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ABSTRACT 

Dimethylamine-borane (DMAB) acid/base properties, its dihydrogen-bonded (DHB) complexes 

and proton transfer reaction in non-aqueous media were investigated both experimentally (IR, 

UV/vis, NMR and X-ray) and theoretically (DFT, NBO, QTAIM and NCI). The effects of 

DMAB concentration, solvents polarity and temperature on the degree of DMAB self-

association are shown and the enthalpy of association is determined experimentally for the first 

time (−∆H°assoc = 1.5–2.3 kcal/mol). The first case of “improper” (blue-shifting) NH···F 

hydrogen bonds was observed in fluorobenzene and perfluorobenzene solutions. It was shown, 

that hydrogen-bonded complexes are the intermediates of proton transfer from alcohols and 

phenols to DMAB. The reaction mechanism was examined computationally taking into account 

the coordinating properties of the reaction media. The values of the rate constants of proton 

transfer from HFIP to DMAB in acetone were determined experimentally [(7.9 ± 0.1)×10−4 to 

(1.6 ± 0.1)×10−3 mol−1·s−1] at 270−310 K. Computed activation barrier of this reaction 

∆G‡theor
298K(acetone) = 23.8 kcal/mol is in good agreement with the experimental value of the 

activation free energy ∆G‡exp
270K = 21.1 kcal/mol. 

KEYWORDS: amine-boranes; boron hydrides; DFT ; IR spectroscopy 

INTRODUCTION 

The amine-boranes (R1
xNH(3-x)BH(3-y)R

2
y, where x,y ≤ 3) are well known as hydroborating 

agents and selective reducing agents, (for example, chiral amine-borane complexes can be used 

in enantioselective syntheses).1-4 These compounds find many interesting applications5-8 and are 

considered as prospective materials for reversible hydrogen storage systems due to their high H2 

volumetric and gravimetric density.9-12 Amine-boranes as well as related bifunctional compounds 

(metal borohydride ammonia borane complexes,13 metal tetrahydroborate ammoniates,14-17 metal 

amidoborane borohydrides18-19 and amidoborane ammoniates20, metal hydrazine-boranes21-22 

Page 2 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 3 

etc.) containing both acidic and basic groups are of particular interest for these purposes, as these 

compounds are capable to evolve hydrogen at heating.23 Definitely, this reactivity relies on the 

existence dihydrogen bonds between acidic and basic functional groups.24-26  

Widely recognized nowadays,27 dihydrogen bond to borohydrides was suggested almost 50 

years ago, but proved only in late 1990’s24-25, 28 after reports on MHδ−···+δHX hydrogen bond 

formed by hydrides of transition metals.29-33 Thus, in 1964 Burg observed by IR-spectroscopy 

that the stretching vibration of NH-group of dimethylamine-borane (DMAB) appears in CS2 and 

CCl4 solutions at lower frequency than νNH of gaseous (CH3)2NH.34 On the basis of perturbation 

analysis of stretching vibrations it was suggested that NH···H3B interaction similar to hydrogen 

bond exists in DMAB solution. In 1967 Rudolph and Parry, analyzing the high lattice energy of 

solid PH3BH3, suggested that “possible source of this lattice energy is the interaction of the 

acidic phosphine hydrogens and the hydridic borane hydrogens in an unusual type of hydrogen 

bond” in PHδ+···−δHB manner.35 This novel idea was not appreciated and unfairly forgotten until 

the 1990’s. Then in 1968 Titov et al. explained the increased chemical reactivity of amine-

boranes toward the H2 loss by "close spatial arrangement of oppositely charged hydrogen 

atoms".36 In 1968−1974 Brown et al. investigated the IR spectra of L·BH3 (L = Py, Me2NH 

Me3N, Et3N, Et3P) and Me3NBH2X (X = Cl, Br, I) in CCl4 solutions and interactions of these 

compounds with weak acids (MeOH, tBuOH, PhOH, p-FC6H4OH).37-39 The low-frequency shift 

of νNH band was observed for DMAB in CCl4. It was found that the IR spectra of DMAB are 

“both concentration- and temperature-dependent in a manner characteristic of compounds 

undergoing intermolecular hydrogen bonding”. The preliminary results of X-ray analysis of solid 

DMAB have shown the molecular association with short “B···HN” contacts.37 The low-

frequency shift of OH stretching vibration was observed upon the interaction of amine- and 

phosphine-boranes with acids.38-39
 On the basis of these data it was suggested that BH3 and BH2 

groups can act as proton acceptors despite the lack of lone pairs or π electrons.38 Even the 
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enthalpy of the interaction was estimated (1.7–3.5 kcal/mol), but no conclusion about the hydride 

ligand participation in hydrogen bonding was made. 

