (2)	0.0197 (7)
C20	0.3357 (3)	-0.0581 (3)	0.0153 (2)	0.0208 (7)
H20	0.393119	-0.081477	0.015326	0.025*
C21	0.3637 (3)	0.0315 (3)	0.0712 (2)	0.0210 (8)
H21	0.439844	0.067623	0.108184	0.025*

C22	0.1942 (3)	-0.2102 (3)	-0.1050(2)	0.0250 (8)
H22A	0.245412	-0.194378	-0.140910	0.037*
H22B	0.112994	-0.239125	-0.138782	0.037*
H22C	0.206713	-0.257824	-0.075699	0.037*
C23	0.2753 (3)	0.1389(3)	0.2410 (2)	0.0183 (7)
C24	0.1564 (3)	0.0729 (3)	0.2272 (3)	0.0235 (8)
H24	0.104064	0.050648	0.173139	0.028*
C25	0.1153 (3)	0.0399(3)	0.2936 (3)	0.0232 (8)
H25	0.035691	-0.004162	0.283412	0.028*
C26	0.1916 (3)	0.0719 (3)	0.3750 (3)	0.0229 (8)
C27	0.3100 (3)	0.1376 (3)	0.3879 (3)	0.0264 (8)
H27	0.362345	0.160071	0.442027	0.032*
C28	0.3521 (3)	0.1706 (3)	0.3214 (3)	0.0245(8)
H28	0.431883	0.213904	0.331386	0.029*
C29	0 1465 (4)	0.0355(3)	0.4471(3)	0.0323(9)
H29A	0.080771	0.050251	0.450432	0.048*
H29B	0.208936	0.069394	0 499248	0.048*
H29C	0.121051	-0.036301	0.437346	0.048*
C30	0.121001 0.9286 (3)	0.7089(3)	0.4073(2)	0.043 0.0178(7)
C31	0.9200(3) 0.8474(3)	0.7050(3)	0.4025(2) 0.4485(2)	0.0178(7)
H31	0.767888	0.7030(3)	0.420013	0.0198 (7)
C32	0.8847 (3)	0.003074 0.7333(3)	0.420013 0.5358(2)	0.024
U32 H32	0.829639	0.730875	0.5558 (2)	0.0207 (7)
C22	1 0028 (2)	0.750875 0.7654(2)	0.505175	0.023°
C33	1.0028(3) 1.0820(2)	0.7034(3)	0.3810(2) 0.5250(2)	0.0210(0)
C34	1.0829 (3)	0.7084 (3)	0.5550 (2)	0.0228 (8)
H34	1.101987	0.789112	0.303842	0.027^{*}
035	1.04//(3)	0.7413 (3)	0.44/4 (2)	0.0206 (7)
H35	1.103286	0.744667	0.418307	0.025*
036	1.0416 (4)	0.7940(3)	0.6762 (2)	0.0286 (9)
H36A	1.038/92	0.856629	0.696442	0.043*
H36B	1.121316	0.801975	0.696327	0.043*
H36C	0.989527	0.741690	0.696652	0.043*
C37	1.0046 (3)	0.6985 (3)	0.2496 (2)	0.0173 (7)
C38	1.0630 (3)	0.6365 (3)	0.2544 (3)	0.0235 (8)
H38	1.038309	0.583498	0.280537	0.028*
C39	1.1576 (3)	0.6532 (3)	0.2204 (3)	0.0244 (8)
H39	1.196303	0.612016	0.225191	0.029*
C40	1.1954 (3)	0.7304 (3)	0.1796 (3)	0.0258 (8)
C41	1.1394 (3)	0.7934 (3)	0.1769 (3)	0.0270 (9)
H41	1.164746	0.846531	0.151005	0.032*
C42	1.0463 (3)	0.7788 (3)	0.2120 (3)	0.0244 (8)
H42	1.011337	0.822979	0.210336	0.029*
C43	1.2929 (4)	0.7427 (4)	0.1380 (3)	0.0337 (10)
H43A	1.357108	0.738327	0.175825	0.050*
H43B	1.321035	0.807465	0.124746	0.050*
H43C	1.262384	0.689978	0.086924	0.050*
C44	0.8176 (3)	0.7585 (3)	0.2589 (2)	0.0170 (7)
C45	0.8316 (3)	0.8426 (3)	0.3172 (2)	0.0195 (7)

H45	0.874379	0.856310	0.373248	0.023*
C46	0.7829 (3)	0.9061 (3)	0.2928 (3)	0.0237 (8)
H46	0.793734	0.961822	0.332987	0.028*
C47	0.7182 (3)	0.8885 (3)	0.2098 (3)	0.0240 (8)
C48	0.7060 (3)	0.8052 (3)	0.1513 (3)	0.0248 (8)
H48	0.664560	0.792533	0.095008	0.030*
C49	0.7538 (3)	0.7410 (3)	0.1748 (2)	0.0211 (7)
H49	0.743559	0.685698	0.134480	0.025*
C50	0.6617 (4)	0.9549 (3)	0.1835 (3)	0.0347 (10)
H50A	0.576957	0.917897	0.169453	0.052*
H50B	0.683391	0.975972	0.135111	0.052*
H50C	0.688619	1.013497	0.229212	0.052*
C51	0.4260 (4)	0.6645 (3)	0.3715 (3)	0.0303 (9)
C52	0.4041 (3)	0.7228 (3)	0.4328 (3)	0.0308 (9)
H52	0.453454	0.791965	0.452394	0.037*
C53	0.3088 (4)	0.6788 (3)	0.4654 (3)	0.0298 (9)
H53	0.296385	0.719046	0.507002	0.036*
C54	0.2323 (3)	0.5762 (3)	0.4369 (3)	0.0269 (9)
C55	0.2548 (4)	0.5190 (3)	0.3750 (3)	0.0285 (9)
H55	0.204875	0.449997	0.354793	0.034*
C56	0.3493 (4)	0.5618 (3)	0.3425 (3)	0.0302 (9)
H56	0.361549	0.521472	0.300929	0.036*
C57	0.5316 (4)	0.7132 (4)	0.3385 (3)	0.0383 (10)
H57A	0.546104	0.661414	0.308249	0.057*
H57B	0.600382	0.756331	0.385135	0.057*
H57C	0.515246	0.752699	0.301284	0.057*
C58	0.1317 (4)	0.5287 (3)	0.4742 (3)	0.0360 (10)
H58A	0.063317	0.478694	0.430344	0.054*
H58B	0.112728	0.580063	0.499867	0.054*
H58C	0.155174	0.497014	0.516227	0.054*
C59	0.6146 (4)	0.0436 (4)	0.5492 (4)	0.0483 (14)
H59	0.693393	0.073771	0.581970	0.058*
C60	0.5899 (5)	0.0302 (3)	0.4632 (4)	0.0484 (14)
H60	0.652302	0.051126	0.439229	0.058*
C61	0.4750 (5)	-0.0134 (3)	0.4113 (4)	0.0434 (12)
C62	0.4498 (7)	-0.0286 (5)	0.3172 (4)	0.0687 (18)
H62A	0.370174	-0.038161	0.293340	0.103*
H62B	0.458306	-0.087231	0.293593	0.103*
H62C	0.504674	0.029967	0.304633	0.103*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Os1	0.01122 (8)	0.01568 (8)	0.01396 (9)	0.00621 (6)	0.00354 (6)	0.00397 (6)
Os2	0.01186 (8)	0.01575 (8)	0.01351 (9)	0.00615 (6)	0.00287 (6)	0.00414 (6)
P1	0.0121 (4)	0.0176 (4)	0.0184 (4)	0.0067 (3)	0.0049 (3)	0.0049 (3)
P2	0.0138 (4)	0.0166 (4)	0.0154 (4)	0.0067 (3)	0.0037 (3)	0.0043 (3)
01	0.0222 (13)	0.0301 (14)	0.0351 (16)	0.0158 (12)	0.0052 (11)	0.0158 (12)

O2	0.0272 (14)	0.0324 (14)	0.0188 (15)	0.0140 (12)	0.0083 (11)	0.0012 (11)
O3	0.0202 (13)	0.0274 (14)	0.0380 (17)	0.0134 (12)	-0.0026 (11)	0.0088 (12)
O4	0.0268 (14)	0.0426 (17)	0.0212 (16)	0.0132 (13)	0.0104 (11)	0.0090 (12)
05	0.0178 (12)	0.0248 (13)	0.0164 (13)	0.0099 (10)	0.0081 (10)	0.0040 (10)
O6	0.0234 (13)	0.0257 (13)	0.0140 (13)	0.0054 (11)	0.0074 (10)	0.0013 (10)
07	0.0134 (11)	0.0230 (13)	0.0245 (14)	0.0094 (10)	0.0022 (10)	0.0080 (10)
08	0.0157 (12)	0.0193 (12)	0.0271 (14)	0.0084 (10)	0.0037 (10)	0.0050 (10)
C1	0.0131 (16)	0.0185 (17)	0.0234 (19)	0.0010 (14)	0.0085 (14)	0.0019 (14)
C2	0.0126 (16)	0.0211 (17)	0.023 (2)	0.0071 (14)	0.0014 (14)	0.0098 (15)
C3	0.0174 (17)	0.0176 (16)	0.0191 (19)	0.0020 (14)	0.0032 (14)	0.0025 (14)
C4	0.0156 (17)	0.0235 (18)	0.017 (2)	0.0046 (14)	0.0029 (14)	0.0058 (14)
C5	0.0222 (19)	0.0252 (18)	0.023(2)	0.0146 (16)	0.0113 (15)	0.0100 (15)
C6	0.031(2)	0.037(2)	0.020(2)	0.0171 (18)	0.0108 (16)	0.0061 (16)
C7	0.0218(18)	0.0230(18)	0.0199(19)	0.0101(15)	0.0055 (15)	0.0066 (14)
C8	0.023(2)	0.027(2)	0.050(3)	0.0144(17)	0.0009 (18)	0.0137(19)
C9	0.0133(16)	0.0208(17)	0.0197(19)	0.0060(13)	0.0041 (13)	0.0056(14)
C10	0.0162(16)	0.0200(17)	0.0190(18)	0.0000(13) 0.0073(14)	0.0001(13)	0.0028(14)
C11	0.0102(10)	0.0219(17)	0.026(2)	0.0079(11)	0.0009(15)	0.0010(11) 0.0037(15)
C12	0.0190(17) 0.0163(17)	0.0217(17) 0.0267(18)	0.020(2) 0.031(2)	0.0100(15) 0.0108(15)	0.0076 (15)	0.0057(15)
C13	0.0201(18)	0.039(2)	0.028(2)	0.0150(17)	0.0070(15)	0.0100(10) 0.0173(17)
C14	0.0201(18)	0.032(2)	0.020(2) 0.021(2)	0.0130(17)	0.0090(15)	0.0173(17) 0.0083(15)
C15	0.0280(10)	0.032(2)	0.040(3)	0.0198(18)	0.0094 (18)	0.0157(19)
C16	0.020(2)	0.0218(17)	0.0185(18)	0.0170(10) 0.0073(14)	0.0051(13)	0.0167(19)
C17	0.0167(18)	0.0278(19)	0.025(2)	0.0075(11) 0.0114(15)	0.0050(15)	0.0060 (15)
C18	0.0126(17)	0.0299(19)	0.023(2)	0.0060(15)	0.0002(10)	0.00000(15)
C19	0.0120(17) 0.0199(17)	0.0299(19) 0.0196(17)	0.023(2)	0.0000(13) 0.0071(14)	0.0019(11) 0.0071(14)	0.0019(19) 0.0068(14)
C20	0.0175(17)	0.0230(18)	0.024(2)	0.00071(11)	0.0063(14)	0.00000(11) 0.0072(15)
C21	0.0141(16)	0.0229(18)	0.021(2) 0.0199(19)	0.0100(11) 0.0044(14)	0.0003(11) 0.0011(14)	0.0072(13)
C22	0.0226(18)	0.0225(18)	0.023(2)	0.0087(15)	0.0041 (15)	0.00012(11)
C23	0.0220(10) 0.0177(17)	0.0211(17)	0.0208(19)	0.0007(12) 0.0108(14)	0.0093(14)	0.0003(12) 0.0072(14)
C24	0.0209(18)	0.0240(18)	0.024(2)	0.0088(15)	0.0070 (15)	0.000/2(11) 0.0043(15)
C25	0.0166(17)	0.0230(18)	0.031(2)	0.0074(14)	0.0119(15)	0.0072(15)
C26	0.0280(19)	0.0200(10) 0.0201(17)	0.029(2)	0.0071(11) 0.0137(15)	0.0144(16)	0.0072(15) 0.0113(15)
C27	0.0260(1))	0.0286(19)	0.023(2)	0.0101 (16)	0.0044 (16)	0.0095 (16)
C28	0.0196(18)	0.0251(18)	0.025(2)	0.0059(15)	0.0037(15)	0.0106 (15)
C29	0.037(2)	0.031(2)	0.031(2)	0.0121 (18)	0.0162(18)	0.0127(18)
C30	0.0192(17)	0.0187(16)	0.0175(18)	0.0121(10) 0.0107(14)	0.0031(14)	0.0067(13)
C31	0.0192(17) 0.0164(17)	0.0204(17)	0.0229(19)	0.0107(11) 0.0090(14)	0.0036(14)	0.0007(13)
C32	0.0233(18)	0.0201(17)	0.022 (1)	0.0000(14)	0.0030(11) 0.0089(15)	0.0066 (14)
C33	0.0200(10)	0.0170(17)	0.022(2)	0.0124(15)	0.0009(15)	0.0062 (14)
C34	0.030(2) 0.0185(17)	0.0171(10) 0.0223(17)	0.023(2)	0.0121(13) 0.0081(14)	-0.0000(10)	0.0002(14)
C35	0.0103(17) 0.0177(17)	0.0223(17) 0.0231(17)	0.023(2)	0.0001(14) 0.0103(14)	0.0007(14)	0.0032(14) 0.0045(14)
C36	0.033(2)	0.0231(17) 0.032(2)	0.0205(15)	0.0105(11) 0.0176(18)	0.0033 (11)	0.0047 (16)
C37	0.035(2)	0.052(2)	0.022(2)	0.0073(13)	0.0010(10)	0.0016(13)
C38	0.0202(18)	0.0263(19)	0.029(2)	0.0075(15)	0.00000(15)	0.0133(16)
C39	0.0199(18)	0.0278(19)	0.030(2)	0.0145(15)	0.0080(15)	0.0077 (16)
C40	0.0209(18)	0.036(2)	0.024(2)	0.0134 (16)	0.0091(15)	0.0105 (16)
C41	0.0228(19)	0.033(2)	0.027(2)	0.0153 (16)	0.0159(17)	0.0217 (18)
					(-/)	

C42	0.0215 (18)	0.0241 (18)	0.033 (2)	0.0122 (15)	0.0097 (16)	0.0127 (16)
C43	0.029 (2)	0.047 (2)	0.037 (2)	0.0218 (19)	0.0172 (18)	0.019 (2)
C44	0.0122 (15)	0.0193 (16)	0.0219 (19)	0.0075 (13)	0.0068 (13)	0.0079 (14)
C45	0.0166 (17)	0.0223 (17)	0.0213 (19)	0.0086 (14)	0.0073 (14)	0.0077 (14)
C46	0.0250 (19)	0.0189 (17)	0.031 (2)	0.0104 (15)	0.0122 (16)	0.0091 (15)
C47	0.0186 (18)	0.0278 (19)	0.032 (2)	0.0110 (15)	0.0123 (15)	0.0156 (16)
C48	0.0199 (18)	0.030 (2)	0.025 (2)	0.0095 (15)	0.0067 (15)	0.0146 (16)
C49	0.0203 (18)	0.0247 (18)	0.0206 (19)	0.0104 (15)	0.0081 (14)	0.0075 (14)
C50	0.035 (2)	0.037 (2)	0.046 (3)	0.0227 (19)	0.015 (2)	0.024 (2)
C51	0.024 (2)	0.035 (2)	0.035 (2)	0.0179 (17)	0.0029 (17)	0.0131 (18)
C52	0.0186 (19)	0.027 (2)	0.042 (3)	0.0088 (16)	0.0020 (17)	0.0077 (18)
C53	0.024 (2)	0.030 (2)	0.040 (3)	0.0174 (17)	0.0077 (17)	0.0066 (18)
C54	0.0182 (18)	0.031 (2)	0.032 (2)	0.0139 (16)	-0.0015 (15)	0.0118 (17)
C55	0.028 (2)	0.0253 (19)	0.028 (2)	0.0117 (16)	-0.0011 (16)	0.0077 (16)
C56	0.034 (2)	0.031 (2)	0.025 (2)	0.0188 (18)	0.0002 (17)	0.0051 (17)
C57	0.029 (2)	0.045 (3)	0.045 (3)	0.019 (2)	0.013 (2)	0.015 (2)
C58	0.027 (2)	0.033 (2)	0.049 (3)	0.0144 (18)	0.0086 (19)	0.017 (2)
C59	0.032 (2)	0.028 (2)	0.090 (5)	0.0139 (19)	0.025 (3)	0.018 (2)
C60	0.049 (3)	0.027 (2)	0.088 (4)	0.020 (2)	0.047 (3)	0.024 (2)
C61	0.050 (3)	0.027 (2)	0.062 (3)	0.019 (2)	0.027 (2)	0.014 (2)
C62	0.094 (5)	0.043 (3)	0.075 (5)	0.029 (3)	0.036 (4)	0.014 (3)

Geometric parameters (Å, °)

Os1—Os2	2.7534 (2)	C29—H29A	0.9600
Os1—P1	2.4123 (8)	C29—H29B	0.9600
Os1—O5	2.132 (2)	C29—H29C	0.9600
Os1—O7	2.131 (2)	C30—C31	1.402 (5)
Os1—C1	1.852 (4)	C30—C35	1.404 (5)
Os1—C2	1.857 (4)	C31—H31	0.9300
Os2—P2	2.4233 (8)	C31—C32	1.382 (5)
Os2—O6	2.129 (3)	С32—Н32	0.9300
Os2—O8	2.135 (2)	C32—C33	1.395 (5)
Os2—C3	1.857 (4)	C33—C34	1.391 (6)
Os2—C4	1.853 (4)	C33—C36	1.507 (5)
Р1—С9	1.821 (4)	С34—Н34	0.9300
P1—C16	1.829 (4)	C34—C35	1.386 (6)
P1—C23	1.836 (4)	С35—Н35	0.9300
P2—C30	1.828 (4)	C36—H36A	0.9600
P2—C37	1.826 (4)	C36—H36B	0.9600
P2—C44	1.836 (4)	C36—H36C	0.9600
01—C1	1.161 (5)	C37—C38	1.399 (5)
O2—C2	1.151 (5)	C37—C42	1.395 (5)
O3—C3	1.153 (5)	C38—H38	0.9300
O4—C4	1.149 (5)	C38—C39	1.390 (6)
O5—C5	1.265 (5)	С39—Н39	0.9300
O6—C5	1.253 (5)	C39—C40	1.389 (6)
O7—C7	1.257 (5)	C40—C41	1.386 (6)
	· · ·		