Much later, in 1995–1999, the analysis of amine-borane dimers in Cambridge Structural 

Database40 by Crabtree et al.24-25 revealed that in many cases the H···H distances (1.7–2.2 Å) are 

less than the sum of van der Waals radii of hydrogen atoms (2.4 Å) and the B–H···H(N) angles 

range from 95 to 175°. In the same time some of us investigated the ability of various main 

group hydrides (anionic nBu4NBH4 and nBu4NGaH4, neutral (EtO)3PBH3, Et3NBH3 and 

Me3NAlH3) to form BH···HX dihydrogen bond upon the interaction with proton donors in 

solution. It has been found these hydrides give the weak to medium strength DHBs adducts (1.1–

6.5 kcal/mol).28, 41-42 

Recent publications14, 43-44  show still high interest to dihydrogen bonds in chemistry of BNH 

compounds. However there is no real conception of the role of DHB in the activation processes 

and the exact mechanisms of BH/NH activation (both off-metal and on-metal).  

In this paper we present the results of the spectral and theoretical exploration of 

dimethylamine-borane (DMAB) reactivity aiming to establish its properties in intermolecular 

interactions and proton transfer reactions with organic acids and bases, to determine the structure 

of intermediates and the mechanism of the proton transfer processes. 

Experimental section 

General Considerations. All manipulations were performed under a dry argon atmosphere 

using standard Schlenk technique. Commercially available argon (99.9%) was additionally 

purified from traces of oxygen and moisture by sequential passage through Ni/Cr catalyst 

column and 4 Å molecular sieves.  

The HPLC grade solvents (Acros Organics) were used for sample preparation after additional 

purification by standard procedures. Dichloromethane (DCM), fluorobenzene (FBz) and 

acetonitrile (MeCN) were dehydrated over CaH2, tetrahydrofuran (THF) – over 

Na/benzophenone, toluene – over Na. All solvents were freshly distilled under argon prior to use. 
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 5 

Fluorinated alcohols provided by P&M (Moscow, Russia) and Fluka Analytical were used. 

Dimethylamine-borane (DMAB) was provided by Aviabor (Dzerzhinsk, Russia) as received. 

Other reagents were from Sigma Aldrich. 

Variable-temperature IR measurements. IR spectra were recorded on FTIR Nicolet 6700 

and FTIR Shimadzu IR Prestige-21 spectrometers using 0.04–0.22 cm CaF2 cells. Low 

temperature IR studies were carried out in the 190−300 K temperature range using the home-

modified cryostat (Carl Zeiss Jena). The cryostat modification allows transfer of the reagents 

(premixed at either low or room temperature) under an inert atmosphere directly into the cells. 

For measurements in the νOH range, the acid concentrations were 10−2−10−3 M to avoid self-

association, whereas DMAB was taken in 10-fold excess. For measurements in the νBH range, the 

equimolar ratio or 10-fold excess acids were used. 

NMR experiments. NMR spectra were recorded on a Bruker Avance II 400 MHz 

spectrometer. 1H chemical shifts are reported in parts per million (ppm) relative to 

tetramethylsilane (TMS) and were calibrated against the residual solvent resonance, while 11B 

was referenced to BF3⋅Et2O. 

A screwed-cap NMR tube was loaded with 1.8 mg of DMAB (0.06 mmol) under an inert 

atmosphere and then 500  µL (final concentration ca. 0.06 M) of dry and degassed CD2Cl2 or 

acetone-d6 was transferred into the tube via syringe, under inert atmosphere. From 1 to 5 eq. of 

proton donors (TFE, HFIP, TFA, PNP in solution) then was syringed into this solution at room 

temperature. 

Products characterization. X-Ray diffraction studies.  

Single crystals suitable for X-ray diffraction analysis were isolated directly from the reaction 

mixtures. X-ray diffraction measurements were carried out using Smart APEX II diffractometer. 

The frames were integrated and corrected for absorption by the APEX2 program package.45 The 

details of crystallographic data and experimental conditions are given in Supplementary 

materials (Table S1). 
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 6 

The structures were solved by the direct method and refined by full-matrix least-squares 

technique against F2 in the anisotropic-isotropic approximation. Hydrogen atoms were located 

from the difference Fourier maps and refined in rigid body model. All calculations were 

performed using the APEX2 program package.46 

Crystallographic data for the structural analysis of B(OH)3·C9H7N·C9H7NH+Cl− and 

Me2NH2
+[B(OCH2CF3)4]

− has been deposited with the Cambridge Crystallographic Data 

Centre40, CCDC NOS. 1000135 – 1000136. 

In IR spectra of isolated Me2NH2
+[B(OCH2CF3)4]

− product the following bands were observed 

(in nujol): νNH = 3114 cm−1, νBO/νCO = 1290 cm−1, 1165 cm−1, 1107 cm−1, 1040 cm−1, νCF = 975 

cm−1 and 963 cm−1. 

Computational details. Full geometry optimizations were carried out with the Gaussian09 

(Revision C.01)47 package at the density functional theory (DFT) level using the M06,48 

B3LYP,49 BP8650-51 and MP252-56 levels of theory.  

The 6-311++G(d,p)57-58 basis set was used for all atoms. Frequency calculations were 

performed for all optimized complexes in the gas phase and are reported without the use of 

scaling factors. The nature of all the stationary points on the potential energy surfaces was 

confirmed by a vibrational analysis. Transition state (TS) structures showed only one negative 

eigenvalue in their diagonalized force constant matrices, and their associated eigenvectors were 

confirmed to correspond to the motion along the reaction coordinate under consideration using 

the Intrinsic Reaction Coordinate (IRC) method.59-60 

The complex formation energy was calculated in the gas phase taking into account the basis 

sets superposition error (by the Bernardi and Boys method, BSSE),61 ZPVE correction was 

determined from the unscaled harmonic frequencies.62-63 

Inclusion of nonspecific solvent effects in the calculations was performed by using the SMD 

method.64 The interaction energy was calculated in THF (ε = 7.4), CH2Cl2 (ε = 8.9),  

Me2CO (ε = 20.5), MeCN (ε = 35.6) and H2O (ε = 78.4) for the gas phase optimized geometries. 

Page 6 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 7 

Changes in Gibbs energies and enthalpies in the solvent were determined using corresponding 

corrections obtained for the gas phase65:  

∆HDCM = ∆EDCM + ∆Hcorr
gas 

∆GDCM = ∆EDCM + ∆Gcorr
gas 

The magnetic shielding calculations were performed within the gauge-independent atomic 

orbitals (GIAO) framework.66 The 11B magnetic shielding were calculated on M06, B3LYP, 

BP86 and MP2 levels of theory with the IGLO-III basis set67 using M06/6-311G++(d,p) 

geometries. Chemical shifts were referenced to BF3⋅Et2O as an external standard: 

∆δ(11B)= δ(BF3·Et2O) − δ(11B) 

Results and discussion 

In this paper we present the results of combined variable temperature IR and NMR 

spectroscopic study of the DMAB interaction with organic acids and bases backed-up by 

theoretical calculations. The computational results are discussed in the end of the paper; some of 

the optimized structures are used as illustrations. 

Self-association of DMAB  

The coexistence of acidic and basic groups within the DMAB molecule allows the interaction 

between the two molecules, where the NH-group of one molecule acts as a proton donor and 

BH3-group of another molecule plays the role of a proton acceptor. The existence of DMAB as a 

dimer (Figure 1) in the solid state is well recognized nowadays24-25, 68-69 but there are only old 

data on its self-association in solution limited to CCl4.
37  
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Figure 1. M06-optimized structures of DMAB and its self-associates. Formation SMD 

enthalpies calculated in DCM relative to DMAB monomer: ∆Hf
theor

DCM (dimer) = –6.5 kcal/mol; 

∆Hf
theor

DCM (tetramer) = –11.6 kcal/mol.  

Our IR measurements show DMAB self-association in non-polar solvents. Three BH 

stretching vibrations of DMAB were observed in CCl4: νBH
as at 2370 cm−1, 2301 cm−1 and νBH

s at 

2265 cm−1 (i.e., close to the literature values70 in nujol at 2379, 2295 and 2264 cm−1). However, 

this range is rather complicated for the analysis due to the overlap with the δBH bending vibration 

overtones71 and 10B–H stretching vibrations modes,72 that appear at higher frequency than 11B–H 

and lead to bands broadening. Therefore, the quantitative data were obtained using the NH 

stretching vibrations. The DMAB monomer has the band of νNH
free at 3299 cm−1 (absorbance at 

band maximum A = 0.22; full width at half maximum FWHM = 10.8 cm–1) in CCl4 (ε = 2.2). 

The νNH
bond appears at 3207 cm−1 and its intensity is significantly greater than that of the νNH

free 

band even at low DMAB concentration (c = 0.04 M) (Figure 2). Thus, in this solvent the major 

form is the associated one. The intensity of νNH
bond band increases with the temperature lowering 

(295–265 K, Figure S1) and the concentration growth (0.04 M–0.11 M, Figure S3). The νNH
bond 

position is close to that of DMAB in the solid state (3203 cm−1 in nujol, 3211 cm−1 in KBr).70 

The νNH
bond band is non-symmetric and after the band deconvolution (Figures S2–S3) we 

obtained the three bands at 3233 cm−1 (∆νNH = −66 cm−1; A = 0.12; FWHM = 31.9 cm–1), 3207 

cm−1 (the major form, ∆νNH = −92 cm−1; A = 0.85;  FWHM = 28.8 cm–1) and 3184 cm−1 (∆νNH = 

−115 cm−1; A = 0.04;  FWHM = 21.4 cm–1).  
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Figure 2. IR spectra of DMAB (0.04 M) in the νNH region in CH2Cl2 (black solid line), CCl4 (red 

dashed line) and in hexane (blue dash-dot line) at 290 K, l =1.2 mm.  