08—C7	1 259 (5)	C40—C43	1 511 (6)
C5—C6	1.495 (5)	C41—H41	0.9300
C6—H6A	0.9600	C41-C42	1 390 (6)
C6—H6B	0.9600	C42 - H42	0.9300
C6—H6C	0.9600	C_{43} H43A	0.9600
C7-C8	1 501 (5)	C43 - H43B	0.9600
C8—H8A	0.9600	C_{43} —H43C	0.9600
C8—H8B	0.9600	C44— $C45$	1 394 (5)
C8—H8C	0.9600	C44— $C49$	1.394(3) 1 400(5)
C_{9}	1 398 (5)	C_{45} H45	0.9300
C9-C14	1 398 (5)	C45 - C46	1.384(5)
C10-H10	0.9300	$C_{45} = C_{46}$	0.9300
	1 381 (5)	C_{46} C_{47}	1 300 (6)
C11 H11	0.0300	C47 C48	1.390 (0)
	1.401.(6)	C47 - C50	1.393(0) 1.400(5)
C12 - C12	1.401 (0)	$C_{47} = C_{50}$	0.0300
$C_{12} = C_{15}$	1.507 (5)	C_{48} C_{49}	1 282 (5)
$C_{12} = C_{13}$	1.307(3)	$C_{40} = U_{49}$	1.362(3)
C13—H13	1 285 (6)	C_{49} C_{50} H_{50A}	0.9300
C13 - C14	0.0300	C50 H50P	0.9000
C15 H15A	0.9300	C50_H50C	0.9000
C15_H15R	0.9000	C51 C52	1.201(7)
C15_H15C	0.9000	$C_{51} = C_{52}$	1.391(7) 1.380(6)
C16 C17	0.9000	$C_{51} = C_{50}$	1.509(0)
C16 C21	1.400(5)	$C_{51} = C_{57}$	1.310(0)
C10 - C21	1.389 (3)	C52—F152	0.9300
C17 - H17	0.9300	C52_C53	1.397 (0)
C12 U12	1.383 (0)	C52 C54	1 200 (6)
	0.9300	C53-C54	1.300 (0)
C10 - C20	1.395 (5)	C54 - C53	1.392 (0)
C19 - C20	1.405 (5)	C54—C58	1.309 (0)
C19 - C22	1.510 (5)	С55—Н55	0.9300
C20—H20	0.9300	C55-C56	1.386 (6)
C20-C21	1.377 (5)	С50—Н50	0.9300
C21—H21	0.9300	C57—H57A	0.9600
C22—H22A	0.9600	С57—Н57В	0.9000
C22—H22B	0.9600	C52 H52A	0.9600
C22—H22C	0.9600	C58—H58A	0.9000
$C_{23} = C_{24}$	1.393 (5)	C58—H58B	0.9600
$C_{23} = C_{28}$	1.580 (5)	C50 H50	0.9000
C24—H24	0.9300	C59—H59	0.9300
C24—C25	1.389 (5)	C59—C60	1.3/1 (9)
C25—H25	0.9300	C39—C61.	1.392 (7)
$C_{25} = C_{26}$	1.390 (6)	C60—H60	0.9300
$C_{20} = C_{21}$	1.389 (3)	C00-C01	1.3//(8)
C_{20}	1.313 (3)	$C_{01} = C_{02}$	1.301 (9)
$U_2 / -H_2 /$	0.9300	C_{02} —H $02A$	0.9600
$U_2/-U_2\delta$	1.397 (0)		0.9600
C28—H28	0.9300	C62—H62C	0.9600

P1—Os1—Os2	162.49 (2)	C26—C27—C28	121.4 (4)
O5—Os1—Os2	81.65 (7)	C28—C27—H27	119.3
O5—Os1—P1	83.89 (7)	C23—C28—C27	120.0 (4)
O7—Os1—Os2	82.78 (6)	C23—C28—H28	120.0
O7—Os1—P1	85.94 (7)	С27—С28—Н28	120.0
O7—Os1—O5	83.98 (10)	С26—С29—Н29А	109.5
C1—Os1—Os2	93.70 (10)	С26—С29—Н29В	109.5
C1—Os1—P1	97.17 (10)	С26—С29—Н29С	109.5
C1—Os1—O5	94.24 (13)	H29A—C29—H29B	109.5
C1—Os1—O7	176.25 (12)	H29A—C29—H29C	109.5
C1—Os1—C2	91.78 (16)	H29B—C29—H29C	109.5
C2—Os1—Os2	96.48 (10)	C31—C30—P2	118.5 (3)
C2—Os1—P1	96.86 (11)	C31—C30—C35	118.2 (3)
C2—Os1—O5	173.80 (12)	C35—C30—P2	123.3 (3)
C2—Os1—O7	89.93 (13)	C30—C31—H31	119.7
P2—Os2—Os1	165.16 (2)	C32—C31—C30	120.5 (3)
O6—Os2—Os1	82.41 (7)	С32—С31—Н31	119.7
O6—Os2—P2	87.53 (7)	С31—С32—Н32	119.2
O6—Os2—O8	83.13 (11)	C31—C32—C33	121.6 (4)
O8—Os2—Os1	81.09 (7)	С33—С32—Н32	119.2
O8—Os2—P2	86.92 (7)	C32—C33—C36	121.0 (4)
C3—Os2—Os1	94.75 (10)	C34—C33—C32	117.7 (4)
C3—Os2—P2	96.72 (11)	C34—C33—C36	121.3 (4)
C3—Os2—O6	93.37 (14)	С33—С34—Н34	119.1
C3—Os2—O8	174.87 (13)	C35—C34—C33	121.7 (3)
C4—Os2—Os1	94.51 (11)	С35—С34—Н34	119.1
C4—Os2—P2	95.24 (11)	С30—С35—Н35	119.9
C4—Os2—O6	176.67 (12)	C34—C35—C30	120.3 (4)
C4—Os2—O8	95.15 (14)	С34—С35—Н35	119.9
C4—Os2—C3	88.15 (16)	С33—С36—Н36А	109.5
C9—P1—Os1	109.92 (11)	С33—С36—Н36В	109.5
C9—P1—C16	107.47 (16)	С33—С36—Н36С	109.5
C9—P1—C23	101.55 (16)	H36A—C36—H36B	109.5
C16—P1—Os1	114.91 (12)	H36A—C36—H36C	109.5
C16—P1—C23	102.87 (16)	H36B—C36—H36C	109.5
C23—P1—Os1	118.80 (12)	C38—C37—P2	119.1 (3)
C30—P2—Os2	115.60 (12)	C42—C37—P2	122.8 (3)
C30—P2—C44	103.11 (16)	C42—C37—C38	118.0 (3)
C37—P2—Os2	113.05 (11)	С37—С38—Н38	119.7
C37—P2—C30	105.73 (16)	C39—C38—C37	120.6 (4)
C37—P2—C44	104.30 (16)	С39—С38—Н38	119.7
C44—P2—Os2	113.87 (11)	С38—С39—Н39	119.4
C5—O5—Os1	122.6 (2)	C40—C39—C38	121.2 (4)
C5—O6—Os2	122.3 (2)	С40—С39—Н39	119.4
C7—O7—Os1	121.3 (2)	C39—C40—C43	120.2 (4)
C7—O8—Os2	123.0 (2)	C41—C40—C39	118.0 (4)
O1—C1—Os1	179.0 (3)	C41—C40—C43	121.8 (4)

O2—C2—Os1	176.8 (3)	C40—C41—H41	119.3
O3—C3—Os2	178.4 (3)	C40—C41—C42	121.4 (4)
O4—C4—Os2	179.1 (3)	C42—C41—H41	119.3
O5—C5—C6	116.4 (3)	С37—С42—Н42	119.7
O6—C5—O5	125.6 (3)	C41—C42—C37	120.7 (4)
O6—C5—C6	118.0 (3)	C41—C42—H42	119.7
С5—С6—Н6А	109.5	C40—C43—H43A	109.5
С5—С6—Н6В	109.5	C40—C43—H43B	109.5
С5—С6—Н6С	109.5	C40—C43—H43C	109.5
H6A—C6—H6B	109.5	H43A—C43—H43B	109.5
Н6А—С6—Н6С	109.5	H43A—C43—H43C	109.5
H6B—C6—H6C	109.5	H43B—C43—H43C	109.5
07-07-08	125.7 (3)	C45—C44—P2	123.6(3)
07	116.6 (3)	$C_{45} - C_{44} - C_{49}$	123.0(3) 117.8(3)
08-07-08	117.7(3)	C49-C44-P2	117.0(3)
C_{7} C_{8} H_{8} A	109.5	C44 - C45 - H45	110.5 (5)
C7 C8 H8P	109.5	$C_{44} = C_{45} = \Pi_{45}$	117.5 121.0(3)
C^{7} C^{8} $U^{8}C$	109.5	$C_{40} = C_{43} = C_{44}$	121.0(3)
	109.5	C45 = C45 = H45	119.5
$H\delta A = C\delta = H\delta B$	109.5	C45 - C40 - H46	119.5
H8A - C8 - H8C	109.5	C45 - C46 - C47	121.5 (4)
H8B - C8 - H8C	109.5	C4/-C46-H46	119.3
C10—C9—P1	118.8 (3)	C46-C47-C48	117.4 (3)
C10-C9-C14	118.3 (3)	C46—C47—C50	121.8 (4)
C14—C9—P1	121.9 (3)	C48—C47—C50	120.8 (4)
C9—C10—H10	119.7	C47—C48—H48	119.2
C11—C10—C9	120.6 (3)	C49—C48—C47	121.7 (4)
C11—C10—H10	119.7	C49—C48—H48	119.2
C10-C11-H11	119.4	C44—C49—H49	119.7
C10-C11-C12	121.2 (4)	C48—C49—C44	120.6 (4)
C12—C11—H11	119.4	C48—C49—H49	119.7
C11—C12—C15	121.0 (4)	С47—С50—Н50А	109.5
C13—C12—C11	117.8 (3)	C47—C50—H50B	109.5
C13—C12—C15	121.1 (4)	С47—С50—Н50С	109.5
C12—C13—H13	119.2	H50A—C50—H50B	109.5
C12—C13—C14	121.5 (4)	H50A—C50—H50C	109.5
C14—C13—H13	119.2	H50B—C50—H50C	109.5
C9—C14—H14	119.8	C52—C51—C57	120.0 (4)
C13—C14—C9	120.5 (4)	C56—C51—C52	118.2 (4)
C13—C14—H14	119.8	$C_{56} = C_{51} = C_{57}$	121.8(4)
C12—C15—H15A	109 5	С51—С52—Н52	119.6
C_{12} C_{15} H_{15B}	109.5	$C_{51} = C_{52} = C_{53}$	120.8(4)
$C_{12} = C_{15} = H_{15}C_{15}$	109.5	C_{53} C_{52} C_{53} C_{53} C_{52} H_{52}	119.6
H15A C15 H15B	109.5	C52 C53 H53	110 /
H15A = C15 = H15C	109.5	$C_{52} = C_{53} = C_{53}$	127.7 121 2 (A)
H15R C15 H15C	109.5	$C_{54} = C_{53} = C_{52}$	110 /
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$C_{54} - C_{55} - 1155$	1173(A)
$C_{1} = C_{10} = 1$	123.0(3) 118 1 (2)	$C_{33} = C_{34} = C_{53}$	117.3(4) 120.0(4)
$C_{21} = C_{10} = P_1$	110.1 (3)	$C_{55} = C_{54} = C_{58}$	120.9 (4)
U21-U10-U1/	118.2 (3)	(33-(34-(38	121.8 (4)

С16—С17—Н17	119.7	С54—С55—Н55	119.0
C18—C17—C16	120.6 (3)	C56—C55—C54	121.9 (4)
C18—C17—H17	119.7	С56—С55—Н55	119.0
C17—C18—H18	119.4	С51—С56—Н56	119.7
C17—C18—C19	121.3 (3)	C55—C56—C51	120.6 (4)
С19—С18—Н18	119.4	С55—С56—Н56	119.7
C18—C19—C20	117.7 (3)	С51—С57—Н57А	109.5
C18—C19—C22	122.0 (3)	С51—С57—Н57В	109.5
C20—C19—C22	120.3 (3)	С51—С57—Н57С	109.5
C19—C20—H20	119.5	H57A—C57—H57B	109.5
C_{21} C_{20} C_{19}	1210(3)	H57A - C57 - H57C	109.5
$C_{21} = C_{20} = H_{20}$	119 5	H57B-C57-H57C	109.5
C_{16} C_{21} H_{21}	119.4	C54—C58—H58A	109.5
C_{20} C_{21} C_{121} C_{16}	121 2 (3)	C54-C58-H58B	109.5
C_{20} C_{21} H_{21}	119.4	C_{54} C_{58} H_{58C}	109.5
C19-C22-H22A	109.5	H58A_C58_H58B	109.5
C19 - C22 - H22R	109.5	H58AC58H58C	109.5
$C_{19} = C_{22} = H_{22}C_{12}$	109.5	H58B C58 H58C	109.5
H224_C22_H22B	109.5	C60 - C59 - H59	109.5
$H_{22}A = C_{22} = H_{22}B$	109.5	$C60 - C59 - C61^{i}$	119.1 121.8(5)
$H_{22} = C_{22} = H_{22} C_{22}$	109.5	$C61^{i}$ C59 H59	121.8 (5)
$C_{24} = C_{22} = 1122C$	109.3	$C_{50} C_{60} H_{60}$	119.1
$C_{24} = C_{23} = P_1$	119.0(3) 121.0(3)	$C_{59} = C_{60} = C_{61}$	121.8 (5)
$C_{20} = C_{23} = C_{24}$	121.9(3)	$C_{5}^{6} = C_{6}^{6} = C_{6}^{6}$	121.8 (5)
$C_{20} = C_{23} = C_{24}$	119.1 (5)	$C_{50i} = C_{61} = C_{62}$	119.1
$C_{23} = C_{24} = H_{24}$	119.7	$C_{59} = C_{01} = C_{02}$	122.0(0)
$C_{25} = C_{24} = C_{25}$	120.0 (4)	$C_{00} = C_{01} = C_{39}$	110.4(3)
C_{23} C_{24} C_{25} U_{25}	119.7	$C_{00} = C_{01} = C_{02}$	121.0 (3)
C_{24} C_{25} C_{26} C	119.0	C01 - C02 - H02A	109.5
$C_{24} = C_{25} = C_{26}$	120.9 (3)	C_{01} C_{02} H_{02} H_{02}	109.5
C26—C25—H25	119.6	C_{01} — C_{02} —H ₀₂ C	109.5
$C_{25} = C_{26} = C_{29}$	120.6 (4)	H62A—C62—H62B	109.5
$C_{27} = C_{26} = C_{25}$	118.0 (3)	H62A—C62—H62C	109.5
C27—C26—C29	121.3 (4)	H62B—C62—H62C	109.5
C26—C27—H27	119.3		
	05.0 (2)		(2, 0, (2))
Os1 - P1 - C9 - C10	-85.8(3)	C_{23} P_{1} C_{16} C_{21}	-93.0 (3)
Os1 - P1 - C9 - C14	82.6 (3)	C_{23} — C_{24} — C_{25} — C_{26}	0.0 (6)
Os1 - P1 - C16 - C17	-146.1(3)	$C_{24} - C_{23} - C_{28} - C_{27}$	-0.9 (6)
Os1—P1—C16—C21	37.6 (3)	C24—C25—C26—C27	-0.1 (6)
Os1—P1—C23—C24	174.7 (2)	C24—C25—C26—C29	-179.8 (4)
Os1—P1—C23—C28	-2.4 (4)	C25—C26—C27—C28	-0.3 (6)
Us1—U5—C5—U6	12.5 (5)	C26—C27—C28—C23	0.8 (6)
Os1—O5—C5—C6	-166.5 (2)	C28—C23—C24—C25	0.5 (6)
Os1—O7—C7—O8	10.6 (5)	C29—C26—C27—C28	179.4 (4)
Os1—O7—C7—C8	-169.2 (3)	C30—P2—C37—C38	77.4 (3)
Os2—P2—C30—C31	-61.2 (3)	C30—P2—C37—C42	-106.2 (3)
Os2—P2—C30—C35	116.4 (3)	C30—P2—C44—C45	5.9 (3)
Os2—P2—C37—C38	-50.0 (3)	C30—P2—C44—C49	-171.6 (3)

Os2—P2—C37—C42	126.4 (3)	C30—C31—C32—C33	-0.8 (5)
Os2—P2—C44—C45	131.9 (3)	C31—C30—C35—C34	0.0 (5)
Os2—P2—C44—C49	-45.6 (3)	C31—C32—C33—C34	0.2 (5)
Os2—O6—C5—O5	10.4 (5)	C31—C32—C33—C36	-178.7 (3)
Os2—O6—C5—C6	-170.6 (3)	C32—C33—C34—C35	0.5 (5)
Os2—O8—C7—O7	13.3 (6)	C33—C34—C35—C30	-0.6 (6)
Os2—O8—C7—C8	-166.9(3)	C35—C30—C31—C32	0.6 (5)
P1-C9-C10-C11	169.3 (3)	C36—C33—C34—C35	179.4 (4)
P1-C9-C14-C13	-169.5 (3)	C37—P2—C30—C31	172.9 (3)
P1-C16-C17-C18	-177.6 (3)	C37—P2—C30—C35	-9.5 (3)
P1-C16-C21-C20	177.5 (3)	C37—P2—C44—C45	-104.4(3)
P1-C23-C24-C25	-176.8 (3)	C37—P2—C44—C49	78.1 (3)
P1-C23-C28-C27	176.3 (3)	C37—C38—C39—C40	-1.2(6)
P2-C30-C31-C32	178.4 (3)	C38—C37—C42—C41	2.9 (6)
P2-C30-C35-C34	-177.6 (3)	C38—C39—C40—C41	2.8 (6)
P2-C37-C38-C39	174.9 (3)	C38—C39—C40—C43	-175.8 (4)
P2-C37-C42-C41	-173.5 (3)	C39—C40—C41—C42	-1.6 (6)
P2-C44-C45-C46	-176.9(3)	C40—C41—C42—C37	-1.3(6)
P2-C44-C49-C48	177.2 (3)	C42—C37—C38—C39	-1.7(6)
C9—P1—C16—C17	-23.4(4)	C43—C40—C41—C42	177.1 (4)
C9—P1—C16—C21	160.3 (3)	C44—P2—C30—C31	63.7 (3)
C9—P1—C23—C24	54.1 (3)	C44—P2—C30—C35	-118.7(3)
C9—P1—C23—C28	-123.0(3)	C44—P2—C37—C38	-174.2(3)
C9-C10-C11-C12	0.5 (5)	C44—P2—C37—C42	2.2 (4)
C10-C9-C14-C13	-1.0(5)	C44—C45—C46—C47	0.1 (6)
C10—C11—C12—C13	-0.8(5)	C45—C44—C49—C48	-0.4(5)
C10-C11-C12-C15	-178.8(3)	C45—C46—C47—C48	-1.2(5)
C11—C12—C13—C14	0.1 (6)	C45—C46—C47—C50	177.9 (4)
C12—C13—C14—C9	0.8 (6)	C46—C47—C48—C49	1.4 (6)
C14—C9—C10—C11	0.4 (5)	C47—C48—C49—C44	-0.6(6)
C15—C12—C13—C14	178.2 (4)	C49—C44—C45—C46	0.7 (5)
C16 - P1 - C9 - C10	148.4 (3)	C50-C47-C48-C49	-177.7(4)
C_{16} P1 C_{9} C14	-431(3)	C_{51} C_{52} C_{53} C_{54}	-0.9(6)
C_{16} P1 C_{23} C_{24}	-570(3)	$C_{52} - C_{51} - C_{56} - C_{55}$	-0.9(6)
C_{16} P1 C_{23} C_{23}	1258(3)	$C_{52} = C_{51} = C_{50} = C_{50}$	0.3(6)
C_{16} C_{17} C_{18} C_{19}	0.4 (6)	$C_{52} = C_{53} = C_{54} = C_{58}$	1782(4)
C_{17} C_{16} C_{21} C_{20}	10(6)	$C_{52} = C_{53} = C_{54} = C_{56}$	-0.1(6)
C17 - C18 - C19 - C20	0.7(6)	C_{54} C_{55} C_{56} C_{51}	0.1(0)
C17 - C18 - C19 - C20	-177.6(4)	$C_{54} = C_{53} = C_{50} = C_{51}$	1.2(6)
C18 - C19 - C20 - C21	-0.9(6)	C_{57} C_{51} C_{52} C_{53}	-1785(4)
$C_{10} = C_{20} = C_{21} = C_{21}$	0.9 (0)	$C_{57} = C_{51} = C_{52} = C_{55}$	178.3(4)
$C_{1} = C_{2} = C_{1} = C_{10}$	-1.2(6)	$C_{51} = C_{51} = C_{50} = C_{55}$	-1770(4)
$C_{21} = C_{10} = C_{17} = C_{10}$	1.2(0) 177.3(3)	$C_{50} = C_{51} = C_{50} = C_{50}$	-0.4.(8)
$C_{22} = C_{19} = C_{20} = C_{21}$	1/1.3(3)	$C_{37} = C_{00} = C_{01} = C_{39}$	-170.2(5)
C_{23} $P_1 = C_{3} = C_{14}$	+0.0(3) -1507(2)	C_{37} C_{00} C_{01} C_{02} C_{61} C_{61} C_{61}	(1/9.2(3))
C_{23} P_1 C_{14} C_{17}	-130.7(3)	01-039-00-01	0.4 (8)
C_{23} -r_1-C_10-C_1/	03.3 (3)		

Symmetry code: (i) -x+1, -y, -z+1.