The quantity of the associated DMAB molecules in nonpolar hexane (ε = 1.9) is even higher 

than in CCl4: the band deconvolution (Figure S4) gives νNH
free at 3305 cm−1 (A = 0.05;  FWHM = 

12.2 cm–1) and four νNH
bond bands at 3229 cm−1 (∆νNH = −76 cm−1; A = 0.25;  FWHM = 47.8 cm–

1), 3213 cm−1 (∆νNH = −92 cm−1; A = 0.14;  FWHM = 11.9 cm–1), 3202 cm−1(the major form, 

∆νNH = −103 cm−1; A = 0.91;  FWHM = 13.2 cm–1) and  3186 cm−1 (∆νNH = −119 cm−1; A = 

0.22;  FWHM = 38.3 cm–1). The presence of several νNH
bond bands allows suggesting the 

presence of other hydrogen-bonded forms of DMAB besides the dimer. These could be linear 

chains69 linked by dihydrogen bond (Figure 1) or other forms of DMAB (e.g., trimers,68 

tetramers68, 73).  

In the solvent of medium polarity – CH2Cl2 (ε = 8.9) DMAB is predominantly non-associated 

(νNH
free at 3288 cm−1; A = 1.26 ; FWHM = 14.8 cm–1), (Figures S5–S6) and the growth of band 

intensity νNH
bond at 3224 cm−1 (∆νNH = –64 cm−1; A = 0.05; FWHM = 63.8 cm–1) with the 

increase of DMAB concentration or temperature is significantly smaller than in CCl4 (Figure 2).  

Blue-shifted H-bond. When DMAB is dissolved in fluorobenzene (FBz, ε = 5.4) a new blue-

shifted NH band νNH
b-s (3312 cm−1, ∆νNH = +30 cm−1; A = 0.07; FWHM = 20.9 cm–1, Figure S7–

S9) appears in the range of NH group stretching vibrations besides the bands of DMAB 

monomer (3282 cm−1; A = 0.17; FWHM = 19.2 cm–1) and associated form (3215 cm−1, ∆νNH = 
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−66 cm−1; A = 0.01; FWHM = 24.5 cm–1). The blue-shift of νNH band can be explained by the 

formation of “improper” NH···F hydrogen bond that was predicted theoretically.74-76 Indeed, in 

perfluorobenzene (PFBz, ε = 2.0) DMAB exists only in two forms: dimeric (νNH = 3216 cm−1, 

∆νNH = νNH
bond(in PFbz)− νNH

free(in Fbz) = −66; A = 0.23; FWHM = 31.5 cm–1) and NH···F 

hydrogen bonded one (νNH = 3321 cm−1, ∆νNH = νNH
bond(in PFbz)− νNH

free(in Fbz) = +39 cm−1; A 

= 0.06; FWHM = 19.2 cm–1, Figure 3, Figure S10). In contrast only non-associated DMAB and 

its dimer are observed in toluene (ε = 2.4) exhibiting two bands νNH
free = 3269 cm−1 (A = 0.36; 

FWHM = 16.3 cm–1) and νNH
bond = 3213 cm−1 (∆νNH = −56 cm−1; A = 0.08; FWHM = 29.9 cm–1, 

Figure 3 and Figure S11–S13). Absence of a high frequency νNH band in this aromatic solvent 

argues that NH···π interaction does not lead to the high-frequency shift of νNH  band in 

fluorobenzenes. So, this is the first ever spectroscopic evidence of such “improper” NH···F 

interaction, previously predicted by theory. 

0

0.1

0.2

0.3

0.4

31503200325033003350

tol

FBz

PFBz

A

ν, cm-1

νNH
free

3269 cm-1

νNH
bond

3213 cm-1  

Toluene

Fbz

PFbz

3221 cm-1  

3282 cm-1  

3312 cm-1  

3316 cm-1  3215 cm-1  

νNH
b-s

 

Figure 3. IR spectra of DMAB in the νNH region in toluene (black solid line), FBz (red dashed 

line) and in PFBz (blue dash-dot line); 290 K, l =0.4 mm. 