 $Bis(\mu$ -propanoato-1 κ O:2 κ O')bis(tricarbonylosmium)(Os—Os) (5)

Crystal data

 $\begin{bmatrix} Os_2(C_3H_5O_2)_2(CO)_6 \end{bmatrix} \\ M_r = 694.60 \\ Orthorhombic,$ *Pbca* $\\ a = 9.79942 (10) Å \\ b = 15.51827 (19) Å \\ c = 21.7339 (2) Å \\ V = 3305.08 (6) Å^3 \\ Z = 8 \\ F(000) = 2512 \end{bmatrix}$

Data collection

Rigaku SuperNova AtlasS2 CCD	$T_{\min} = 0.637, \ T_{\max} = 1.000$
diffractometer	16571 measured reflections
Radiation source: micro-focus sealed X-ray	3300 independent reflections
tube, SuperNova (Cu) X-ray Source	3196 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.027$
Detector resolution: 5.2387 pixels mm ⁻¹	$\theta_{\text{max}} = 73.7^{\circ}, \ \theta_{\text{min}} = 4.1^{\circ}$
ω scans	$h = -11 \rightarrow 12$
Absorption correction: multi-scan	$k = -18 \rightarrow 19$
CrysAlisPro (Rigaku OD, 2015)	$l = -27 \rightarrow 26$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites

Least-squares matrix: fullneighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.018$ H-atom parameters constrained $wR(F^2) = 0.039$ $w = 1/[\sigma^2(F_o^2) + (0.0142P)^2 + 12.P]$ S = 1.03where $P = (F_o^2 + 2F_c^2)/3$ 3300 reflections $(\Delta/\sigma)_{max} = 0.003$ 219 parameters $\Delta\rho_{max} = 0.55$ e Å⁻³0 restraints $\Delta\rho_{min} = -0.93$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $D_{\rm x} = 2.792 {\rm Mg} {\rm m}^{-3}$

 $\theta = 5.7 - 73.4^{\circ}$

T = 100 K

 $\mu = 29.08 \text{ mm}^{-1}$

Trapezoid, colorless

 $0.08 \times 0.06 \times 0.04 \text{ mm}$

Cu K α radiation, $\lambda = 1.54184$ Å Cell parameters from 11012 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Os1	0.80792 (2)	0.55113 (2)	0.59651 (2)	0.00927 (5)	
Os2	0.58526 (2)	0.65884 (2)	0.58989 (2)	0.00867 (5)	
01	0.7665 (3)	0.47459 (19)	0.46970 (12)	0.0240 (6)	
O2	1.0011 (3)	0.68133 (19)	0.54088 (14)	0.0258 (6)	
03	1.0342 (3)	0.41963 (19)	0.63032 (15)	0.0298 (7)	
O4	0.5287 (3)	0.60269 (19)	0.45938 (12)	0.0228 (6)	
05	0.7527 (3)	0.80956 (17)	0.54447 (13)	0.0204 (6)	
06	0.3175 (3)	0.76514 (18)	0.58797 (12)	0.0198 (6)	
O7	0.4843 (2)	0.55431 (16)	0.63274 (12)	0.0141 (5)	
08	0.6683 (2)	0.46936 (16)	0.64223 (11)	0.0133 (5)	

O9	0.6379 (2)	0.68838 (16)	0.68238 (11)	0.0139 (5)
O10	0.8253 (2)	0.60506 (16)	0.68545 (11)	0.0125 (5)
C1	0.7804 (3)	0.5025 (2)	0.51766 (17)	0.0163 (7)
C2	0.9285 (4)	0.6318 (2)	0.56154 (17)	0.0169 (7)
C3	0.9519 (4)	0.4673 (2)	0.61907 (17)	0.0167 (7)
C4	0.5482 (3)	0.6241 (2)	0.50883 (17)	0.0139 (7)
C5	0.6878 (3)	0.7526 (2)	0.56034 (16)	0.0136 (7)
C6	0.4139 (3)	0.7261 (2)	0.59352 (15)	0.0133 (7)
C7	0.5444 (3)	0.4876 (2)	0.65198 (15)	0.0128 (7)
C8	0.4621 (4)	0.4258 (2)	0.69069 (17)	0.0179 (7)
H8A	0.382532	0.407957	0.667429	0.021*
H8B	0.430190	0.455912	0.727057	0.021*
C9	0.5398 (5)	0.3462 (3)	0.7107 (2)	0.0339 (11)
H9A	0.563801	0.312751	0.675178	0.051*
H9B	0.483504	0.312306	0.737563	0.051*
H9C	0.621204	0.363151	0.732080	0.051*
C10	0.7394 (3)	0.6553 (2)	0.70948 (15)	0.0112 (6)
C11	0.7578 (3)	0.6738 (2)	0.77686 (16)	0.0141 (7)
H11A	0.726967	0.731813	0.786111	0.017*
H11B	0.853480	0.669456	0.787837	0.017*
C12	0.6742 (4)	0.6082 (3)	0.81360 (17)	0.0205 (8)
H12A	0.703193	0.550999	0.803112	0.031*
H12B	0.579226	0.614842	0.803915	0.031*
H12C	0.687896	0.617754	0.856809	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Os1	0.00868 (7)	0.00912 (8)	0.01001 (8)	0.00042 (5)	0.00130 (5)	0.00014 (5)
Os2	0.00900 (7)	0.00854 (8)	0.00847 (8)	0.00035 (5)	-0.00063 (5)	0.00031 (5)
01	0.0343 (15)	0.0243 (15)	0.0134 (13)	0.0077 (12)	-0.0004 (12)	-0.0050 (11)
O2	0.0169 (13)	0.0243 (15)	0.0362 (17)	-0.0014 (11)	0.0072 (12)	0.0124 (13)
O3	0.0264 (15)	0.0216 (15)	0.0415 (18)	0.0127 (13)	-0.0082 (13)	0.0003 (13)
O4	0.0245 (13)	0.0281 (15)	0.0158 (13)	0.0045 (12)	-0.0081 (11)	-0.0098 (11)
05	0.0189 (12)	0.0149 (13)	0.0275 (14)	-0.0041 (11)	0.0005 (11)	0.0054 (11)
O6	0.0147 (12)	0.0227 (14)	0.0219 (14)	0.0063 (11)	-0.0020 (10)	-0.0004 (11)
O7	0.0119 (11)	0.0116 (12)	0.0188 (12)	-0.0013 (9)	0.0019 (10)	0.0043 (10)
08	0.0111 (11)	0.0115 (12)	0.0174 (12)	0.0000 (9)	0.0012 (9)	0.0033 (10)
09	0.0153 (11)	0.0159 (12)	0.0104 (11)	0.0040 (10)	-0.0030 (9)	-0.0018 (9)
O10	0.0109 (11)	0.0163 (12)	0.0103 (11)	0.0018 (9)	-0.0020 (9)	-0.0021 (9)
C1	0.0144 (16)	0.0137 (17)	0.0208 (19)	0.0033 (13)	0.0034 (14)	0.0014 (15)
C2	0.0150 (17)	0.0150 (17)	0.0206 (18)	0.0061 (14)	-0.0001 (14)	0.0008 (15)
C3	0.0166 (17)	0.0160 (18)	0.0175 (17)	-0.0020 (15)	0.0024 (14)	-0.0001 (14)
C4	0.0096 (15)	0.0128 (16)	0.0195 (18)	0.0012 (13)	-0.0005 (13)	0.0017 (14)
C5	0.0146 (16)	0.0135 (17)	0.0128 (16)	0.0050 (14)	-0.0038 (13)	0.0003 (13)
C6	0.0147 (17)	0.0143 (17)	0.0109 (16)	-0.0035 (14)	0.0028 (13)	0.0004 (13)
C7	0.0138 (16)	0.0131 (16)	0.0116 (15)	-0.0049 (13)	-0.0012 (13)	-0.0024 (13)
C8	0.0165 (17)	0.0178 (18)	0.0193 (18)	-0.0037 (14)	0.0012 (14)	0.0058 (15)

С9	0.026 (2)	0.023 (2)	0.053 (3)	-0.0025 (17)	0.009 (2)	0.022 (2)
C10	0.0102 (14)	0.0118 (16)	0.0115 (15)	-0.0040 (12)	-0.0004 (13)	0.0019 (13)
C11	0.0132 (15)	0.0175 (17)	0.0115 (16)	0.0006 (14)	-0.0019 (13)	-0.0009 (14)
C12	0.0131 (16)	0.034 (2)	0.0141 (17)	-0.0032 (15)	0.0002 (14)	0.0042 (16)

Geometric parameters (Å, °)

Os1—Os2	2.7523 (2)	O8—C7	1.265 (4)
Os1—O8	2.114 (2)	O9—C10	1.265 (4)
Os1-010	2.113 (2)	O10—C10	1.261 (4)
Os1—C1	1.891 (4)	С7—С8	1.509 (5)
Os1—C2	1.882 (4)	C8—H8A	0.9700
Os1—C3	1.981 (4)	C8—H8B	0.9700
Os2—O7	2.116 (2)	C8—C9	1.515 (5)
Os2—O9	2.125 (2)	С9—Н9А	0.9600
Os2—C4	1.878 (4)	С9—Н9В	0.9600
Os2—C5	1.882 (4)	С9—Н9С	0.9600
Os2—C6	1.979 (4)	C10-C11	1.503 (5)
01—C1	1.137 (5)	C11—H11A	0.9700
O2—C2	1.139 (5)	C11—H11B	0.9700
O3—C3	1.122 (5)	C11—C12	1.531 (5)
O4—C4	1.141 (5)	C12—H12A	0.9600
O5—C5	1.142 (5)	C12—H12B	0.9600
O6—C6	1.128 (4)	C12—H12C	0.9600
O7—C7	1.262 (4)		
O8—Os1—Os2	82.89 (6)	O2—C2—Os1	179.2 (4)
O10-Os1-Os2	82.61 (6)	O3—C3—Os1	178.3 (3)
O10—Os1—O8	81.95 (10)	O4—C4—Os2	178.5 (3)
C1—Os1—Os2	94.69 (10)	O5—C5—Os2	177.4 (3)
C1-Os1-O8	95.42 (13)	O6—C6—Os2	171.5 (3)
C1-Os1-O10	176.43 (12)	O7—C7—O8	125.2 (3)
C1—Os1—C3	93.66 (15)	O7—C7—C8	117.2 (3)
C2—Os1—Os2	94.16 (11)	O8—C7—C8	117.6 (3)
C2—Os1—O8	174.57 (13)	C7—C8—H8A	108.7
C2-Os1-O10	93.17 (13)	C7—C8—H8B	108.7
C2—Os1—C1	89.35 (16)	C7—C8—C9	114.2 (3)
C2—Os1—C3	95.16 (15)	H8A—C8—H8B	107.6
C3—Os1—Os2	167.54 (10)	C9—C8—H8A	108.7
C3—Os1—O8	87.14 (12)	C9—C8—H8B	108.7
C3—Os1—O10	88.64 (12)	С8—С9—Н9А	109.5
O7—Os2—Os1	83.23 (7)	С8—С9—Н9В	109.5
O7—Os2—O9	82.10 (10)	С8—С9—Н9С	109.5
O9—Os2—Os1	83.63 (6)	H9A—C9—H9B	109.5
C4—Os2—Os1	91.60 (10)	Н9А—С9—Н9С	109.5
C4—Os2—O7	95.87 (13)	Н9В—С9—Н9С	109.5
C4—Os2—O9	174.99 (12)	O9—C10—C11	118.1 (3)
C4—Os2—C5	90.30 (15)	O10-C10-O9	125.7 (3)

C4—Os2—C6	91.42 (14)	O10-C10-C11	116.2 (3)
C5—Os2—Os1	93.68 (10)	C10-C11-H11A	110.0
C5—Os2—O7	173.16 (12)	C10-C11-H11B	110.0
C5—Os2—O9	91.51 (13)	C10-C11-C12	108.5 (3)
C5—Os2—C6	93.40 (14)	H11A—C11—H11B	108.4
C6—Os2—Os1	172.29 (10)	C12—C11—H11A	110.0
C6—Os2—O7	89.40 (12)	C12—C11—H11B	110.0
C6—Os2—O9	93.14 (12)	C11—C12—H12A	109.5
C7—O7—Os2	123.8 (2)	C11—C12—H12B	109.5
C7—O8—Os1	124.4 (2)	C11—C12—H12C	109.5
C10—O9—Os2	122.9 (2)	H12A—C12—H12B	109.5
C10-010-0s1	124.7 (2)	H12A—C12—H12C	109.5
O1—C1—Os1	178.3 (3)	H12B—C12—H12C	109.5
Os1—O8—C7—O7	4.6 (5)	Os2—O9—C10—O10	3.7 (5)
Os1—O8—C7—C8	-174.2 (2)	Os2—O9—C10—C11	-173.6 (2)
Os1	-7.9 (5)	O7—C7—C8—C9	178.5 (4)
Os1-O10-C10-C11	169.5 (2)	O8—C7—C8—C9	-2.7 (5)
Os2—O7—C7—O8	-8.7 (5)	O9—C10—C11—C12	86.1 (4)
Os2—O7—C7—C8	170.1 (2)	O10-C10-C11-C12	-91.5 (4)

 $Penta carbonyl - 1 \kappa^2 C, 2 \kappa^3 C - bis(\mu - propanoato - 1 \kappa O; 2 \kappa O') [tris(4 - methylphenyl)phosphane - 1 \kappa P] diosmium(Os - Os) = 0 (Os - Os) (Os - Os$

(6)

Crystal data

$$\begin{split} & [\text{Os}_2(\text{C}_3\text{H}_5\text{O}_2)_2(\text{C}_{21}\text{H}_{21}\text{P})(\text{CO})_5] \\ & M_r = 970.94 \\ & \text{Triclinic}, P1 \\ & a = 10.0952 \text{ (2) Å} \\ & b = 11.6630 \text{ (3) Å} \\ & c = 13.7536 \text{ (3) Å} \\ & a = 88.6185 \text{ (19)}^\circ \\ & \beta = 86.7627 \text{ (18)}^\circ \\ & \gamma = 86.9563 \text{ (19)}^\circ \\ & V = 1614.12 \text{ (6) Å}^3 \end{split}$$

Data collection

Rigaku SuperNova AtlasS2 CCD diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 5.2387 pixels mm⁻¹ ω scans Absorption correction: multi-scan CrysAlisPro (Rigaku OD, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.019$ Z = 2 F(000) = 924 $D_x = 1.998 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 22340 reflections $\theta = 3.8-73.3^{\circ}$ $\mu = 15.55 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.21 \times 0.14 \times 0.06 \text{ mm}$

 $T_{\min} = 0.389, T_{\max} = 1.000$ 30757 measured reflections 6461 independent reflections 6196 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{\max} = 73.7^{\circ}, \theta_{\min} = 3.8^{\circ}$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -17 \rightarrow 17$

 $wR(F^2) = 0.046$ S = 1.08 6461 reflections

402 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0202P)^2 + 1.4592P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.002$
neighbouring sites	$\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -1.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Os1	0.40363 (2)	0.24014 (2)	0.74050 (2)	0.01309 (4)	
Os2	0.54412 (2)	0.18661 (2)	0.90234 (2)	0.01502 (4)	
P1	0.24570 (6)	0.31901 (6)	0.62891 (5)	0.01422 (13)	
01	0.4095 (2)	0.00160 (17)	0.66128 (18)	0.0304 (5)	
O2	0.6339 (2)	0.29582 (19)	0.60145 (16)	0.0265 (5)	
03	0.6587 (2)	-0.03401 (19)	0.81251 (16)	0.0290 (5)	
O4	0.7726 (2)	0.31646 (19)	0.81165 (17)	0.0291 (5)	
05	0.6750 (2)	0.1397 (2)	1.09935 (16)	0.0305 (5)	
06	0.24276 (18)	0.20690 (17)	0.84390 (14)	0.0183 (4)	
O7	0.36401 (19)	0.11713 (17)	0.95760 (15)	0.0208 (4)	
08	0.38423 (19)	0.40238 (16)	0.80787 (14)	0.0183 (4)	
09	0.44438 (18)	0.34012 (17)	0.95493 (15)	0.0194 (4)	
C1	0.4078 (3)	0.0939 (3)	0.6913 (2)	0.0224 (6)	
C2	0.5461 (3)	0.2749 (2)	0.6550 (2)	0.0198 (6)	
C3	0.6153 (3)	0.0492 (3)	0.8479 (2)	0.0215 (6)	
C4	0.6870 (3)	0.2654 (3)	0.8460 (2)	0.0213 (6)	
C5	0.6204 (3)	0.1570 (2)	1.0308 (2)	0.0210 (6)	
C6	0.2555 (3)	0.1515 (2)	0.9227 (2)	0.0204 (6)	
C7	0.1308 (3)	0.1237 (4)	0.9828 (3)	0.0456 (11)	
H7A	0.125794	0.040890	0.986624	0.055*	
H7B	0.138925	0.150066	1.048443	0.055*	
C8	0.0036 (3)	0.1740 (4)	0.9464 (3)	0.0415 (9)	
H8A	-0.009125	0.144618	0.883182	0.062*	
H8B	0.006905	0.256121	0.941912	0.062*	
H8C	-0.068809	0.153792	0.990605	0.062*	
C9	0.3874 (3)	0.4124 (2)	0.8986 (2)	0.0167 (5)	
C10	0.3137 (3)	0.5149 (2)	0.9445 (2)	0.0222 (6)	
H10A	0.303259	0.575955	0.895932	0.027*	
H10B	0.364372	0.542942	0.995984	0.027*	
C11	0.1783 (3)	0.4823 (3)	0.9860 (3)	0.0376 (8)	
H11A	0.126660	0.458409	0.934307	0.056*	
H11B	0.133755	0.547445	1.017205	0.056*	
H11C	0.188798	0.420482	1.032689	0.056*	
C12	0.1795 (3)	0.4602 (2)	0.6651 (2)	0.0174 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C13	0.0499 (3)	0.4791 (3)	0.7035 (2)	0.0254 (6)
H13	-0.008069	0.419587	0.707137	0.030*
C14	0.0072 (3)	0.5875 (3)	0.7366 (3)	0.0337 (8)
H14	-0.079865	0.599664	0.761356	0.040*
C15	0.0914 (4)	0.6779 (3)	0.7334 (2)	0.0321 (7)
C16	0.2206 (3)	0.6582 (3)	0.6962 (2)	0.0267 (7)
H16	0.278265	0.717901	0.693574	0.032*
C17	0.2655 (3)	0.5516 (2)	0.6630 (2)	0.0211 (6)
H17	0.353074	0.539957	0.639044	0.025*
C18	0.0429 (5)	0.7949 (3)	0.7678 (3)	0.0512 (11)
H18A	0.069325	0.804868	0.832919	0.077*
H18B	-0.052191	0.801978	0.767068	0.077*
H18C	0.080683	0.852632	0.725414	0.077*
C19	0.1010 (3)	0.2370 (2)	0.6101 (2)	0.0176 (5)
C20	0.0678 (3)	0.1458 (3)	0.6720 (2)	0.0265 (7)
H20	0.118338	0.127549	0.725229	0.032*
C21	-0.0408 (3)	0.0815 (3)	0.6548 (2)	0.0285 (7)
H21	-0.062350	0.021569	0.697637	0.034*
C22	-0.1171 (3)	0.1047 (3)	0.5758 (2)	0.0218 (6)
C23	-0.0843 (3)	0.1965 (3)	0.5152 (2)	0.0278 (7)
H23	-0.135113	0.214581	0.462034	0.033*
C24	0.0224 (3)	0.2622 (3)	0.5318 (2)	0.0257 (7)
H24	0.041558	0.323730	0.490052	0.031*
C25	-0.2292 (3)	0.0303 (3)	0.5551 (2)	0.0292 (7)
H25A	-0.194827	-0.034993	0.518712	0.044*
H25B	-0.292855	0.073834	0.517934	0.044*
H25C	-0.271454	0.004677	0.615436	0.044*
C26	0.3104 (3)	0.3386 (2)	0.5033 (2)	0.0160 (5)
C27	0.3794 (3)	0.2460 (2)	0.4584 (2)	0.0191 (6)
H27	0.403098	0.181038	0.495291	0.023*
C28	0.4133 (3)	0.2495 (3)	0.3591 (2)	0.0223 (6)
H28	0.457846	0.186188	0.330034	0.027*
C29	0.3814 (3)	0.3467 (3)	0.3027 (2)	0.0211 (6)
C30	0.3178 (3)	0.4399 (2)	0.3482 (2)	0.0222 (6)
H30	0.299088	0.506516	0.311874	0.027*
C31	0.2810 (3)	0.4368 (2)	0.4474 (2)	0.0197 (6)
H31	0.236715	0.500351	0.476270	0.024*
C32	0.4146 (3)	0.3481 (3)	0.1945 (2)	0.0300 (7)
H32A	0.508795	0.335838	0.182509	0.045*
H32B	0.386097	0.421106	0.166994	0.045*
H32C	0.369938	0.288249	0.165069	0.045*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Os1	0.01340 (6)	0.01470 (6)	0.01134 (6)	-0.00004 (4)	-0.00365 (4)	0.00142 (4)
Os2	0.01319 (6)	0.01902 (7)	0.01305 (7)	0.00051 (4)	-0.00461 (4)	0.00201 (4)
P1	0.0142 (3)	0.0170 (3)	0.0116 (3)	-0.0003 (2)	-0.0032 (2)	0.0015 (2)