The calculations reveal two types of “improper” hydrogen bonded complexes of DMAB with 

one and two molecules of FBz (Figure 4a, b) that give blue shifts of νNH band by +4 cm−1 and +8 

cm−1 at the MP2 level. “Improper” H-bonded complex was also obtained in the case of DMAB 

interacting with PFBz (Figure 4c; blue-shift of νNH by +18 cm−1 at the MP2 level). Note, the 

calculations at M06, B3LYP and BP86 theory level give red-shifted νNH frequencies (Table 1).  
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 11 

The MP2 method, which was typically used in theoretical calculations of blue shifted 

complexes74-75, 77, is the only one that gives the νNH blue-shift for HB complexes of DMAB with 

fluorobenzenes (Table 1).  Note that the MP2-method provides better agreement between the 

experimental and calculated frequency shifts for all types of complexes investigated in this work 

(see part Theoretical investigation of DHB complexes Frequency analysis). 

a)   b)   c)  

Figure 4. DFT MP2-optimized geometries of “improper” HB complexes DMAB–FBz (a), 

DMAB–2FBz (b) and DMAB–PFBz (c). 

Table 1. The calculated frequencies of NH stretching vibrations of DMAB interacting with FBz 

or PFBz. 

Method 
DMAB–FBz DMAB–2FBz DMAB–PFBz 

∆rNH ∆νNH ∆rNH ∆νNH ∆rNH ∆νNH 

Experimental  +30  +30  +39 

MP2 0.001 +4 0.001 +8 0.000 +18 

M06 0.001 −4 0.003 +3 0.001 −7 

B3LYP 0.001 −10 0.002 −14 0.001 0 

BP86 0.003 −32 0.003 −32 0.001 −6 

 

The enthalpy of DMAB self-association (∆H°assoc) was determined using the Iogansen’s 

empirical correlation (Eq. 1)78-80 which correlates the hydrogen bond formation enthalpy (−∆H°, 

kcal/mol) with the experimental or theoretical values of the νXH frequency shifts. Since the 

enthalpy depends on the solvent polarity, the ∆H°assoc values decrease with the increase of the 

solvent dielectric permittivity ε (Table 2). 
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XH

XHoH
ν

ν

∆+

∆⋅
=∆−

720

18
 (1) 

Table 2. The frequencies of NH stretching vibrations (in cm−1) of DMAB measured in different 

solvents and DMAB association enthalpies (in kcal/mol). 

Solvent εa νNH
free νNH

bond ∆νNH ∆Ho
assoc 

Hexane 1.9 3305 3202 –103 −2.3 

PFBz 2.0 – 3215 −56b −1.5 

CCl4 2.2 3299 3207 –92 −2.0 

FBz 5.4 3281 3215 –66 −1.5 

CH2Cl2 9.1 3297 3218 –79 −1.8 

a dielectric permittivity values taken from ref.81; b ∆νNH = νNH
bond(in PFbz)− νNH

free(in Fbz). 

Interaction of DMAB with organic bases 

In order to assess the proton-donating properties of NH-group we studied DMAB interactions 

with a number of organic bases (Y) of different strength – quinoline (Qu), pyridine (Py), 

[СH3(СH2)7]3PO (TOPO), [(CH3)2N]3PO (HMPA), Et3N (Figures S15–S16). The IR 

measurements were done in CCl4 solution using excess of bases. This solvent allowed to avoid 

the overlap of bands in strong NH···Y complexes with C–H stretching vibrations of common 

organic solvents. 

In the presence of bases the νNH bands of DMAB monomer and dimer decrease or disappear 

simultaneously. The new broad νNH bands corresponding to NH···Y bond (Y = N or O atom of 

base) appear at lower frequencies (Figure 5). Formation of H-bonded complexes with N-bases 

(Py, Qu, Et3N) becomes evident at high base excess (20–50 equiv). The H-bonded complexes 

with HMPA and TOPO have much higher formation constants so in this case no DMAB 

monomer is visible. 
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Figure 5. IR spectra of DMAB (0.03 M) in the νNH region in CCl4 solution: in the presence of 

10÷50 eq. NEt3 at 270 K (left) and 10 eq. HMPA at 295–265K (right), l =2.2 mm. 

The value of ∆νNH increases with the increase of proton accepting ability of base (Ej, Table 

S4). The enthalpies of hydrogen bond formation determined by Eq. 1 (−∆H°, Table 3) vary 

depending on the strength of the organic base from 1.2 to 4.1 kcal /mol in solvents (∆H11(CCl4) 

= 5.3) and from 1.5 to 6.0 kcal /mol for calculated HB complexes in gaseous phase (∆H11(gas) = 

6.4). The acidity factor Pi which characterizes the proton donating ability independent of proton 

acceptor and solvent, was determined for the NH-group of DMAB from the linear dependence 

∆Ho
(CCl4) vs Ej (Figure S20) (Pi = 0.45 ± 0.01). It is three times higher than Pi (Et2NH) = 0.15 and 

slightly lower than Pi (Ph2NH) = 0.50.78 Thus, the coordination of the electron-deficient BH3-

group increases the proton donating ability of Me2NH from 0.11 (calculated from the 

experimental data in ref. 82-83 by Eq. 1 and Eq. 3) to 0.45 in agreement with the increase of the 

gas-phase acidity from free Me2NH to BH3NHMe2.
84  

ji EPHH ⋅⋅∆=°∆ 11  (3) 
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Table 3. Formation enthalpies (in kcal/mol) for H-bond of organic bases with DMAB. 