01	0.0403 (13)	0.0159 (10)	0.0364 (13)	0.0034 (9)	-0.0165 (10)	-0.0060 (9)
O2	0.0228 (11)	0.0313 (12)	0.0249 (12)	-0.0051 (9)	0.0060 (9)	-0.0002 (9)
03	0.0367 (12)	0.0260 (12)	0.0240 (12)	0.0076 (10)	-0.0060 (10)	-0.0028 (9)
04	0.0209 (10)	0.0339 (12)	0.0329 (13)	-0.0064 (9)	-0.0046 (9)	0.0088 (10)
05	0.0317 (12)	0.0401 (13)	0.0203 (12)	0.0020 (10)	-0.0131 (10)	0.0016 (9)
O6	0.0153 (9)	0.0249 (10)	0.0147 (10)	-0.0018 (8)	-0.0030 (7)	0.0033 (8)
O7	0.0173 (9)	0.0278 (11)	0.0174 (10)	-0.0010 (8)	-0.0033 (8)	0.0075 (8)
08	0.0212 (10)	0.0171 (9)	0.0170 (10)	0.0010 (8)	-0.0044 (8)	-0.0016 (8)
09	0.0179 (9)	0.0230 (10)	0.0175 (10)	0.0026 (8)	-0.0054 (8)	-0.0017 (8)
C1	0.0200 (14)	0.0298 (16)	0.0176 (14)	0.0006 (12)	-0.0085 (11)	0.0091 (12)
C2	0.0249 (14)	0.0157 (13)	0.0198 (14)	0.0002 (11)	-0.0090 (12)	-0.0030 (11)
C3	0.0201 (14)	0.0272 (16)	0.0179 (15)	-0.0034 (12)	-0.0083 (11)	0.0072 (12)
C4	0.0201 (14)	0.0249 (15)	0.0191 (15)	0.0041 (12)	-0.0075 (11)	0.0011 (11)
C5	0.0189 (13)	0.0242 (14)	0.0197 (15)	0.0028 (11)	-0.0030 (11)	0.0001 (11)
C6	0.0170 (13)	0.0247 (14)	0.0193 (15)	-0.0013 (11)	-0.0008 (11)	0.0026 (11)
C7	0.0237 (17)	0.067 (3)	0.044 (2)	0.0000 (17)	0.0035 (15)	0.031 (2)
C8	0.0178 (15)	0.064 (3)	0.042 (2)	-0.0049 (16)	0.0014 (14)	0.0141 (19)
C9	0.0127 (12)	0.0210 (13)	0.0168 (14)	-0.0021 (10)	-0.0025 (10)	-0.0025 (10)
C10	0.0202 (14)	0.0234 (14)	0.0232 (15)	0.0005 (11)	-0.0036 (11)	-0.0047 (12)
C11	0.0249 (16)	0.041 (2)	0.046 (2)	0.0017 (14)	0.0058 (15)	-0.0144 (17)
C12	0.0195 (13)	0.0205 (13)	0.0118 (13)	0.0054 (11)	-0.0043 (10)	0.0013 (10)
C13	0.0229 (15)	0.0332 (17)	0.0199 (15)	0.0019 (12)	-0.0016 (12)	-0.0039 (12)
C14	0.0277 (16)	0.046 (2)	0.0265 (17)	0.0140 (15)	-0.0017 (13)	-0.0100 (15)
C15	0.047 (2)	0.0279 (16)	0.0218 (16)	0.0122 (14)	-0.0142 (14)	-0.0063 (13)
C16	0.0395 (17)	0.0212 (14)	0.0204 (15)	0.0014 (13)	-0.0119 (13)	-0.0007 (12)
C17	0.0238 (14)	0.0208 (14)	0.0189 (15)	0.0027 (11)	-0.0063 (11)	0.0013 (11)
C18	0.064 (3)	0.041 (2)	0.047 (3)	0.025 (2)	-0.011 (2)	-0.0175 (18)
C19	0.0140 (12)	0.0222 (14)	0.0165 (14)	-0.0007 (10)	-0.0015 (10)	-0.0009 (11)
C20	0.0288 (16)	0.0280 (16)	0.0244 (16)	-0.0087 (13)	-0.0126 (13)	0.0075 (13)
C21	0.0304 (16)	0.0268 (16)	0.0298 (18)	-0.0102 (13)	-0.0101 (14)	0.0095 (13)
C22	0.0175 (13)	0.0257 (15)	0.0228 (15)	-0.0023 (11)	-0.0016 (11)	-0.0057 (12)
C23	0.0201 (14)	0.0410 (18)	0.0233 (16)	-0.0052 (13)	-0.0088 (12)	0.0057 (13)
C24	0.0211 (14)	0.0327 (16)	0.0237 (16)	-0.0060 (12)	-0.0065 (12)	0.0108 (13)
C25	0.0247 (15)	0.0340 (17)	0.0307 (18)	-0.0091 (13)	-0.0064 (13)	-0.0077 (14)
C26	0.0133 (12)	0.0215 (13)	0.0135 (13)	-0.0032 (10)	-0.0019 (10)	0.0009 (10)
C27	0.0208 (13)	0.0187 (13)	0.0181 (14)	-0.0001 (11)	-0.0047 (11)	0.0021 (11)
C28	0.0238 (14)	0.0239 (14)	0.0192 (15)	0.0010 (11)	-0.0013 (11)	-0.0028 (11)
C29	0.0205 (13)	0.0280 (15)	0.0154 (14)	-0.0060 (11)	-0.0024 (11)	0.0002 (11)
C30	0.0268 (15)	0.0211 (14)	0.0192 (15)	-0.0035 (12)	-0.0046 (12)	0.0059 (11)
C31	0.0226 (14)	0.0196 (13)	0.0169 (14)	0.0003 (11)	-0.0021 (11)	0.0014 (11)
C32	0.0383 (18)	0.0344 (17)	0.0171 (16)	-0.0037 (14)	0.0026 (13)	-0.0016 (13)

Geometric parameters (Å, °)

Os1—Os2	2.7479 (2)	C13—C14	1.392 (5)
Os1—P1	2.4075 (6)	C14—H14	0.9300
Os1—O6	2.1422 (19)	C14—C15	1.387 (5)
Os1—O8	2.1218 (19)	C15—C16	1.383 (5)

Os1—C1	1.848 (3)	C15—C18	1.503 (5)
Os1—C2	1.861 (3)	C16—H16	0.9300
Os2—O7	2.1239 (19)	C16—C17	1.380 (4)
Os2—O9	2.129 (2)	C17—H17	0.9300
Os2—C3	1.876 (3)	C18—H18A	0.9600
Os2—C4	1.872 (3)	C18—H18B	0.9600
Os2—C5	1.983 (3)	C18—H18C	0.9600
P1—C12	1.814 (3)	C19—C20	1,388 (4)
P1—C19	1.822 (3)	C19—C24	1.391 (4)
P1—C26	1.822(3)	C20—H20	0.9300
01-C1	1.023(3) 1 161(4)	C_{20} C_{21}	1 395 (4)
$0^2 - C^2$	1.101 (4)	C_{21} H21	0.9300
02 - 02	1.152(4) 1 151(4)	$C_{21} - C_{22}$	1.380(4)
03-03	1.131(4) 1.148(4)	$C_{21} = C_{22}$	1.380(4)
0 - 0	1.140(4) 1.127(4)	$C_{22} = C_{23}$	1.506 (4)
05-05	1.127(4) 1.257(2)	$C_{22} = C_{23}$	1.300(4)
00	1.237(3) 1.262(2)	C23—R23	0.9300
$0/-c_{0}$	1.203 (3)	C_{23} C_{24}	1.387 (4)
08-09	1.259 (3)	C24—H24	0.9300
09-09	1.268 (3)	C25—H25A	0.9600
C6-C7	1.512 (4)	C25—H25B	0.9600
C/—H/A	0.9700	C25—H25C	0.9600
С7—Н7В	0.9700	C26—C27	1.392 (4)
С7—С8	1.491 (5)	C26—C31	1.392 (4)
C8—H8A	0.9600	С27—Н27	0.9300
C8—H8B	0.9600	C27—C28	1.389 (4)
C8—H8C	0.9600	C28—H28	0.9300
C9—C10	1.507 (4)	C28—C29	1.393 (4)
C10—H10A	0.9700	C29—C30	1.379 (4)
C10—H10B	0.9700	C29—C32	1.506 (4)
C10—C11	1.515 (4)	С30—Н30	0.9300
C11—H11A	0.9600	C30—C31	1.394 (4)
C11—H11B	0.9600	C31—H31	0.9300
C11—H11C	0.9600	C32—H32A	0.9600
C12—C13	1.392 (4)	C32—H32B	0.9600
C12—C17	1.409 (4)	C32—H32C	0.9600
С13—Н13	0.9300		
P1 - Os1 - Os2	164.673 (18)	H11B—C11—H11C	109.5
06-0s1-0s2	80.26 (5)	C13—C12—P1	122.2 (2)
O6-Os1-P1	89.31 (5)	C13 - C12 - C17	118.6 (3)
08-0s1-0s2	81 23 (5)	C17-C12-P1	118.9(2)
08-0s1-P1	86.12 (5)	C12 - C13 - H13	120.1
08-0s1-06	81 16 (8)	C12 - C13 - C14	119 7 (3)
C1 - 0s1 - 0s2	97 27 (8)	C14 - C13 - H13	120.1
C1 - Os1 - P1	94 45 (8)	C13 - C14 - H14	110.7
C1 - Os1 - O6	93 03 (11)	C15 - C14 - C13	121 7 (3)
$C_1 = O_{s_1} = O_{s_1}$	174 16 (11)	C15 - C14 - H14	110.2
C1 - 0s1 - C2	89 68 (13)	C13 C14 - C15 - C18	120 0 (4)
01 031 02	07.00 (13)	017 010 010	120.2(4)

C2—Os1—Os2	98.10 (8)	C16—C15—C14	118.3 (3)
C2—Os1—P1	91.79 (8)	C16—C15—C18	120.8 (3)
C2—Os1—O6	176.99 (10)	C15—C16—H16	119.4
C2—Os1—O8	96.11 (10)	C17—C16—C15	121.3 (3)
O7—Os2—Os1	84.05 (5)	C17—C16—H16	119.4
$07 - 0s^2 - 09$	81.07 (8)	C12—C17—H17	119.8
$09-0s^2-0s^1$	82.62 (5)	C16-C17-C12	120.4(3)
$C_{3} = O_{s_{1}} = O_{s_{1}}$	91.82 (8)	C16—C17—H17	119.8
$C_{3} = 0s_{2}^{2} = 07$	95.21 (10)	C15-C18-H18A	109.5
$C_{3} = 0s_{2}^{2} = 09$	173 58 (9)	C15-C18-H18B	109.5
$C_{3} = 0_{2}^{2} = 0_{5}^{2}$	94 90 (12)	C15 - C18 - H18C	109.5
$C_{4} = 0s_{2}^{2} = 0s_{1}^{2}$	89 46 (8)	H18A_C18_H18B	109.5
$C_{4} = 0.52 = 0.51$	171 57 (10)	H18A C18 H18C	109.5
$C_{4} = 0.52 = 0.7$	171.37(10) 92 79 (11)	H18R C18 H18C	109.5
$C_{4}^{-} O_{82}^{-} O_{7}^{-}$	92.79(11)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.3 121 1 (2)
C4 - 0s2 - C5	90.30 (13)	C_{20} C_{19} F_{1}	121.1(2)
$C_{4} = 0.82 = 0.5$	90.52 (12)	$C_{20} - C_{19} - C_{24}$	110.0(2)
$C_{5} = O_{s}^{2} = O_{s}^{2}$	1/1.10(9)	C24—C19—P1	120.8 (2)
$C_{5} = 0_{s_{2}} = 0/$	89.52 (10)	C19—C20—H20	119.8
C_{3}	90.31 (10)	C19 - C20 - C21	120.4 (3)
C12—P1—Os1	111.59 (9)	C21—C20—H20	119.8
C12—P1—C19	105.33 (13)	C20—C21—H21	119.2
C12—P1—C26	104.93 (13)	C22—C21—C20	121.6 (3)
C19—P1—Os1	117.64 (9)	C22—C21—H21	119.2
C19—P1—C26	100.50 (12)	C21—C22—C23	117.6 (3)
C26—P1—Os1	115.42 (9)	C21—C22—C25	121.0 (3)
C6—O6—Os1	124.22 (18)	C23—C22—C25	121.5 (3)
C6—O7—Os2	119.70 (18)	C22—C23—H23	119.2
C9—O8—Os1	122.11 (18)	C22—C23—C24	121.6 (3)
C9—O9—Os2	121.98 (19)	C24—C23—H23	119.2
O1—C1—Os1	179.2 (3)	C19—C24—H24	119.6
O2—C2—Os1	179.4 (3)	C23—C24—C19	120.7 (3)
O3—C3—Os2	178.5 (2)	C23—C24—H24	119.6
O4—C4—Os2	178.1 (3)	C22—C25—H25A	109.5
O5—C5—Os2	173.6 (3)	C22—C25—H25B	109.5
O6—C6—O7	125.9 (3)	C22—C25—H25C	109.5
O6—C6—C7	118.0 (3)	H25A—C25—H25B	109.5
O7—C6—C7	116.0 (3)	H25A—C25—H25C	109.5
С6—С7—Н7А	108.3	H25B—C25—H25C	109.5
С6—С7—Н7В	108.3	C27—C26—P1	118.1 (2)
H7A—C7—H7B	107.4	C31—C26—P1	122.9(2)
C8 - C7 - C6	115 9 (3)	$C_{31} - C_{26} - C_{27}$	1186(3)
C8—C7—H7A	108 3	C26—C27—H27	119.6
C8-C7-H7B	108.3	C_{28} C_{27} C_{26}	120.8 (3)
C7-C8-H8A	109.5	$C_{20} = C_{27} = C_{20}$	110.6
C7_C8_H8B	109.5	$C_{20} = C_{21} = H_{21}$	110.7
C7_C8_H8C	109.5	C_{27} C_{20} C_{120} C_{27} C_{28} C_{20}	1207(3)
	109.5	C_{2}^{-} C_{2	120.7 (5)
	109.5	$C_{29} = C_{20} = 1120$	117.7 120.2(2)
1107-00-1100	109.5	020 - 027 - 032	120.3 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		100 5	G20 G20 G20	110 2 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H8B	109.5	C30—C29—C28	118.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O8—C9—O9	124.7 (3)	C30—C29—C32	121.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O8—C9—C10	117.8 (2)	С29—С30—Н30	119.2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O9—C9—C10	117.4 (3)	C29—C30—C31	121.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—H10A	109.6	С31—С30—Н30	119.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—H10B	109.6	C26—C31—C30	120.0 (3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C9—C10—C11	110.2 (2)	C26—C31—H31	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H10A-C10-H10B	108.1	C30—C31—H31	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C10—H10A	109.6	C29—C32—H32A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C10—H10B	109.6	C29—C32—H32B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-H11A	109.5	C29—C32—H32C	109 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-H11B	109.5	H_{32A} C_{32} H_{32B}	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		109.5	$H_{32A} = C_{32} = H_{32C}$	109.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		109.5	$H_{22R} = C_{32} = H_{32C}$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		109.5	1152 D —C52—1152C	109.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HIIA—CII—HIIC	109.5		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Os1—P1—C12—C13	-107.8(2)	C13—C14—C15—C16	0.0(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Os1 - P1 - C12 - C17	660(2)	C_{13} C_{14} C_{15} C_{18}	1789(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O_{s1} P1 C12 C17	133(3)	C_{14} C_{15} C_{16} C_{17}	0.0(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_{s1} = P_1 = C_{10} = C_{20}$	-165 1 (2)	$C_{15} = C_{16} = C_{17} = C_{17}$	0.0(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O_{S1} P_{1} C_{19} C_{24}	103.1(2)	C17 C12 C12 C14	0.8(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_{21} = P_{1} = C_{20} = C_{21}$	50.0(2)	C17 - C12 - C13 - C14	1.3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1 - 0.1	-130.7(2)	C18 - C15 - C16 - C17	-1/8.9(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0s1_06_07	/.4 (4)	C19—P1—C12—C13	20.9 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os1—O6—C6—C7	-173.3(3)	C19—P1—C12—C17	-165.2 (2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os1—O8—C9—O9	25.0 (3)	C19—P1—C26—C27	-76.8 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Os1—O8—C9—C10	-152.37 (18)	C19—P1—C26—C31	95.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Os2—O7—C6—O6	15.6 (4)	C19—C20—C21—C22	1.0 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os2—O7—C6—C7	-163.7 (3)	C20—C19—C24—C23	-1.2 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Os2—O9—C9—O8	-0.6 (4)	C20—C21—C22—C23	-1.8 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Os2—O9—C9—C10	176.83 (17)	C20—C21—C22—C25	176.5 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P1-C12-C13-C14	175.4 (2)	C21—C22—C23—C24	1.0 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P1-C12-C17-C16	-175.6 (2)	C22—C23—C24—C19	0.5 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P1-C19-C20-C21	-177.9(3)	C24—C19—C20—C21	0.5 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P1-C19-C24-C23	177.2 (3)	C25—C22—C23—C24	-177.3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P1-C26-C27-C28	170.1 (2)	C26—P1—C12—C13	126.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P1 - C26 - C31 - C30	-1710(2)	C_{26} P1 C_{12} C_{17}	-59.7(2)
00 - C0 - C7 - C8 $174.3 (3)$ $C20 - 11 - C19 - C20$ $137.4 (3)$ $07 - C6 - C7 - C8$ $174.3 (3)$ $C26 - P1 - C19 - C24$ $-38.9 (3)$ $08 - C9 - C10 - C11$ $97.4 (3)$ $C26 - C27 - C28 - C29$ $1.3 (4)$ $09 - C9 - C10 - C11$ $-80.2 (3)$ $C27 - C26 - C31 - C30$ $1.5 (4)$ $C12 - P1 - C19 - C20$ $-111.7 (3)$ $C27 - C28 - C29 - C30$ $1.3 (4)$ $C12 - P1 - C19 - C24$ $69.9 (3)$ $C27 - C28 - C29 - C30$ $1.3 (4)$ $C12 - P1 - C26 - C27$ $174.1 (2)$ $C28 - C29 - C30 - C31$ $-2.6 (4)$ $C12 - P1 - C26 - C21$ $-13.4 (2)$ $C29 - C30 - C31 - C26$ $1.2 (4)$ $C12 - C13 - C14 - C15$ $-0.8 (5)$ $C31 - C26 - C27 - C28$ $-2.7 (4)$ $C13 - C12 - C17 - C16$ $-1.6 (4)$ $C32 - C29 - C30 - C31$ $176.7 (3)$	06-C6-C7-C8	-51(5)	C_{26} P1 C_{19} C_{20}	139.4(3)
$07-c_0 = c_7 = c_8$ $174.3 (3)$ $c_{20} = 11 = c_{19} = c_{24}$ $33.9 (3)$ $08-c_9-c_{10}-c_{11}$ $97.4 (3)$ $c_{26}-c_{27}-c_{28}-c_{29}$ $1.3 (4)$ $09-c_9-c_{10}-c_{11}$ $-80.2 (3)$ $c_{27}-c_{26}-c_{31}-c_{30}$ $1.5 (4)$ $c_{12}-P_1-c_{19}-c_{20}$ $-111.7 (3)$ $c_{27}-c_{28}-c_{29}-c_{30}$ $1.3 (4)$ $c_{12}-P_1-c_{19}-c_{24}$ $69.9 (3)$ $c_{27}-c_{28}-c_{29}-c_{30}$ $-178.0 (3)$ $c_{12}-P_1-c_{26}-c_{27}$ $174.1 (2)$ $c_{28}-c_{29}-c_{30}-c_{31}$ $-2.6 (4)$ $c_{12}-P_1-c_{26}-c_{31}$ $-13.4 (2)$ $c_{29}-c_{30}-c_{31}-c_{26}$ $1.2 (4)$ $c_{12}-c_{13}-c_{14}-c_{15}$ $-0.8 (5)$ $c_{31}-c_{26}-c_{27}-c_{28}$ $-2.7 (4)$ $c_{13}-c_{12}-c_{17}-c_{16}$ $-1.6 (4)$ $c_{32}-c_{29}-c_{30}-c_{31}$ $176.7 (3)$	$O_{1} C_{2} C_{3} C_{3}$	174.3(3)	$C_{20} = P_1 = C_{10} = C_{20}$	-380(3)
03-C9-C10-C11 97.4 (3) $C20-C27-C28-C29$ 1.3 (4) $09-C9-C10-C11$ -80.2 (3) $C27-C26-C31-C30$ 1.5 (4) $C12-P1-C19-C20$ -111.7 (3) $C27-C28-C29-C30$ 1.3 (4) $C12-P1-C19-C24$ 69.9 (3) $C27-C28-C29-C32$ -178.0 (3) $C12-P1-C26-C27$ 174.1 (2) $C28-C29-C30-C31$ -2.6 (4) $C12-P1-C26-C31$ -13.4 (2) $C29-C30-C31-C26$ 1.2 (4) $C12-C13-C14-C15$ -0.8 (5) $C31-C26-C27-C28$ -2.7 (4) $C13-C12-C17-C16$ -1.6 (4) $C32-C29-C30-C31$ 176.7 (3)	0^{-}_{-}	174.3(3)	$C_{20} = 11 = C_{19} = C_{24}$	12(4)
09-09-010-011 $-80.2 (3)$ $027-028-031-030$ $1.5 (4)$ $C12-P1-019-020$ $-111.7 (3)$ $C27-028-029-030$ $1.3 (4)$ $C12-P1-019-024$ $69.9 (3)$ $C27-028-029-032$ $-178.0 (3)$ $C12-P1-026-027$ $174.1 (2)$ $C28-029-030-031$ $-2.6 (4)$ $C12-P1-026-021$ $-13.4 (2)$ $C29-030-031-026$ $1.2 (4)$ $C12-013-014-015$ $-0.8 (5)$ $C31-026-027-028$ $-2.7 (4)$ $C13-012-017-016$ $-1.6 (4)$ $C32-029-030-031$ $176.7 (3)$	08 - 09 - 010 - 011	97.4 (3)	$C_{20} = C_{27} = C_{20} = C_{29}$	1.5(4)
C12—P1—C19—C20 $-111.7(3)$ C27—C28—C29—C30 $1.3(4)$ C12—P1—C19—C2469.9(3)C27—C28—C29—C32 $-178.0(3)$ C12—P1—C26—C27174.1(2)C28—C29—C30—C31 $-2.6(4)$ C12—P1—C26—C31 $-13.4(2)$ C29—C30—C31—C26 $1.2(4)$ C12—C13—C14—C15 $-0.8(5)$ C31—C26—C27—C28 $-2.7(4)$ C13—C12—C17—C16 $-1.6(4)$ C32—C29—C30—C31 $176.7(3)$		-80.2(3)	$C_2/-C_{20}$	1.5 (4)
C12—P1—C19—C24 $69.9 (3)$ $C27$ —C28—C29—C32 $-178.0 (3)$ C12—P1—C26—C27 $174.1 (2)$ $C28$ —C29—C30—C31 $-2.6 (4)$ C12—P1—C26—C31 $-13.4 (2)$ $C29$ —C30—C31—C26 $1.2 (4)$ C12—C13—C14—C15 $-0.8 (5)$ $C31$ —C26—C27—C28 $-2.7 (4)$ C13—C12—C17—C16 $-1.6 (4)$ $C32$ —C29—C30—C31 $176.7 (3)$	C12—P1—C19—C20	-111.7 (3)	$C_{27} - C_{28} - C_{29} - C_{30}$	1.3 (4)
C12-P1-C26-C27 $174.1(2)$ $C28-C29-C30-C31$ $-2.6(4)$ $C12-P1-C26-C31$ $-13.4(2)$ $C29-C30-C31-C26$ $1.2(4)$ $C12-C13-C14-C15$ $-0.8(5)$ $C31-C26-C27-C28$ $-2.7(4)$ $C13-C12-C17-C16$ $-1.6(4)$ $C32-C29-C30-C31$ $176.7(3)$	C12—P1—C19—C24	69.9 (3)	C27—C28—C29—C32	-178.0(3)
C12—P1—C26—C31 -13.4 (2)C29—C30—C31—C26 1.2 (4)C12—C13—C14—C15 -0.8 (5)C31—C26—C27—C28 -2.7 (4)C13—C12—C17—C16 -1.6 (4)C32—C29—C30—C31176.7 (3)	C12—P1—C26—C27	174.1 (2)	C28—C29—C30—C31	-2.6 (4)
C12—C13—C14—C15 $-0.8 (5)$ C31—C26—C27—C28 $-2.7 (4)$ C13—C12—C17—C16 $-1.6 (4)$ C32—C29—C30—C31176.7 (3)	C12—P1—C26—C31	-13.4 (2)	C29—C30—C31—C26	1.2 (4)
C13—C12—C17—C16 –1.6 (4) C32—C29—C30—C31 176.7 (3)	C12—C13—C14—C15	-0.8 (5)	C31—C26—C27—C28	-2.7 (4)
	C13—C12—C17—C16	-1.6 (4)	C32—C29—C30—C31	176.7 (3)

 $Bis(\mu$ -propanoato-1 κO :2 $\kappa O'$) $bis[tris(4-methylphenyl)phosphane]-1<math>\kappa P$,2 κP -bis(dicarbonylosmium)(Os-Os), dichloromethane monosolvate (7@CH2Cl2)

F(000) = 2608

 $\theta = 1.6-27.6^{\circ}$ $\mu = 5.13 \text{ mm}^{-1}$ T = 100 KPrisms, colorless $0.28 \times 0.12 \times 0.09 \text{ mm}$

 $D_{\rm x} = 1.712 \ {\rm Mg \ m^{-3}}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 11533 reflections

Crystal data

$[Os_2(C_3H_5O_2)_2(C_{21}H_{21}P)_2(CO)_4]$ ·CH ₂ Cl ₂
$M_r = 1332.20$
Monoclinic, $P2_1/c$
a = 18.4968 (6) Å
b = 18.7369 (7) Å
c = 14.9214 (6) Å
$\beta = 91.806(2)^{\circ}$
V = 5168.8 (3) Å ³
Z = 4

Data collection

Rigaku SCX-Mini Mercury 2+ CCD	11794 independent reflections
diffractometer	9639 reflections with $I > 2\sigma(I)$
Radiation source: sealed tube	$R_{\rm int} = 0.060$
ω–scans	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -24 \rightarrow 24$
(ABSCOR; Higashi, 2001)	$k = -23 \rightarrow 24$
$T_{\min} = 0.673, \ T_{\max} = 1.00$	$l = -19 \rightarrow 19$
54214 measured reflections	
Definement	

Refinement

Refinement on F^2 Hydrogen site location: mixedLeast-squares matrix: fullH-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.036$ $w = 1/[\sigma^2(F_o^2) + (0.0224P)^2 + 9.8357P]$ $wR(F^2) = 0.071$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.07 $(\Delta/\sigma)_{max} = 0.003$ 11794 reflections $\Delta\rho_{max} = 1.39$ e Å⁻³624 parameters $\Delta\rho_{min} = -1.32$ e Å⁻³20 restraints $\Delta\rho_{min} = -1.32$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.7088 (2)	0.4345 (2)	-0.0552 (3)	0.0150 (9)	
C2	0.6426 (2)	0.4242 (2)	-0.0150 (3)	0.0218 (10)	
H2	0.6372	0.4380	0.0457	0.026*	
C3	0.5843 (3)	0.3938 (3)	-0.0628 (3)	0.0248 (11)	
H3	0.5397	0.3874	-0.0340	0.030*	
C4	0.5903 (2)	0.3728 (2)	-0.1516 (3)	0.0202 (10)	
C5	0.6558 (3)	0.3852 (3)	-0.1917 (3)	0.0247 (11)	
Н5	0.6608	0.3727	-0.2529	0.030*	
C6	0.7143 (3)	0.4154 (2)	-0.1445 (3)	0.0216 (10)	

H6	0.7585	0.4231	-0.1738	0.026*
C7	0.5284 (2)	0.3369 (3)	-0.2015 (3)	0.0236 (11)
H7A	0.5338	0.2850	-0.1967	0.035*
H7B	0.5285	0.3509	-0.2648	0.035*
H7C	0.4826	0.3513	-0.1756	0.035*
C8	0.8199 (2)	0.5373 (2)	-0.0699 (3)	0.0153 (9)
C9	0.8615 (2)	0.5187 (2)	-0.1427 (3)	0.0180 (9)
H9	0.8780	0.4710	-0.1488	0.022*
C10	0.8790 (2)	0.5699 (2)	-0.2067 (3)	0.0190 (10)
H10	0.9057	0.5557	-0.2571	0.023*
C11	0.8585 (2)	0.6407 (2)	-0.1988(3)	0.0188 (10)
C12	0.8190 (2)	0.6591 (2)	-0.1246 (3)	0.0176 (10)
H12	0.8053	0.7074	-0.1165	0.021*
C13	0.7991 (2)	0.6088 (2)	-0.0624(3)	0.0160 (9)
H13	0.7707	0.6230	-0.0135	0.019*
C14	0.8760 (3)	0.6936 (3)	-0.2702(3)	0.0281 (12)
H14A	0.9130	0.6737	-0.3085	0.042*
H14B	0.8941	0.7377	-0.2422	0.042*
H14C	0.8322	0.7041	-0.3066	0.042*
C15	0.8541(2)	0.4003 (2)	0.0034(3)	0.0159(9)
C16	0.8354(3)	0.3286(2)	-0.0059(3)	0.0197(10)
H16	0 7860	0.3157	-0.0142	0.024*
C17	0.8879(3)	0.2756(2)	-0.0031(3)	0.021 0.0240(11)
H17	0.8738	0 2271	-0.0101	0.029*
C18	0.9605 (3)	0.2271 0.2921(2)	0.0097(3)	0.029
C19	0.9795(3)	0.2921(2) 0.3640(3)	0.0097(3)	0.0210(10) 0.0219(10)
H19	1 0290	0.3767	0.0288	0.026*
C20	0.9271(2)	0.3767 0.4168 (2)	0.0288	0.020
H20	0.9211 (2)	0.4651	0.0286	0.0201 (10)
C21	1 0178 (3)	0.4031 0.2344 (3)	0.0113 (4)	0.024 0.0348(13)
H21A	1.0485	0.2400	-0.0406	0.0518(15)
H21R	0.9945	0.1875	0.000	0.052
H21C	1 0476	0.2384	0.0666	0.052*
C22	0.8101(2)	0.2504	0.5615(3)	0.052
C22	0.8131(2)	0.4373(2) 0.4047(2)	0.5013(3)	0.0107(9)
H23	0.7676	0.3820	0.6351	0.0200 (10)
C24	0.7070 0.8732 (2)	0.3829 0.3834 (2)	0.0331 0.6785 (3)	0.023
U24	0.8732 (2)	0.3054 (2)	0.0785 (5)	0.0213 (10)
C25	0.0001	0.3409 0.4152 (2)	0.7220	0.020°
C25	0.9404(2) 0.0467(3)	0.4152(2)	0.0070(3)	0.0224(10) 0.0237(11)
C20	0.9407 (3)	0.4003(2)	0.0000 (3)	0.0237 (11)
H20 C27	0.9923	0.4074 0.4875 (2)	0.5904	0.028°
C27	0.8807 (2)	0.4073 (2)	0.5464 (5)	0.0200 (10)
1127 C28	1 0047 (3)	0.3220	0.5054 0.7271 (3)	0.024°
U20	1.004/(3)	0.3931 (3)	0.7271(3)	0.0312(12) 0.047*
1120A U29D	0.2000	0.3030	0.7079	0.047*
1120D	1.0390	0.4545	0.7200	0.047*
1120C	1.02//	0.5323	0.7034	$0.04/^{*}$
U29	0./1/5(2)	0.5702(2)	0.3/1/(3)	0.0100 (9)

C30	0.7101 (2)	0.5582 (3)	0.6632 (3)	0.0205 (10)	
H30	0.7193	0.5119	0.6870	0.025*	
C31	0.6898 (2)	0.6121 (2)	0.7198 (3)	0.0216 (10)	
H31	0.6835	0.6021	0.7815	0.026*	
C32	0.6784 (3)	0.6816 (3)	0.6875 (3)	0.0242 (11)	
C33	0.6863 (3)	0.6937 (2)	0.5969 (3)	0.0247 (11)	
H33	0.6786	0.7403	0.5735	0.030*	
C34	0.7056 (3)	0.6388 (2)	0.5392 (3)	0.0218 (10)	
H34	0.7105	0.6483	0.4771	0.026*	
C35	0.6576 (3)	0.7410 (3)	0.7489 (4)	0.0358 (14)	
H35A	0.6086	0.7327	0.7698	0.054*	
H35B	0.6589	0.7865	0.7166	0.054*	
H35C	0.6916	0.7427	0.8005	0.054*	
C36	0.6674 (2)	0.4326 (2)	0.5165 (3)	0.0182 (10)	
C37	0.6754 (3)	0.3610(2)	0.4919(3)	0.0239(11)	
H37	0.7210	0.3440	0.4733	0.029*	
C38	0.6167 (3)	0.3149 (3)	0.4947(3)	0.0277(12)	
H38	0.6222	0.2669	0.4757	0.033*	
C39	0.5499(3)	0.3375(3)	0.5249(3)	0.0253(11)	
C40	0.5429(3)	0.3373(3) 0.4081(3)	0.5217(3)	0.0235(11) 0.0235(11)	
H40	0.4977	0 4247	0.5689	0.028*	
C41	0.1977	0.1217 0.4555(3)	0.5009	0.020	
H41	0.5934	0.5042	0.5592	0.026*	
C42	0.3931 0.4871(3)	0.3012 0.2861 (3)	0.5392 0.5288 (4)	0.020 0.0396 (14)	
С-12 Н42 Δ	0.4449	0.3108	0.5200 (4)	0.0598	
H42R	0.5002	0.2461	0.5520	0.059*	
H42C	0.3002	0.2481	0.5685	0.059*	
C43	0.4753 0.7013 (2)	0.3863 (2)	0.4004	0.039 0.0200 (10)	
C44	0.7013(2) 0.6742(3)	0.3105(3)	0.2403(5) 0.2501(4)	0.0200(10) 0.0333(13)	
Стт Н44 Δ	0.7102	0.2812	0.2301 (4)	0.0355 (15)	0.73
H44R	0.6317	0.2012	0.2750	0.040*	0.73
	0.6244	0.3090	0.2005	0.040*	0.73
	0.0244	0.3098	0.2298	0.040*	0.27
C45	0.6568 (6)	0.2933	0.5108	0.040°	0.27
U45 U45A	0.0308 (0)	0.2799 (4)	0.1032(3)	0.030(2)	0.73
1145A 1145D	0.6268	0.3101	0.1314	0.074*	0.73
П43D Ц45С	0.0308	0.2320	0.1708	0.074*	0.73
П43С С45 А	0.7007 0.7161 (12)	0.2770	0.1264 0.1044 (17)	0.074°	0.75
U45A	0.7101 (12)	0.2023 (7)	0.1944 (17)	0.033 (0)	0.27
П43D	0.7320	0.2880	0.1414	0.079*	0.27
H45E	0.0839	0.2217	0.1/56	0.079*	0.27
H45F	0.7585	0.2450	0.2291	$0.0/9^{*}$	0.27
C40	0.8792(2)	0.4331(2)	0.2770(3)	0.0152(9)	
C4/	0.9384 (2)	0.3784 (2)	0.28//(3)	0.0211 (10)	
H4/А	0.9386	0.3/9/	0.3499	0.025*	
H4/B	0.9778	0.3897	0.2467	0.025*	
C48	0.9092 (3)	0.3045 (3)	0.26/1 (4)	0.0360 (13)	
H48A	0.8704	0.2933	0.3080	0.054*	
H48B	0.9482	0.2694	0.2748	0.054*	

H48C	0.8901	0.3031	0.2051	0.054*
C49	0.8253 (3)	0.5936 (3)	0.1509 (3)	0.0203 (10)
C50	0.6878 (3)	0.5657 (2)	0.1278 (3)	0.0195 (10)
C51	0.8005 (3)	0.6073 (2)	0.3551 (3)	0.0194 (10)
C52	0.6668 (3)	0.5639 (2)	0.3303 (3)	0.0177 (10)
C53	0.5166 (3)	0.9665 (3)	0.2748 (4)	0.0437 (15)
H53A	0.4810	1.0036	0.2903	0.052*
H53B	0.5619	0.9909	0.2588	0.052*
O1	0.71078 (19)	0.41452 (16)	0.1737 (2)	0.0250 (8)
O2	0.71458 (19)	0.41517 (17)	0.3238 (2)	0.0257 (8)
O3	0.85738 (17)	0.44616 (16)	0.1974 (2)	0.0215 (7)
O4	0.85480 (16)	0.46159 (16)	0.3465 (2)	0.0199 (7)
O5	0.86026 (19)	0.64365 (18)	0.1453 (2)	0.0301 (8)
O6	0.63722 (19)	0.5994 (2)	0.1074 (2)	0.0362 (9)
O7	0.83055 (18)	0.66144 (17)	0.3629 (2)	0.0278 (8)
O8	0.61028 (17)	0.59124 (18)	0.3218 (2)	0.0266 (8)
Os1	0.76852 (2)	0.51169 (2)	0.15852 (2)	0.01284 (5)
Os2	0.75547 (2)	0.51941 (2)	0.34254 (2)	0.01333 (5)
P1	0.78714 (6)	0.47126 (6)	0.00812 (8)	0.0143 (2)
P2	0.74144 (6)	0.49529 (6)	0.49914 (8)	0.0156 (2)
C11	0.48329 (8)	0.91824 (9)	0.18186 (11)	0.0510 (4)
C12	0.53392 (11)	0.91213 (11)	0.36866 (11)	0.0674 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.016 (2)	0.012 (2)	0.016 (2)	0.0012 (16)	-0.0008 (18)	-0.0003 (17)
C2	0.019 (3)	0.029 (3)	0.017 (2)	0.0015 (19)	0.0021 (19)	-0.003 (2)
C3	0.018 (3)	0.032 (3)	0.025 (3)	-0.002(2)	0.004 (2)	-0.003 (2)
C4	0.018 (3)	0.019 (2)	0.023 (3)	-0.0001 (18)	-0.004 (2)	0.001 (2)
C5	0.024 (3)	0.034 (3)	0.016 (2)	-0.001 (2)	-0.002 (2)	-0.005 (2)
C6	0.023 (3)	0.026 (3)	0.016 (2)	-0.0069 (19)	0.003 (2)	-0.002 (2)
C7	0.016 (3)	0.032 (3)	0.023 (3)	-0.001 (2)	0.000(2)	-0.006 (2)
C8	0.017 (2)	0.017 (2)	0.012 (2)	-0.0020 (17)	-0.0046 (17)	-0.0024 (18)
C9	0.016 (2)	0.017 (2)	0.021 (2)	-0.0023 (18)	0.0004 (18)	0.0006 (19)
C10	0.022 (3)	0.023 (2)	0.012 (2)	-0.0041 (19)	0.0058 (19)	-0.0026 (19)
C11	0.014 (2)	0.022 (2)	0.020 (2)	-0.0040 (18)	-0.0023 (19)	0.007 (2)
C12	0.015 (2)	0.018 (2)	0.020 (2)	0.0005 (17)	-0.0042 (19)	-0.0013 (19)
C13	0.016 (2)	0.021 (2)	0.011 (2)	-0.0004 (18)	0.0025 (18)	-0.0006 (18)
C14	0.030 (3)	0.027 (3)	0.028 (3)	0.003 (2)	0.006 (2)	0.011 (2)
C15	0.020 (2)	0.020 (2)	0.008 (2)	-0.0017 (18)	0.0016 (18)	0.0016 (18)
C16	0.022 (3)	0.023 (2)	0.014 (2)	-0.0025 (19)	0.0003 (19)	-0.0002 (19)
C17	0.033 (3)	0.017 (2)	0.022 (3)	0.002 (2)	0.000 (2)	-0.001 (2)
C18	0.026 (3)	0.025 (3)	0.014 (2)	0.009 (2)	0.000(2)	0.000 (2)
C19	0.017 (3)	0.033 (3)	0.015 (2)	0.002 (2)	0.0001 (19)	-0.001 (2)
C20	0.019 (3)	0.023 (2)	0.019 (2)	-0.0007 (19)	0.0002 (19)	-0.001 (2)
C21	0.035 (3)	0.033 (3)	0.036 (3)	0.015 (2)	0.001 (3)	-0.003 (3)
C22	0.020 (2)	0.016 (2)	0.014 (2)	0.0049 (18)	0.0011 (18)	0.0007 (18)