Base Ej
a Solvent −∆H°exp

d −∆Htheor(∆ν)e 

MeCN 0.75 MeCN 1.2 1.5 

Me2CO 0.93 Acetone 2.2 2.4 

THF 1.04 THF 2.5 3.7 

TOPO 1.65 CH2Cl2 2.8c – 

HMPA 1.49 CCl4 3.6 4.8 

Py 1.53 CCl4 3.6 4.6 

Qu 1.60b CCl4 3.8 4.7 

TOPO 1.65 CCl4 3.8 – 

Et3N 1.70 CCl4 4.1 6.0 

 a The basicity factors Ej are taken from78, 85-86; b calculated using the experimental data from 
ref. 87; c calculated from the temperature dependence of formation constants. d∆H°exp(∆v) 
calculated by Eq. 1 using experimental; e∆Htheor(∆ν)– and calculated by Eq. 1 using MP2 ∆νXH 

values. 

IR spectra of DMAB in polar aprotic solvents (MeCN, Me2CO, THF) feature only one band of 

NH stretching vibrations at frequencies lower than νNH
free in the low polar non-coordinating 

solvents described above. We suggest that these bands belong to DMAB associates with the 

solvents through the NH···Y hydrogen bond where Y is the heteroatom of MeCN, Me2CO or 

THF. The band shifts ∆νNH estimated relative to νNH
free in CH2Cl2 change in the order –52 cm−1 

(MeCN) < –99 cm−1 (Me2CO) < –113 cm−1 (THF) (Figure S34–S36). This sequence correlates 

with the order of the proton accepting properties (Ej)
78 of these solvent molecules Ej

MeCN(0.75) < 

Ej
Me2CO(0.93) < Ej

THF(1.04).  

DMAB interaction with acids 

We have also studied the hydrogen bonding between the BH3-group of DMAB and weak 

acids: CH3OH, CH3CH2OH, FCH2CH2OH (MFE), CF3CH2OH (TFE), (CF3)2CHOH (HFIP), 

(CF3)3COH (PFTB), phenol (PhOH), p-NO2C6H4OH (PNP) and indole. The IR measurements 

were performed in CH2Cl2 (under conditions that exclude self-association of DMAB); the 

changes in the regions of OH, NH and BH stretching vibrations were considered.  
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The IR spectra of proton donors in the presence of DMAB show the intensity decrease of the 

proton donor band νXH
free and appearance of new broad low-frequency band corresponding to 

νXH
bond (Figure 6, Table 4). Such spectral picture evidences the involvement of XH-groups in H-

bonding (XH···HB). The band shift, ∆νXH, depends on the proton donating ability of acids (Table 

4). The low-frequency shifted νNH
bond bands of DMAB are of low intensity and can correspond 

not only to the NH stretching vibrations in DMAB dimer. For DMAB dimer the νNH
bond band 

was observed at 3218 cm−1, ∆νNH = 63 cm−1, with the intensity A= 0.05 (0.06 M DMAB in 

CH2Cl2 at 190 K) while this band drifts to lower frequencies and increases in intensity: e.g,. it 

appears at 3216 cm−1, ∆νNH = 65 cm−1, A = 0.16 for 0.06 M DMAB in presence of 0.15 M PNP 

at 190K in CH2Cl2 (Figure 6, right). This can result from the superposition of the νNH
dimer and 

νNH···O band of H-bonded complex where NH interacts with the oxygen atom of a proton donor 

(see below “Theoretical investigation of DHB complexes”). 

0
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Figure 6. IR spectra in the νXH region of DMAB-HOR mixture in CH2Cl2: 0.02 M HFIP in the 

presence of 0.06 M DMAB at 190–270 K (left) and 0.15 M PNP in the presence of 0.06 M 

DMAB at 210–270 K (right), l = 0.4 mm. 

Table 4. Spectral characteristics (in cm−1) and formation enthalpies (in kcal/mol) for hydrogen 

bonds of the proton donors with DMAB in CH2Cl2. 