~ • •			a a a c (a)			
C23	0.016 (2)	0.021 (2)	0.026 (3)	0.0002 (18)	0.003 (2)	0.001 (2)
C24	0.021 (3)	0.022 (2)	0.021 (3)	0.0046 (19)	0.002 (2)	0.002 (2)
C25	0.019 (3)	0.025 (3)	0.022 (3)	0.0061 (19)	-0.001(2)	-0.006(2)
C26	0.020 (3)	0.028 (3)	0.024 (3)	0.0023 (19)	0.006 (2)	-0.006(2)
C27	0.023 (3)	0.024 (2)	0.013 (2)	0.0016 (19)	0.0044 (19)	-0.0013 (19)
C28	0.030 (3)	0.035 (3)	0.028 (3)	0.005 (2)	-0.006(2)	0.003 (2)
C29	0.014 (2)	0.021 (2)	0.015 (2)	0.0025 (17)	0.0036 (18)	-0.0048 (19)
C30	0.016 (2)	0.028 (3)	0.018 (2)	0.0056 (19)	0.0017 (19)	0.001 (2)
C31	0.022 (3)	0.031 (3)	0.013 (2)	0.004 (2)	0.0011 (19)	-0.005 (2)
C32	0.017 (3)	0.032 (3)	0.023 (3)	0.007 (2)	-0.007(2)	-0.006(2)
C33	0.031 (3)	0.018 (2)	0.025 (3)	0.002 (2)	-0.002 (2)	-0.003 (2)
C34	0.025 (3)	0.021 (2)	0.019 (3)	0.0049 (19)	0.001 (2)	0.001 (2)
C35	0.041 (3)	0.038 (3)	0.028 (3)	0.016 (3)	-0.004 (3)	-0.013 (2)
C36	0.022 (3)	0.019 (2)	0.014 (2)	0.0020 (18)	0.0030 (19)	0.0047 (19)
C37	0.024 (3)	0.022 (2)	0.027 (3)	0.0011 (19)	0.010 (2)	0.005 (2)
C38	0.030 (3)	0.021 (2)	0.032 (3)	-0.004 (2)	0.008 (2)	0.000 (2)
C39	0.023 (3)	0.027 (3)	0.026 (3)	-0.005 (2)	0.000 (2)	0.005 (2)
C40	0.016 (3)	0.035 (3)	0.020 (3)	0.001 (2)	0.003 (2)	-0.001 (2)
C41	0.023 (3)	0.021 (2)	0.021 (3)	0.0030 (19)	0.000 (2)	0.005 (2)
C42	0.032 (3)	0.037 (3)	0.051 (4)	-0.011 (2)	0.010 (3)	-0.001 (3)
C43	0.018 (3)	0.014 (2)	0.028 (3)	-0.0045 (18)	0.008 (2)	0.001 (2)
C44	0.043 (3)	0.020 (3)	0.037 (3)	-0.010 (2)	0.011 (3)	-0.005 (2)
C45	0.092 (7)	0.030 (4)	0.027 (4)	-0.026 (4)	-0.007 (4)	0.006 (3)
C45A	0.066 (12)	0.029 (9)	0.064 (12)	-0.009 (9)	0.018 (10)	-0.005 (9)
C46	0.017 (2)	0.012 (2)	0.017 (2)	-0.0012 (16)	0.0025 (18)	-0.0002 (18)
C47	0.020 (3)	0.025 (3)	0.019 (2)	0.0062 (19)	-0.001(2)	0.001 (2)
C48	0.042 (3)	0.023 (3)	0.042 (3)	0.001 (2)	-0.010 (3)	0.001 (2)
C49	0.021 (3)	0.028 (3)	0.012 (2)	-0.007 (2)	0.0004 (19)	-0.002 (2)
C50	0.021 (3)	0.028 (3)	0.010(2)	-0.004(2)	0.0054 (19)	-0.0076 (19)
C51	0.027 (3)	0.022 (2)	0.009 (2)	-0.001(2)	0.0046 (19)	-0.0026 (19)
C52	0.028 (3)	0.017 (2)	0.009 (2)	-0.0085 (19)	0.0048 (19)	-0.0014 (18)
C53	0.053 (4)	0.040 (3)	0.038 (4)	-0.001 (3)	-0.003 (3)	-0.006 (3)
01	0.041 (2)	0.0179 (17)	0.0159 (17)	-0.0130 (15)	0.0039 (15)	-0.0058 (14)
02	0.037 (2)	0.0210 (17)	0.0198 (18)	-0.0073 (15)	0.0066 (15)	0.0020 (14)
03	0.0251 (18)	0.0230 (17)	0.0166 (17)	0.0116 (14)	0.0019 (14)	-0.0008 (14)
04	0.0206 (17)	0.0217 (17)	0.0174 (17)	0.0080 (13)	0.0015 (13)	0.0000 (14)
05	0.041 (2)	0.0255 (19)	0.024 (2)	-0.0136 (16)	-0.0038 (17)	-0.0009 (15)
O6	0.027 (2)	0.055 (2)	0.027 (2)	0.0235 (18)	-0.0029 (16)	-0.0073 (18)
07	0.030 (2)	0.0217 (18)	0.032 (2)	-0.0101 (15)	0.0047 (16)	-0.0036 (15)
08	0.0180 (19)	0.036 (2)	0.0257 (19)	0.0077 (15)	0.0031 (15)	0.0073 (16)
Os1	0.01399 (9)	0.01247 (9)	0.01209 (9)	-0.00015 (6)	0.00080 (6)	-0.00065 (7)
Os2	0.01522 (10)	0.01266 (9)	0.01222 (9)	0.00003 (6)	0.00198 (7)	-0.00003(7)
P1	0.0148 (6)	0.0143 (6)	0.0138 (6)	-0.0006 (4)	0.0017 (4)	-0.0020 (4)
P2	0.0163 (6)	0.0161 (6)	0.0145 (6)	0.0015 (4)	0.0026 (5)	0.0003 (5)
Cl1	0.0441 (9)	0.0578 (10)	0.0507 (10)	-0.0114 (7)	-0.0054 (8)	-0.0148 (8)
C12	0.0841 (14)	0.0830 (13)	0.0365 (9)	0.0053 (10)	0.0230 (9)	0.0165 (9)
		(10)		(10)		(2)

Geometric parameters (Å, °)

C1—C6	1.387 (6)	C32—C33	1.383 (7)
C1—C2	1.393 (6)	C32—C35	1.500 (6)
C1—P1	1.838 (4)	C33—C34	1.395 (6)
C2—C3	1.395 (6)	С33—Н33	0.9500
С2—Н2	0.9500	C34—H34	0.9500
C3—C4	1.390 (7)	C35—H35A	0.9800
С3—Н3	0.9500	C35—H35B	0.9800
C4—C5	1.388 (7)	C35—H35C	0.9800
C4—C7	1.505 (6)	C36—C41	1.388 (6)
С5—С6	1.394 (6)	C36—C37	1.400 (6)
С5—Н5	0.9500	C36—P2	1.829 (5)
С6—Н6	0.9500	C37—C38	1.390 (6)
С7—Н7А	0.9800	С37—Н37	0.9500
С7—Н7В	0.9800	C38—C39	1.394 (7)
С7—Н7С	0.9800	C38—H38	0.9500
С8—С9	1.394 (6)	C39—C40	1.376 (7)
C8—C13	1.399 (6)	C39—C42	1.512 (7)
C8—P1	1.816 (4)	C40—C41	1.388 (6)
C9—C10	1.400 (6)	C40—H40	0.9500
С9—Н9	0.9500	C41—H41	0.9500
C10—C11	1.386 (6)	C42—H42A	0.9800
C10—H10	0.9500	C42—H42B	0.9800
C11—C12	1.388 (6)	C42—H42C	0.9800
C11—C14	1.498 (6)	C43—O1	1.252 (5)
C12—C13	1.381 (6)	C43—O2	1.263 (6)
С12—Н12	0.9500	C43—C44	1.507 (6)
С13—Н13	0.9500	C44—C45	1.445 (8)
C14—H14A	0.9800	C44—C45A	1.466 (11)
C14—H14B	0.9800	C44—H44A	0.9600
C14—H14C	0.9800	C44—H44B	0.9600
C15—C16	1.393 (6)	C44—H44C	0.9601
C15—C20	1.398 (6)	C44—H44D	0.9599
C15—P1	1.820 (4)	C45—H45A	0.9800
C16—C17	1.388 (6)	C45—H45B	0.9800
C16—H16	0.9500	C45—H45C	0.9800
C17—C18	1.385 (7)	C45A—H45D	0.9800
С17—Н17	0.9500	C45A—H45E	0.9800
C18—C19	1.400 (7)	C45A—H45F	0.9800
C18—C21	1.514 (6)	C46—O4	1.262 (5)
C19—C20	1.385 (6)	C46—O3	1.267 (5)
C19—H19	0.9500	C46—C47	1.505 (6)
C20—H20	0.9500	C47—C48	1.513 (7)
C21—H21A	0.9800	C47—H47A	0.9900
C21—H21B	0.9800	C47—H47B	0.9900
C21—H21C	0.9800	C48—H48A	0.9800
C22—C23	1.388 (6)	C48—H48B	0.9800

C22—C27	1.392 (6)	C48—H48C	0.9800
C22—P2	1.831 (4)	C49—O5	1.143 (5)
C23—C24	1.394 (6)	C49—Os1	1.866 (5)
C23—H23	0.9500	C50—O6	1.162 (5)
C24—C25	1.394 (7)	C50—Os1	1.849 (5)
C24—H24	0.9500	C51—O7	1.161 (5)
C25—C26	1.395 (7)	C51—Os2	1.853 (5)
C25—C28	1.509 (6)	C52—O8	1.168 (5)
C26—C27	1.392 (6)	C52—Os2	1.843 (5)
C26—H26	0.9500	C53—Cl1	1.751 (6)
С27—Н27	0.9500	C53—Cl2	1.753 (6)
C28—H28A	0.9800	С53—Н53А	0.9900
C28—H28B	0.9800	С53—Н53В	0.9900
C28—H28C	0.9800	O1—Os1	2.127 (3)
C29—C34	1.389(6)	O2—Os2	2.110 (3)
C29—C30	1.395 (6)	O3—Os1	2.118 (3)
C29—P2	1.836 (4)	04—0s2	2.132 (3)
C30—C31	1.377 (6)	Os1—P1	2.4037 (11)
C30—H30	0.9500	Os1-Os2	2.7677 (3)
$C_{31} - C_{32}$	1403(7)	Os2—P2	2.4022(12)
C31—H31	0.9500	002 12	2.1022 (12)
C6—C1—C2	118.1 (4)	C41—C36—P2	121.7 (3)
C6-C1-P1	120.6 (3)	C37—C36—P2	119.5 (3)
$C_2 - C_1 - P_1$	120.0(0) 121.3(3)	$C_{38} - C_{37} - C_{36}$	119.9 (4)
C1 - C2 - C3	121.3(5) 120.8(4)	C38—C37—H37	120.1
C1 - C2 - H2	119.6	$C_{36} - C_{37} - H_{37}$	120.1
C_{3} C_{2} H_{2}	119.6	$C_{37} - C_{38} - C_{39}$	120.1
$C_4 - C_3 - C_2$	121.3 (4)	$C_{37} - C_{38} - H_{38}$	119.3
C4 - C3 - H3	119.4	C_{39} C_{38} H_{38}	119.3
$C_2 - C_3 - H_3$	119.1	C40-C39-C38	117.8 (4)
$C_{2} = C_{3} = C_{4}$	117.1 117.4(4)	C40-C39-C42	121.5(5)
$C_{5} - C_{4} - C_{7}$	117.4(4) 1214(4)	$C_{40} = C_{50} = C_{42}$	121.5(5) 120.6(5)
$C_3 = C_4 = C_7$	121.7(4) 121.2(4)	$C_{30} = C_{40} = C_{42}$	120.0(5) 121.5(4)
C_{4}	121.2(4) 121.6(4)	C39 - C40 - H40	119.2
C4 C5 H5	121.0 (4)	C_{41} C_{40} H_{40}	119.2
C6-C5-H5	119.2	C40 - C41 - C36	119.2 120.7 (4)
$C_{1} C_{6} C_{5}$	119.2 120.7 (4)	$C_{40} = C_{41} = C_{30}$	120.7 (4)
C1 - C6 + H6	120.7 (4)	$C_{40} = C_{41} = H_{41}$	119.0
C5 C6 H6	119.0	C_{30} C_{41} H_{42A}	100.5
C_{4} C_{7} H_{7}	100.5	$C_{39} = C_{42} = H_{42}R$	109.5
C4 - C7 - H7P	109.5	$C_{39} - C_{42} - H_{42B}$	109.5
$C4 - C / - \Pi / B$	109.5		109.5
$\Pi/A - C/ - \Pi/B$	109.5	C39 - C42 - H42C	109.5
$U_{4} = U_{1} = \Pi_{1}U_{1}$	109.3	$\Pi 42 \mathbf{A} = \mathbf{U} 42 = \Pi 42 \mathbf{U}$	109.5
$\Pi/A - U/- \Pi/U$	109.5	H42B - U42 - H42U	109.5
$\Pi/D - U/- \Pi/U$	109.5	01 - 043 - 02	123.7(4)
C_{2} C_{2} C_{1}	117.5 (4)	01 - 043 - 044	11/.9 (4)
U9-U8-PI	122.2 (3)	02 - C43 - C44	116.4 (4)

C13—C8—P1	120.1 (3)	C45—C44—C43	115.1 (5)
C8—C9—C10	120.4 (4)	C45A—C44—C43	112.9 (7)
С8—С9—Н9	119.8	C45—C44—H44A	108.4
С10—С9—Н9	119.8	C43—C44—H44A	108.6
С11—С10—С9	121.8 (4)	C45—C44—H44B	108.6
C11—C10—H10	119.1	C43—C44—H44B	108.4
С9—С10—Н10	119.1	H44A—C44—H44B	107.5
C10-C11-C12	117.2 (4)	C45A—C44—H44C	109.4
C10-C11-C14	120.4 (4)	C43—C44—H44C	108.9
C12—C11—C14	122.3 (4)	C45A—C44—H44D	108.7
C13—C12—C11	121.7 (4)	C43—C44—H44D	109.1
C13—C12—H12	119.2	H44C—C44—H44D	107.8
C11—C12—H12	119.2	C44—C45—H45A	109.5
C12—C13—C8	121.3 (4)	C44—C45—H45B	109.5
C12—C13—H13	119.4	H45A—C45—H45B	109.5
C8—C13—H13	119.4	C44—C45—H45C	109.5
C11—C14—H14A	109.5	H45A—C45—H45C	109.5
C11—C14—H14B	109.5	H45B—C45—H45C	109.5
H14A—C14—H14B	109.5	C44—C45A—H45D	109.5
C11—C14—H14C	109.5	C44—C45A—H45E	109.5
H14A—C14—H14C	109.5	H45D—C45A—H45E	109.5
H14B—C14—H14C	109.5	C44—C45A—H45F	109.5
C16—C15—C20	117.7 (4)	H45D—C45A—H45F	109.5
C16—C15—P1	122.8 (3)	H45E—C45A—H45F	109.5
C20—C15—P1	119.1 (3)	O4—C46—O3	125.3 (4)
C17—C16—C15	121.1 (4)	O4—C46—C47	118.6 (4)
C17—C16—H16	119.5	O3—C46—C47	116.1 (4)
C15—C16—H16	119.5	C46—C47—C48	110.3 (4)
C18—C17—C16	121.2 (4)	C46—C47—H47A	109.6
C18—C17—H17	119.4	C48—C47—H47A	109.6
C16—C17—H17	119.4	C46—C47—H47B	109.6
C17—C18—C19	118.0 (4)	C48—C47—H47B	109.6
C17—C18—C21	121.2 (4)	H47A—C47—H47B	108.1
C19—C18—C21	120.8 (4)	C47—C48—H48A	109.5
C20—C19—C18	120.9 (4)	C47—C48—H48B	109.5
С20—С19—Н19	119.6	H48A—C48—H48B	109.5
C18—C19—H19	119.6	C47—C48—H48C	109.5
C19—C20—C15	121.0 (4)	H48A—C48—H48C	109.5
С19—С20—Н20	119.5	H48B—C48—H48C	109.5
С15—С20—Н20	119.5	O5—C49—Os1	179.3 (4)
C18—C21—H21A	109.5	O6—C50—Os1	179.2 (4)
C18—C21—H21B	109.5	O7—C51—Os2	178.1 (4)
H21A—C21—H21B	109.5	O8—C52—Os2	179.0 (4)
C18—C21—H21C	109.5	Cl1—C53—Cl2	112.5 (3)
H21A—C21—H21C	109.5	Cl1—C53—H53A	109.1
H21B—C21—H21C	109.5	Cl2—C53—H53A	109.1
C23—C22—C27	118.5 (4)	Cl1—C53—H53B	109.1
C23—C22—P2	123.5 (3)	Cl2—C53—H53B	109.1

C27—C22—P2	117.7 (3)	H53A—C53—H53B	107.8
C22—C23—C24	120.9 (4)	C43—O1—Os1	122.8 (3)
С22—С23—Н23	119.5	C43—O2—Os2	125.0 (3)
C24—C23—H23	119.5	C46—O3—Os1	126.2 (3)
C23—C24—C25	120.7 (4)	C46—O4—Os2	121.5 (3)
C23—C24—H24	119.7	C50—Os1—C49	89.3 (2)
C25—C24—H24	119.7	C50—Os1—O3	176.98 (17)
C24—C25—C26	118.2 (4)	C49—Os1—O3	93.43 (17)
C24—C25—C28	120.9 (4)	C50—Os1—O1	95.18 (17)
C26—C25—C28	120.8 (4)	C49—Os1—O1	175.29 (17)
C27—C26—C25	120.8 (4)	O3—Os1—O1	82.10 (13)
С27—С26—Н26	119.6	C50—Os1—P1	94.55 (13)
С25—С26—Н26	119.6	C49—Os1—P1	96.01 (14)
C26—C27—C22	120.7 (4)	O3—Os1—P1	86.56 (9)
С26—С27—Н27	119.6	O1—Os1—P1	85.24 (9)
С22—С27—Н27	119.6	C50—Os1—Os2	97.03 (13)
C25—C28—H28A	109.5	C49—Os1—Os2	94.85 (14)
C25—C28—H28B	109.5	O3—Os1—Os2	81.38 (8)
H28A—C28—H28B	109.5	O1—Os1—Os2	83.06 (8)
C25—C28—H28C	109.5	P1—Os1—Os2	164.21 (3)
H28A—C28—H28C	109.5	C52—Os2—C51	90.2 (2)
H28B—C28—H28C	109.5	C52—Os2—O2	95.23 (16)
C34—C29—C30	118.2 (4)	C51—Os2—O2	174.03 (17)
C34—C29—P2	122.6 (3)	C52—Os2—O4	174.58 (15)
C30—C29—P2	119.1 (3)	C51—Os2—O4	93.70 (17)
C31—C30—C29	121.2 (4)	O2—Os2—O4	80.69 (13)
С31—С30—Н30	119.4	C52—Os2—P2	93.35 (13)
С29—С30—Н30	119.4	C51—Os2—P2	97.51 (14)
C30—C31—C32	120.8 (4)	O2—Os2—P2	84.59 (9)
С30—С31—Н31	119.6	O4—Os2—P2	89.83 (9)
С32—С31—Н31	119.6	C52—Os2—Os1	91.74 (13)
C33—C32—C31	117.9 (4)	C51—Os2—Os1	95.39 (13)
C33—C32—C35	120.9 (5)	O2—Os2—Os1	82.07 (9)
C31—C32—C35	121.2 (4)	O4—Os2—Os1	84.19 (8)
C32—C33—C34	121.4 (5)	P2—Os2—Os1	166.10 (3)
С32—С33—Н33	119.3	C8—P1—C15	103.4 (2)
С34—С33—Н33	119.3	C8—P1—C1	101.52 (19)
C29—C34—C33	120.5 (4)	C15—P1—C1	103.44 (19)
C29—C34—H34	119.8	C8—PI—Osl	116.39 (14)
C33—C34—H34	119.8	CI5—PI—Osl	112.59 (14)
С32—С35—Н35А	109.5	C1—P1—Os1	117.63 (14)
С32—С35—Н35В	109.5	C36—P2—C22	104.9 (2)
H35A-U35-H35B	109.5	C_{36} P_{2} C_{29} C_{20}	102.2 (2)
U32-U35-H35U	109.5	C_{22} — P_{2} — C_{29}	101.4 (2)
H35A-U35-H35U	109.5	C_{20} P_2 O_{22}	111.30 (15)
$H_{33}B - C_{33} - H_{33}C$	109.5	C_{22} — P_{2} — O_{22}	117.41 (15)
C41 - C36 - C3/	118.4 (4)	C29—P2—OS2	117.74(15)

$C_{6} - C_{1} - C_{2} - C_{3}$	16(7)	C38 - C39 - C40 - C41	-0.5(7)
$P_1 = C_1 = C_2 = C_3$	-1777(4)	C_{42} C_{40} C_{40} C_{41}	-1790(5)
$C_1 C_2 C_3 C_4$	(1,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7	$C_{12}^{30} = C_{10}^{30} = C_{10}^{40} = C_{11}^{40} = C_{10}^{36}$	-1.6(7)
$C_1 = C_2 = C_3 = C_4$	-1.9(7)	C_{37} C_{36} C_{41} C_{40}	1.0(7)
$C_2 = C_3 = C_4 = C_5$	1.9(7)	$P_2 = C_3 C_4 C_4 C_4 C_4 C_4 C_4 C_4 C_4 C_4 C_4$	1.7(7) 1741(4)
$C_2 = C_3 = C_4 = C_7$	1/7.0(4)	12 - C30 - C41 - C40	-4.2(8)
C_{3} C_{4} C_{5} C_{6}	1.9(7)	01 - C43 - C44 - C45	-4.3(8)
$C^{-}_{-}C$	-1/7.0(4)	02 - C43 - C44 - C43	177.7(0)
$C_2 = C_1 = C_0 = C_3$	-1.0(7)	01 - C43 - C44 - C45A	50.5(14)
PI = CI = C6 = C5	1//./(4)	02-C43-C44-C45A	-127.6(14)
C4—C5—C6—C1	-0.2(7)	04-046-047-048	107.9 (5)
C13—C8—C9—C10	-2.1 (6)	03-C46-C47-C48	-/1.4 (5)
P1—C8—C9—C10	173.0 (3)	O2—C43—O1—Os1	10.8 (7)
C8—C9—C10—C11	2.5 (7)	C44—C43—O1—Os1	-167.0 (3)
C9—C10—C11—C12	-0.6 (7)	O1—C43—O2—Os2	0.5 (7)
C9—C10—C11—C14	-177.8 (4)	C44—C43—O2—Os2	178.4 (3)
C10-C11-C12-C13	-1.6 (7)	O4—C46—O3—Os1	-5.9 (6)
C14—C11—C12—C13	175.6 (4)	C47—C46—O3—Os1	173.4 (3)
C11—C12—C13—C8	2.0 (7)	O3—C46—O4—Os2	14.4 (6)
C9—C8—C13—C12	-0.1 (6)	C47—C46—O4—Os2	-164.8 (3)
P1-C8-C13-C12	-175.3 (3)	C9—C8—P1—C15	27.8 (4)
C20-C15-C16-C17	-2.3 (7)	C13—C8—P1—C15	-157.2 (4)
P1-C15-C16-C17	-175.6 (4)	C9—C8—P1—C1	-79.2 (4)
C15—C16—C17—C18	0.5 (7)	C13—C8—P1—C1	95.8 (4)
C16—C17—C18—C19	0.5 (7)	C9—C8—P1—Os1	151.8 (3)
C16—C17—C18—C21	-179.1 (5)	C13—C8—P1—Os1	-33.3 (4)
C17—C18—C19—C20	0.5 (7)	C16—C15—P1—C8	-132.7 (4)
C21—C18—C19—C20	180.0 (4)	C20-C15-P1-C8	54.1 (4)
C18—C19—C20—C15	-2.4(7)	C_{16} — C_{15} — P_{1} — C_{1}	-27.2(4)
C16-C15-C20-C19	32(7)	C_{20} C_{15} P_{1} C_{1}	1597(3)
P1-C15-C20-C19	176.8 (3)	C_{16} $-C_{15}$ $-P_{1}$ $-O_{s1}$	100.9(4)
C_{27} C_{22} C_{23} C_{24}	13(7)	C_{20} C_{15} P_{1} O_{s1}	-723(4)
P_{2} C_{22} C_{23} C_{24}	-1728(4)	C6-C1-P1-C8	467(4)
$C^{22} = C^{23} = C^{24} = C^{25}$	0.8(7)	C_{2} C_{1} P_{1} C_{8}	-1341(4)
$C_{22} = C_{23} = C_{24} = C_{25} = C_{26}$	-27(7)	$C_{1} = P_{1} = C_{15}$	-60.3(4)
C_{23} C_{24} C_{25} C_{20}	176.8(4)	C_{2} C_{1} P_{1} C_{15}	1189(4)
$C_{23}^{24} = C_{23}^{25} = C_{23}^{26}$	25(7)	C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1}	174.9(3)
$C_{24} = C_{25} = C_{20} = C_{27}$	-176.9(4)	$C_2 = C_1 = P_1 = O_{S_1}$	-59(4)
$C_{20} = C_{20} = C_{20} = C_{27}$	1/0.9(4)	C_{2} C_{1} C_{1} C_{2} C_{1} C_{2} C_{2} C_{2} C_{2}	3.3(4)
$C_{23} = C_{20} = C_{27} = C_{22}$	-0.3(7)	C41 - C30 - F2 - C22	130.3(4)
$C_{23} = C_{22} = C_{27} = C_{20}$	-1.3(7)	$C_{3} = C_{30} = F_{2} = C_{22}$	-37.4(4)
$P_2 = C_2 $	1/3.0 (3)	C41 - C36 - P2 - C29	24.9 (4)
$C_{34} - C_{29} - C_{30} - C_{31}$	1.5 (/)	$C_3/-C_{36}-P_2-C_{29}$	-162.8 (4)
P2—C29—C30—C31	-177.7(4)	C41 - C36 - P2 - Os2	-101.7(4)
C29—C30—C31—C32	-2.3(7)	C37/C36P2Os2	70.6 (4)
C30—C31—C32—C33	1.6 (7)	C23—C22—P2—C36	-16.3 (4)
C30—C31—C32—C35	-178.9 (5)	C27—C22—P2—C36	169.6 (3)
C31—C32—C33—C34	-0.4 (7)	C23—C22—P2—C29	89.8 (4)
C35—C32—C33—C34	-179.9 (5)	C27—C22—P2—C29	-84.3 (4)
C30—C29—C34—C33	-0.3 (7)	C23—C22—P2—Os2	-140.4(3)

P2-C29-C34-C33	178.9 (4)	C27—C22—P2—Os2	45.4 (4)
C32—C33—C34—C29	-0.3 (7)	C34—C29—P2—C36	-120.5 (4)
C41—C36—C37—C38	0.3 (7)	C30-C29-P2-C36	58.7 (4)
P2-C36-C37-C38	-172.3 (4)	C34—C29—P2—C22	131.3 (4)
C36—C37—C38—C39	-2.4 (8)	C30—C29—P2—C22	-49.5 (4)
C37—C38—C39—C40	2.5 (8)	C34—C29—P2—Os2	1.8 (4)
C37—C38—C39—C42	-179.0 (5)	C30—C29—P2—Os2	-179.0 (3)

 $Bis(\mu$ -formato-1 κO :2 $\kappa O'$)bis[tris(4-methylphenyl)phosphane]-1 κP ,2 κP -bis(dicarbonylosmium)(Os—Os) (8)

Crystal data	
$\begin{bmatrix} Os_2(CHO_2)_2(C_{21}H_{21}P)_2(CO)_4 \end{bmatrix}$ $M_r = 1191.17$ Triclinic, $P\overline{1}$ a = 10.7707 (4) Å b = 10.8014 (4) Å c = 20.3790 (7) Å a = 104.393 (1)° $\beta = 91.009$ (1)° $\gamma = 98.993$ (1)° V = 2264.27 (14) Å ³	Z = 2 F(000) = 1156 $D_x = 1.747 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9955 reflections $\theta = 2.5-27.1^{\circ}$ $\mu = 5.73 \text{ mm}^{-1}$ T = 200 K Block, colorless $0.15 \times 0.11 \times 0.04 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{min} = 0.538, T_{max} = 0.746$ 30910 measured reflections	9960 independent reflections 8554 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ $\theta_{max} = 27.1^{\circ}, \theta_{min} = 1.0^{\circ}$ $h = -13 \rightarrow 13$ $k = -13 \rightarrow 13$ $l = -26 \rightarrow 26$
RefinementRefinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.082$ $S = 1.06$ 9960 reflections548 parameters0 restraintsHydrogen site location: inferred from neighbouring sites	H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0249P)^{2} + 1.5967P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 1.19 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.09 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00032 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Os1	0.69417 (2)	0.59590 (2)	0.29383 (2)	0.02493 (6)

P1	0.81773 (10)	0.76444 (10)	0.38172 (5)	0.0238 (2)
01	0.6478 (4)	0.7406 (3)	0.24699 (18)	0.0461 (9)
C1	0.5899 (6)	0.7107 (5)	0.1902 (3)	0.0508 (14)
H1	0.587681	0.779927	0.169394	0.061*
Os2	0.50480(2)	0.44535 (2)	0.20412 (2)	0.02496 (6)
02	0.5349(3)	0.6028 (3)	0 15726 (16)	0.0386 (8)
P2	0.32402(10)	0.36297(11)	0.12322(5)	0.0254(2)
C^2	0.32102(10) 0.4312(5)	0.6229(5)	0.3295(2)	0.022(12) 0.0422(12)
H2	0.371286	0.660669	0.358300	0.051*
C3	0.371200 0.8164 (5)	0.5635(5)	0.330300 0.2324(3)	0.031
03	0.5104(3)	0.5055(5)	0.2524(3)	0.0433(12)
03 C4	0.3407(3) 0.7214(5)	0.0400(3)	0.33304(10)	0.0374(8)
04	0.7514(3)	0.4038(3)	0.3293(3)	0.0392(11)
04	0.3907(3)	0.5050(3)	0.27093(10)	0.0389(8)
05	0.8900 (4)	0.3444 (5)	0.1927(2)	0.0729 (15)
05	0.6153 (5)	0.3528 (5)	0.1529 (2)	0.0381 (11)
06	0.7552 (4)	0.3798 (4)	0.3495 (2)	0.0662 (13)
C6	0.4812 (5)	0.3237 (5)	0.2534 (3)	0.0408 (12)
07	0.6866 (4)	0.2952 (4)	0.1227 (2)	0.0571 (11)
C7	0.7472 (4)	0.9097 (4)	0.4120 (2)	0.0261 (9)
C8	0.7160 (4)	0.9755 (4)	0.3650 (2)	0.0302 (9)
H8	0.730434	0.943097	0.318522	0.036*
08	0.4676 (5)	0.2497 (4)	0.2865 (2)	0.0745 (15)
C9	0.6641 (4)	1.0875 (4)	0.3851 (2)	0.0317 (10)
H9	0.645251	1.131966	0.352375	0.038*
C10	0.6394 (5)	1.1354 (5)	0.4520 (3)	0.0383 (11)
C11	0.6713 (6)	1.0704 (5)	0.4985 (3)	0.0531 (15)
H11	0.656524	1.103077	0.544958	0.064*
C12	0.7240 (6)	0.9594 (5)	0.4795 (2)	0.0449 (13)
H12	0.744483	0.916591	0.512723	0.054*
C13	0.9740 (4)	0.8264 (4)	0.3597 (2)	0.0266 (9)
C14	1.0236 (4)	0.9585 (4)	0.3734 (2)	0.0325 (10)
H14	0.975167	1.021349	0.395397	0.039*
C15	1,1443 (5)	0.9977 (5)	0.3546 (3)	0.0400 (11)
H15	1.176412	1.087678	0.363518	0.048*
C16	1 2181 (5)	0 9099 (6)	0.3235(3)	0.0424(12)
C17	1.2101(5) 1 1687(5)	0.7792(5)	0.3233(3)	0.0393(11)
H17	1 219089	0.716909	0.290980	0.047*
C18	1.219009	0.7374(5)	0.278(2)	0.0330(10)
H18	1.017219	0.647215	0.317486	0.0337(10)
C10	0.8480(4)	0.047213 0.7134 (4)	0.317400 0.4580(2)	0.071
C19	0.0400(4)	0.7134(4)	0.4369(2)	0.0200(9)
C20	0.7404(3)	0.0313(3)	0.4800(2)	0.0301 (10)
п20 С21	0.003143	0.034224	0.4041/9	0.043°
U21	0.7018 (5)	0.0148 (3)	0.5460 (3)	0.0416 (12)
H21	0.090/40	0.5/5900	0.504927	0.050*
C22	0.8811 (5)	0.6343 (5)	0.5784 (3)	0.0430 (12)
023	0.9822 (5)	0.6931 (5)	0.5503 (3)	0.0438 (12)
H23	1.064031	0.706989	0.571739	0.053*
C24	0.9663 (4)	0.7326 (4)	0.4905 (2)	0.0334 (10)

H24	1.037121	0.772633	0.471843	0.040*
C25	0.2555 (4)	0.4836 (4)	0.0925 (2)	0.0294 (9)
C26	0.2262 (5)	0.4730 (5)	0.0242 (2)	0.0369 (11)
H26	0.244275	0.400683	-0.009421	0.044*
C27	0.1711 (5)	0.5664 (5)	0.0050 (3)	0.0439 (12)
H27	0.152324	0.557505	-0.041832	0.053*
C28	0.1428 (5)	0.6716 (5)	0.0515 (3)	0.0409 (12)
C29	0.1717 (5)	0.6832 (5)	0.1202 (3)	0.0464 (13)
H29	0.152913	0.755572	0.153414	0.056*
C30	0.2271 (5)	0.5909 (5)	0.1400 (3)	0.0432 (12)
H30	0.246246	0.600576	0.186823	0.052*
C31	0.1902(4)	0 2697 (4)	0.1517(2)	0.022
C32	0.1902(1) 0.2086(4)	0.2697(1) 0.1642(5)	0.1759(2)	0.0290(9)
H32	0.2000 (1)	0.145594	0.179533	0.042*
C33	0.291902 0.1090(5)	0.0854 (6)	0.1951 (3)	0.0460(13)
Н33	0.1090 (3)	0.012699	0.210535	0.0400 (13)
C34	-0.0121(5)	0.012000	0.1016 (3)	0.055 0.0634(10)
C34	-0.0320(5)	0.1127(8) 0.2184(8)	0.1910(3) 0.1704(2)	0.0034(19)
U35	-0.0309(3) -0.112128	0.2104 (0)	0.1704 (3)	0.007(2)
П33 С2(-0.113138	0.239727	0.109963	0.060°
C30	0.0684 (5)	0.2900 (0)	0.1491(3)	0.0458 (15)
H30	0.052460	0.308229	0.132960	0.055*
C3/	0.3638 (4)	0.2534 (4)	0.0457(2)	0.0277(9)
C38	0.2969 (5)	0.1299 (5)	0.0181 (2)	0.0383 (11)
H38	0.222740	0.100150	0.03/9//	0.046*
C39	0.3387 (6)	0.0496 (5)	-0.0390 (3)	0.0464 (13)
H39	0.292376	-0.034764	-0.057637	0.056*
C40	0.4462 (5)	0.0907 (5)	-0.0687(2)	0.0386 (11)
C41	0.5085 (5)	0.2152 (5)	-0.0420(2)	0.0388 (11)
H41	0.580414	0.246334	-0.063274	0.047*
C42	0.4697 (4)	0.2957 (5)	0.0144 (2)	0.0355 (10)
H42	0.515520	0.380576	0.032129	0.043*
C43	0.5805 (7)	1.2550 (6)	0.4731 (3)	0.0644 (18)
H43A	0.597271	1.292723	0.521960	0.097*
H43B	0.489365	1.232428	0.462586	0.097*
H43C	0.616319	1.318136	0.448422	0.097*
C44	1.3501 (6)	0.9517 (7)	0.3040 (4)	0.0677 (19)
H44A	1.408076	0.903532	0.320817	0.102*
H44B	1.376363	1.044780	0.324159	0.102*
H44C	1.351387	0.933956	0.254512	0.102*
C45	0.8984 (7)	0.5927 (7)	0.6431 (3)	0.0692 (19)
H45A	0.988432	0.598946	0.654205	0.104*
H45B	0.856481	0.502846	0.636818	0.104*
H45C	0.861447	0.649194	0.680233	0.104*
C46	0.0825 (7)	0.7754 (6)	0.0301 (3)	0.0637 (18)
H46A	0.115889	0.787900	-0.012636	0.096*
H46B	0.101759	0.857079	0.065351	0.096*
H46C	-0.008993	0.747778	0.023794	0.096*
C47	-0.1216 (6)	0.0281 (11)	0.2136 (5)	0.118 (4)

-0.199251	0.030386	0.188434	0.177*
-0.130619	0.060599	0.262317	0.177*
-0.105507	-0.061321	0.204095	0.177*
0.4942 (7)	0.0012 (6)	-0.1291 (3)	0.0611 (17)
0.511144	-0.076731	-0.116634	0.092*
0.571967	0.046052	-0.142700	0.092*
0.430502	-0.023364	-0.167034	0.092*
	-0.199251 -0.130619 -0.105507 0.4942 (7) 0.511144 0.571967 0.430502	-0.199251 0.030386 -0.130619 0.060599 -0.105507 -0.061321 0.4942 (7) 0.0012 (6) 0.511144 -0.076731 0.571967 0.046052 0.430502 -0.023364	-0.199251 0.030386 0.188434 -0.130619 0.060599 0.262317 -0.105507 -0.061321 0.204095 0.4942 (7) 0.0012 (6) -0.1291 (3) 0.511144 -0.076731 -0.116634 0.571967 0.046052 -0.142700 0.430502 -0.023364 -0.167034