XH Pi
a
 XH : DMAB νXH

free νXH
bond ∆νXH −∆H°exp(∆ν)b −∆Htheor(∆ν)c 

Indole 0.50 1 : 10 3491 3426 −65 1.5 – 

EtOH 0.63 1 : 10 3615 3531 −84 1.7 2.5c 
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MFE 0.78 1 : 3.5 3606 3512 −94 2.1 3.0 

TFE 0.89 1 : 5 3600 3479 −121 2.6 3.5 

PhOH 1.00 1 : 3.5 3569 3414 −155 3.2 2.7 

HFIP 1.05 1 : 5 3576 3412 −164 3.3 4.7 

PNP 1.27 5 : 1 3547 3372 −175 3.5 3.2 

PFTB 1.33 1 : 5 3525 3366 −179 3.6 4.9  

a The acidity factors for proton donors are taken from;86,96 b∆H°exp(∆v) calculated by Eq. 1 
using experimental; c∆Htheor(∆ν) – calculated by Eq. 1 using calculated MP2 ∆νXH values; c 
Calculated MP2 value for MeOH. 

The intensity of νBH
as and νBH

s stretching vibration bands decreases upon DHB bond formation 

and new band νBH
bond appears at lower frequency. The position of this band depends on the 

proton donor shifting to lower frequencies with the increase of the XH strength from 2338 cm−1 

for DMAB : PNP =1:1 in CH2Cl2 (∆νBH = 29 cm−1, Figure 7, left) to 2319 cm−1 for DMAB in 

MeOH (∆νBH = 48 cm−1, Figure 7, right). Such changes indicate that BH3 ligand is a proton 

accepting site in hydrogen bonding.88 The νBH
bond

 band is very narrow (∆ν1/2 = 5 cm−1) in CH2Cl2 

in comparison to ∆ν1/2 = 36 cm−1 in MeOH (Figure 7). 
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Figure 7. IR spectra in the νBH region of DMAB: 0.06 M DMAB (black line), 0.06 M DMAB in 

the presence of 1 eq. PNP at 210–310 K in CH2Cl2 (left); 0.06 M DMAB in MeOH at 190–290 K 

(right), l = 0.4 mm. 

The hydrogen bond formation enthalpy (−∆H°; Table 4) determined by Eq. 1 shows linear 

dependence on the proton donor strength (acidity factors Pi, Figure S19). Its slope gives (Eq. 3)78 

the basicity factor Ej = 0.62 ± 0.02 characterizing the proton accepting ability of boron hydride 
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independent of proton donor and solvent. This value is slightly higher than that of neutral borane 

complexes (EtO)3PBH3 (Ej = 0.42) and Et3NBH3 (Ej = 0.53),28 but smaller than that of anionic 

BH4
− (Ej = 1.25).  

Theoretical investigation of DHB complexes 

Structural analysis. Geometry optimizations were performed for H-bonded complexes of 

DMAB with MeOH, TFE and HFIP at DFT/M06, B3LYP, BP86 and MP2 theory levels, giving 

similar geometry of H-bonded complexes (Table S5–S7). All the minima were confirmed by all 

these approaches, except the complexes of IIBH-NH type, which do not possess local minima and 

converge into IBH-NH complex during B3LYP and BP86 optimizations, indicating the instability 

of complexes of this type. The calculations revealed four possible types of complexes (Scheme 

1): those with H-bond to one center of DMAB (INH and IIBH) and complexes where the alcohol 

acts simultaneously as a proton donor and a proton acceptor (IBH-NH and IIBH-NH). The minimum 

corresponding to cyclic bifurcate DHB complex (IIBH-NH) was not found for MeOH. Three of the 

H-bonded complexes (INH, IIBH and IBH-NH) are similar to complexes of DMAB interacting with 

phenol and aniline described previously89-90 by ab initio simulation. However, the influence of 

the alcohol strength on HB-complexes properties and proton transfer reaction pathway as well as 

the electron-density analysis were not studied at that time. 

      

Scheme 1. Atom numbering scheme and possible types of DHB complexes of proton donors 

with DMAB. 

Table 5. Structural parameters of M06-optimized H-bonded complexes of DMAB with alcohols. 

 MeOH TFE HFIP 

 r ∠∠∠∠    contact r ∠∠∠∠    contact r ∠∠∠∠    contact 
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INH 1.916 159 NH···O(H) 1.962 157 NH···O(H) 2.015 151 NH···O(H) 

IIBH 
1.969 156 OH···H

1
(B) 1.933 156 OH···H

1
(B) 1.804 164 OH···H

1
(B) 

2.118 133 OH···H
2
(B) 1.932 140 OH···H

2
(B) 2.014 130 OH···H

2
(B) 

IBH-NH 
1.842 148 OH···H

3
(B) 1.683 160 OH···H

3
(B) 1.645 160 OH···H

2
(B) 

2.002 140 NH···O(H) 2.277 130 NH···O(H) 2.269 129 NH···O(H) 

IIBH-NH − 
1.813 148 OH···H

3
(B) 1.731 154 OH···H

3
(B) 

2.283 121 OH···H
2
(B) 2.218 123 OH···H

2
(B) 

2.142 136 NH···O(H) 2.307 131 NH···O(H) 

 

The structural parameters of these complexes are in the range typical for DHB involving boron 

hydrides.88 The DHB distances are in the range 1.645–1.969 Å for primary (shorter) contact and 

1.932–2.283 Å for secondary (longer) interaction, both are less than the sum of van der Waals 

radii of two hydrogen atoms (2.4 Å). The O–H···H angles for primary contact vary from 148 to 

164°.  