Atomic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Os1	0.02462 (10)	0.02413 (10)	0.02483 (10)	0.00310(7)	-0.00128 (6)	0.00475 (7)
P1	0.0245 (5)	0.0219 (5)	0.0241 (5)	0.0042 (4)	-0.0020 (4)	0.0041 (4)
01	0.065 (3)	0.0304 (18)	0.040 (2)	0.0011 (17)	-0.0208 (18)	0.0111 (15)
C1	0.066 (4)	0.040 (3)	0.048 (3)	-0.005 (3)	-0.016 (3)	0.024 (3)
Os2	0.02504 (10)	0.02498 (10)	0.02367 (10)	0.00369 (7)	-0.00202 (6)	0.00448 (7)
O2	0.046 (2)	0.0348 (18)	0.0338 (18)	-0.0027 (15)	-0.0078 (15)	0.0124 (14)
P2	0.0238 (5)	0.0291 (6)	0.0215 (5)	0.0043 (4)	-0.0015 (4)	0.0034 (4)
C2	0.035 (3)	0.055 (3)	0.033 (3)	0.012 (2)	0.003 (2)	0.002 (2)
C3	0.034 (3)	0.045 (3)	0.041 (3)	-0.002(2)	0.003 (2)	-0.003 (2)
03	0.0302 (18)	0.050 (2)	0.0273 (16)	0.0086 (15)	-0.0027 (13)	-0.0003 (15)
C4	0.038 (3)	0.033 (3)	0.046 (3)	0.006 (2)	-0.008(2)	0.008 (2)
O4	0.0290 (17)	0.052 (2)	0.0298 (17)	0.0134 (15)	-0.0041 (13)	-0.0032 (15)
05	0.040 (2)	0.105 (4)	0.050 (2)	-0.002(2)	0.0157 (19)	-0.017 (2)
C5	0.035 (3)	0.037 (3)	0.037 (3)	0.009 (2)	-0.010 (2)	-0.002 (2)
O6	0.075 (3)	0.046 (2)	0.086 (3)	0.014 (2)	-0.026 (2)	0.031 (2)
C6	0.041 (3)	0.039 (3)	0.039 (3)	-0.007 (2)	-0.011 (2)	0.011 (2)
O7	0.038 (2)	0.060 (3)	0.063 (3)	0.0250 (19)	-0.0022 (18)	-0.011 (2)
C7	0.023 (2)	0.026 (2)	0.027 (2)	0.0043 (16)	-0.0026 (16)	0.0022 (17)
C8	0.037 (3)	0.030 (2)	0.026 (2)	0.0077 (19)	0.0042 (18)	0.0085 (18)
08	0.098 (4)	0.056 (3)	0.068 (3)	-0.028 (2)	-0.035 (3)	0.041 (2)
C9	0.038 (3)	0.029 (2)	0.032 (2)	0.0123 (19)	0.0020 (19)	0.0114 (18)
C10	0.044 (3)	0.034 (3)	0.039 (3)	0.015 (2)	0.012 (2)	0.007 (2)
C11	0.089 (5)	0.050 (3)	0.026 (2)	0.034 (3)	0.016 (3)	0.007 (2)
C12	0.072 (4)	0.042 (3)	0.027 (2)	0.027 (3)	0.008 (2)	0.009 (2)
C13	0.030 (2)	0.026 (2)	0.021 (2)	0.0042 (17)	-0.0055 (16)	0.0015 (16)
C14	0.029 (2)	0.030 (2)	0.037 (2)	0.0031 (18)	-0.0066 (19)	0.0070 (19)
C15	0.031 (3)	0.041 (3)	0.049 (3)	-0.005 (2)	-0.008 (2)	0.021 (2)
C16	0.030 (3)	0.063 (4)	0.041 (3)	0.005 (2)	0.001 (2)	0.028 (3)
C17	0.030 (2)	0.053 (3)	0.037 (3)	0.016 (2)	0.003 (2)	0.009(2)
C18	0.030 (2)	0.033 (2)	0.037 (3)	0.0085 (19)	-0.0021 (19)	0.004 (2)
C19	0.030 (2)	0.023 (2)	0.025 (2)	0.0031 (17)	-0.0061 (17)	0.0041 (16)
C20	0.035 (3)	0.038 (3)	0.037 (3)	0.002 (2)	-0.003 (2)	0.016 (2)
C21	0.049 (3)	0.036 (3)	0.040 (3)	0.000 (2)	0.001 (2)	0.013 (2)
C22	0.058 (3)	0.038 (3)	0.037 (3)	0.012 (2)	-0.004 (2)	0.014 (2)
C23	0.045 (3)	0.045 (3)	0.042 (3)	0.010 (2)	-0.016 (2)	0.012 (2)
C24	0.034 (2)	0.034 (2)	0.034 (2)	0.0031 (19)	-0.0024 (19)	0.0115 (19)
C25	0.030 (2)	0.031 (2)	0.026 (2)	0.0054 (18)	-0.0033 (17)	0.0055 (18)

C26	0.042 (3)	0.034 (2)	0.031 (2)	0.004 (2)	-0.007 (2)	0.0045 (19)
C27	0.050 (3)	0.046 (3)	0.036 (3)	0.000(2)	-0.006(2)	0.016 (2)
C28	0.037 (3)	0.040 (3)	0.046 (3)	-0.003 (2)	-0.011 (2)	0.018 (2)
C29	0.054 (3)	0.045 (3)	0.041 (3)	0.019 (3)	-0.007(2)	0.006 (2)
C30	0.050 (3)	0.048 (3)	0.031 (3)	0.021 (2)	-0.006 (2)	0.003 (2)
C31	0.029 (2)	0.037 (2)	0.021 (2)	0.0067 (19)	0.0039 (17)	0.0058 (18)
C32	0.030(2)	0.042 (3)	0.030 (2)	0.004 (2)	0.0009 (18)	0.007 (2)
C33	0.041 (3)	0.063 (4)	0.036 (3)	-0.005 (2)	0.000 (2)	0.023 (2)
C34	0.035 (3)	0.111 (6)	0.053 (4)	-0.005 (3)	0.001 (3)	0.049 (4)
C35	0.025 (3)	0.130 (6)	0.065 (4)	0.015 (3)	0.007 (3)	0.060 (4)
C36	0.031 (3)	0.076 (4)	0.041 (3)	0.014 (3)	0.003 (2)	0.030 (3)
C37	0.027 (2)	0.031 (2)	0.023 (2)	0.0040 (18)	-0.0016 (16)	0.0051 (17)
C38	0.042 (3)	0.037 (3)	0.029 (2)	-0.002 (2)	0.009 (2)	0.001 (2)
C39	0.068 (4)	0.031 (3)	0.035 (3)	0.006 (2)	0.006 (2)	0.000 (2)
C40	0.053 (3)	0.043 (3)	0.024 (2)	0.018 (2)	0.010 (2)	0.009 (2)
C41	0.031 (3)	0.057 (3)	0.032 (2)	0.011 (2)	0.0092 (19)	0.014 (2)
C42	0.034 (3)	0.040 (3)	0.029 (2)	0.001 (2)	0.0024 (19)	0.005 (2)
C43	0.090 (5)	0.056 (4)	0.057 (4)	0.044 (4)	0.021 (3)	0.012 (3)
C44	0.039 (3)	0.093 (5)	0.080 (5)	0.001 (3)	0.014 (3)	0.045 (4)
C45	0.084 (5)	0.080 (5)	0.059 (4)	0.015 (4)	-0.010 (3)	0.045 (4)
C46	0.074 (5)	0.048 (3)	0.074 (4)	0.014 (3)	-0.017 (4)	0.025 (3)
C47	0.036 (4)	0.210 (11)	0.146 (8)	-0.016 (5)	0.000 (4)	0.138 (8)
C48	0.085 (5)	0.061 (4)	0.044 (3)	0.039 (4)	0.020 (3)	0.007 (3)

Geometric parameters (Å, °)

Os1—P1	2.4148 (11)	C22—C45	1.512 (7)
Os1—O1	2.138 (3)	С23—Н23	0.9500
Os1—Os2	2.7387 (2)	C23—C24	1.403 (6)
Os1—C3	1.845 (5)	C24—H24	0.9500
Os1—O3	2.137 (3)	C25—C26	1.395 (6)
Os1—C4	1.844 (5)	C25—C30	1.392 (6)
P1—C7	1.825 (4)	C26—H26	0.9500
P1—C13	1.818 (5)	C26—C27	1.378 (7)
P1-C19	1.831 (4)	С27—Н27	0.9500
01—C1	1.248 (6)	C27—C28	1.365 (8)
C1—H1	0.9500	C28—C29	1.397 (7)
C1—O2	1.242 (6)	C28—C46	1.528 (7)
Os2—O2	2.134 (3)	С29—Н29	0.9500
Os2—P2	2.4325 (11)	C29—C30	1.374 (7)
Os2—O4	2.160 (3)	С30—Н30	0.9500
Os2—C5	1.844 (5)	C31—C32	1.390 (6)
Os2—C6	1.834 (5)	C31—C36	1.390 (6)
P2—C25	1.824 (4)	С32—Н32	0.9500
P2—C31	1.815 (5)	C32—C33	1.385 (7)
P2—C37	1.826 (4)	С33—Н33	0.9500
С2—Н2	0.9500	C33—C34	1.386 (8)
C2—O3	1.253 (6)	C34—C35	1.359 (9)

C2—O4	1.243 (6)	C34—C47	1.520 (8)
C3—O5	1.148 (6)	С35—Н35	0.9500
C4—O6	1.145 (6)	C35—C36	1.400 (8)
C5—O7	1.155 (6)	С36—Н36	0.9500
C6—O8	1.161 (6)	C37—C38	1.388 (6)
C7—C8	1.390 (6)	C37—C42	1.387 (6)
C7—C12	1.390 (6)	C38—H38	0.9500
С8—Н8	0.9500	C38—C39	1.395 (7)
C8—C9	1.384 (6)	С39—Н39	0.9500
С9—Н9	0.9500	C39—C40	1.379(7)
C9—C10	1 378 (6)	C40-C41	1.377(7)
C10—C11	1.370(0) 1 381(7)	C40-C48	1.577(7)
C10-C43	1.301(7) 1 499(7)	C41 - H41	0.9500
C11H11	0.9500	C41 - C42	1 374 (6)
	1.378(7)	$C_{41} = C_{42}$	0.0500
C12 H12	0.0500	$C_{42} = 1142$	0.9300
C12 - H12	1,400 (6)	C43 = H43A	0.9600
	1.400 (6)	С43—П43В	0.9800
	1.397 (6)	C43—H43C	0.9800
C14—H14	0.9500	С44—Н44А	0.9800
C14—C15	1.393 (7)	C44—H44B	0.9800
C15—H15	0.9500	C44—H44C	0.9800
C15—C16	1.374 (8)	C45—H45A	0.9800
C16—C17	1.387 (8)	C45—H45B	0.9800
C16—C44	1.514 (7)	C45—H45C	0.9800
С17—Н17	0.9500	C46—H46A	0.9800
C17—C18	1.373 (7)	C46—H46B	0.9800
C18—H18	0.9500	C46—H46C	0.9800
C19—C20	1.394 (6)	C47—H47A	0.9800
C19—C24	1.381 (6)	C47—H47B	0.9800
С20—Н20	0.9500	C47—H47C	0.9800
C20—C21	1.378 (7)	C48—H48A	0.9800
C21—H21	0.9500	C48—H48B	0.9800
C21—C22	1.396 (7)	C48—H48C	0.9800
C22—C23	1.380 (8)		
P1—Os1—Os2	164.48 (3)	C22—C21—H21	119.7
O1—Os1—P1	89.31 (9)	C21—C22—C45	120.6 (5)
01 - 0s1 - 0s2	81.48 (9)	C23—C22—C21	118.4 (5)
C3 - Os1 - P1	99.28 (16)	C_{23} — C_{22} — C_{45}	121.0(5)
$C_{3} = 0s_{1} = 01$	89 2 (2)	C22—C23—H23	119.4
$C_{3} = O_{s1} = O_{s2}$	93.09(16)	$C_{22} = C_{23} = C_{24}$	121.2 (5)
$C_{3} = 0_{s1} = 0_{3}$	173 12 (19)	$C_{22} = C_{23} = C_{24}$	119.4
$O_3 - O_{s1} - P_1$	84 04 (9)	C_{19} C_{24} C_{23} C_{19} C_{24} C_{23}	120.1 (5)
03 - 0s1 - 01	84 79 (15)	C19 - C24 - C23	120.1 (3)
03 - 0s1 - 0s2	82 71 (8)	$C_{1} = C_{2} = 112 + $	120.0
C_{4} C_{1} C_{1	93.97(0)	$C_{25} = C_{27} = 1127$ C26 = C25 = P2	120.0 123 0 (A)
$C_4 = O_{\rm S1} = O_1$	17654(17)	$C_{20} = C_{23} = 12$	123.7(4) 118.2(2)
$C_4 = O_{11} = O_{12}$	1/0.34(1/)	$C_{20} = C_{25} = C_{26}$	110.3(3)
C4	93.30 (13)	U3U-U23-U20	117.8(4)

C4—Os1—C3	89.2 (2)	С25—С26—Н26	119.8
C4—Os1—O3	96.7 (2)	C27—C26—C25	120.5 (5)
C7—P1—Os1	115.13 (13)	C27—C26—H26	119.8
C7—P1—C19	103.86 (19)	С26—С27—Н27	119.1
C13—P1—Os1	115.62 (13)	C28—C27—C26	121.7 (5)
C13—P1—C7	103.79 (19)	С28—С27—Н27	119.1
C13—P1—C19	103.59 (19)	C27—C28—C29	118.3 (5)
C19—P1—Os1	113.40 (14)	C27—C28—C46	121.6 (5)
C1 - O1 - Os1	121.4 (3)	C_{29} C_{28} C_{46}	120.1(5)
01	115.6	C_{28} C_{29} H_{29}	119.7
$0^{2}-C^{1}-0^{1}$	128.8 (5)	$C_{20} = C_{29} = C_{28}$	120.6(5)
02	115.6	C_{30} C_{29} H_{29}	120.0 (5)
$O_2 = O_1 = III$	83 10 (0)	$C_{25} = C_{20} = H_{20}$	119.7
$O_2 = O_{S_2} = O_{S_1}$	84.07 (0)	$C_{23} = C_{30} = C_{25}$	119.5
02 - 0s2 - 12	84.37(3)	$C_{29} = C_{30} = C_{23}$	121.1(3)
02 - 0s2 - 04	64.70(14)	$C_{29} = C_{30} = H_{30}$	119.5
$P_2 = O_{S2} = O_{S1}$	105.90(5)	$C_{32} = C_{31} = F_{2}$	119.0(3)
04 - 0s2 - 0s1	82.05 (8)	$C_{32} = C_{31} = C_{36}$	117.7 (4)
04—0s2—P2	89.27 (9)	C36—C31—P2	123.3 (4)
C5—Os2—Os1	92.43 (14)	С31—С32—Н32	119.2
C5—Os2—O2	95.17 (19)	C33—C32—C31	121.6 (5)
C5—Os2—P2	96.25 (14)	С33—С32—Н32	119.2
C5—Os2—O4	174.46 (16)	С32—С33—Н33	120.0
C6—Os2—Os1	91.97 (15)	C32—C33—C34	120.0 (5)
C6—Os2—O2	173.65 (18)	С34—С33—Н33	120.0
C6—Os2—P2	99.24 (15)	C33—C34—C47	120.4 (6)
C6—Os2—O4	90.5 (2)	C35—C34—C33	119.0 (5)
C6—Os2—C5	89.1 (2)	C35—C34—C47	120.5 (6)
C1—O2—Os2	119.8 (3)	С34—С35—Н35	119.3
C25—P2—Os2	116.17 (14)	C34—C35—C36	121.4 (5)
C25—P2—C37	103.6 (2)	С36—С35—Н35	119.3
C31—P2—Os2	115.98 (14)	C31—C36—C35	120.1 (5)
C31—P2—C25	103.8 (2)	С31—С36—Н36	119.9
C31—P2—C37	104.1 (2)	С35—С36—Н36	119.9
C37—P2—Os2	111.77 (14)	C38—C37—P2	123.8 (3)
03—C2—H2	115.8	C42—C37—P2	117.3 (3)
04—C2—H2	115.8	C42-C37-C38	118.8 (4)
$04-C^2-0^3$	128 4 (5)	C37—C38—H38	120.0
05-03-051	177.7 (6)	C_{37} C_{38} C_{39}	120.0(5)
$C_2 = O_3 = O_3 I_1$	120.6 (3)	C_{39} C_{38} H_{38}	120.0 (3)
06-C4-Os1	120.0(5)	C_{38} C_{39} H_{39}	119.5
$C_2 = O_4 = O_3^2$	170.0(3)	$C_{30} = C_{30} = C_{30}$	117.5 121.0(5)
$C_2 = 04 = 0.82$	120.7(3) 177.0(4)	$C_{40} = C_{39} = C_{38}$	121.0(3)
$0^{\circ} - 0^{\circ} - 0^{\circ$	177.9(4)	$C_{40} = C_{59} = 1159$	119.5
$C_{0} = C_{0} = C_{0} = C_{0}$	1/1.0(3) 119.2(2)	C_{37} C_{40} C_{40} C_{30}	120.9 (3)
$C_0 - C_7 - r_1$	110.3(3)	$C_{41} = C_{40} = C_{49}$	110.1 (4)
$C_{12} - C_{7} - C_{12}^{\circ}$	123.7 (3)	C40 - C40 - C48	121.0 (5)
$C_1 = C_1 = C_2$	118.0 (4)	U40 - U41 - H41	119.1
C/C8H8	119.5	C42—C41—C40	121.9 (5)
C9—C8—C7	120.9 (4)	C42—C41—H41	119.1

С9—С8—Н8	119.5	C37—C42—H42	119.9
С8—С9—Н9	119.5	C41-C42-C37	120.2 (4)
C10—C9—C8	120.9 (4)	C41—C42—H42	119.9
C10—C9—H9	119.5	C10—C43—H43A	109.5
C9-C10-C11	118.0 (4)	C10—C43—H43B	109.5
C9—C10—C43	120.6 (5)	C10—C43—H43C	109.5
C11—C10—C43	121.4 (5)	H43A—C43—H43B	109.5
C10—C11—H11	119.1	H43A—C43—H43C	109.5
C12—C11—C10	121.9 (5)	H43B—C43—H43C	109.5
C12—C11—H11	119.1	C16—C44—H44A	109.5
C7—C12—H12	119.9	C16—C44—H44B	109.5
C11—C12—C7	120.3 (5)	C16—C44—H44C	109.5
C11—C12—H12	119.9	H44A—C44—H44B	109.5
C14—C13—P1	123.6 (3)	H44A—C44—H44C	109.5
C18—C13—P1	118.3 (3)	H44B—C44—H44C	109.5
C18—C13—C14	118.1 (4)	С22—С45—Н45А	109.5
C13—C14—H14	120.1	С22—С45—Н45В	109.5
C15—C14—C13	119.9 (4)	С22—С45—Н45С	109.5
C15—C14—H14	120.1	H45A—C45—H45B	109.5
C14—C15—H15	119.1	H45A—C45—H45C	109.5
C16—C15—C14	121.9 (5)	H45B—C45—H45C	109.5
C16—C15—H15	119.1	C28—C46—H46A	109.5
C15—C16—C17	117.7 (5)	C28—C46—H46B	109.5
C15—C16—C44	122.2 (5)	C28—C46—H46C	109.5
C17—C16—C44	120.1 (5)	H46A—C46—H46B	109.5
С16—С17—Н17	119.1	H46A—C46—H46C	109.5
C18—C17—C16	121.8 (5)	H46B—C46—H46C	109.5
C18—C17—H17	119.1	С34—С47—Н47А	109.5
C13—C18—H18	119.7	С34—С47—Н47В	109.5
C17—C18—C13	120.6 (5)	С34—С47—Н47С	109.5
C17—C18—H18	119.7	H47A—C47—H47B	109.5
C20-C19-P1	118.2 (3)	H47A—C47—H47C	109.5
C24—C19—P1	123.2 (3)	H47B—C47—H47C	109.5
C24—C19—C20	118.6 (4)	C40—C48—H48A	109.5
С19—С20—Н20	119.4	C40—C48—H48B	109.5
C21—C20—C19	121.2 (5)	C40—C48—H48C	109.5
C21—C20—H20	119.4	H48A—C48—H48B	109.5
C20—C21—H21	119.7	H48A—C48—H48C	109.5
C20—C21—C22	120.5 (5)	H48B—C48—H48C	109.5