Formation of H-bonded complexes entails shortening of the B–N distance by 0.009–0.018 Å 

(Table S8) for all types of complexes, the largest changes being found for complexes of type 

IBH-NH. In complexes with NH···O coordination (INH, IBH–NH and IIBH–NH) the N–H bond 

interacting with the HOR oxygen atom elongates by 0.004–0.009 Å. The B–H bond primarily 

involved in DHB formation elongates by 0.002–0.011 Å. These changes are typical for H-

bonded complexes formed by boron hydrides and amine-boranes.88, 91 

Interaction Energies. The formation energies of complexes differ by less than 4 kcal/mol in 

gas phase with the preference of IBH-NH complex (Table 6). Taking into account basis set 

superposition error (BSSE) lowers the formation energies by ca. 10% only and does not change 

the relative order. Taking into account the nonspecific solvation by SMD method (CH2Cl2, 

acetone) leads to a significant lowering of formation energy and complex IIBH becomes slightly 

more stable than IBH-NH and IIBH-NH. The enthalpies of H-bond complexes formation in 

dichloromethane (Table 6, −∆HDCM = 2.0 – 5.5 kcal/mol) are comparable with the experimental 
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enthalpy values (Table 4, −∆H°exp = 1.5 – 3.6 kcal/mol). But by other criteria, including the 

QTAIM energy of HB formation (EH···X) derived from (3,−1) critical point characteristics, the 

most preferable are the cyclic complexes (IBH-NH and IIBH-NH). That agrees with previous 

reports.89  

Table 6. Formation energies (in kcal/mol) of M06-optimized H-bonded complexes of DMAB 

with HFIP.  

Complex 
type 

∆E ∆EZPVE ∆EBSSE ∆HDCM
a
 ∆HMe2CO

a
 ∆Htheor(∆νOH)

b
 EH···X

c
 

INH −10.7 −9.0 −7.8 −3.2 −2.4 – −6.6 

IIBH −11.7 −9.9 −8.8 −5.4 −5.2 −3.7 −6.5 

IBH-NH −14.0 −12.2 −11.2 −5.5 −4.9 −4.7 −8.5d/−4.5e 

IIBH-NH −12.2 −10.3 −9.0 −4.3 −3.9 −4.8 −7.5c/−3.9d 

a∆HDCM and ∆HMe2CO – energies with SMD solvent correction in CH2Cl2 and acetone, 
respectively; b∆Htheor(∆ν) – calculated by Eq. 1 using MP2-computed νNH frequencies for INH and 
νOH frequencies for complexes of other types; c EH···X – energy of HB formation derived from 
QTAIM by equation EH···X = 0.5 × V(r). d Energy of OH···HB bond; e Energy of NH···O(H)–R 
bond.  

Frequency analysis. Frequency calculations were performed for the gas phase optimized 

geometries. The MP2-method provides better agreement between the experimental and 

calculated frequency shifts, which are presented on the example of complexes with TFE in Table 

8. Formation of hydrogen bond where OH group acts as the proton donor (complexes IBH⋅⋅⋅⋅NH, II) 

leads to the expected large frequency shift ∆νOH (∆νOH = −132 ÷ −180 cm−1). The exceptionally 

low frequency shift in complex INH (∆νOH = −17 cm−1) is explained by the participation of OH 

group only as proton acceptor in NH···OH bonding.  
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Table 7. Frequency shifts (∆ν, cm-1) and intensity changes (∆A, Km/mol) calculated for MP2-

optimized H-bonded complexes of DMAB with TFE.    

Complex  
type  

∆νOH ∆A ∆νNH ∆A ∆νBH1
as

 ∆A ∆νBH2
as

 ∆A ∆νBH
s
 ∆A ∆νBN ∆A 

INH −13 5 −21 209 −11 30 −16 −22 −9 9 20 −2 

IIBH −134 378 24 3 18 −15 −4 −28 1 32 20 −3 

INH-BH −177 371 7 69 14 −12 −28 −75 −35 95 29 −3 

IINH-BH −168 269 −21 90 13 −32 −19 −36 −27 88 23 −3 

 

Cyclic complexes (IBH-NH and IIBH-NH) exhibit the largest frequency shifts of νBH bands, which 

are the most similar to the experimentally observed band shifts. In these complexes, the νBH2
as 

and νBH
s modes shift to lower frequencies by 20–33 cm−1, while νBH1

as mode undergoes a high-

frequency shift. Such pattern is consistent with the experimental spectra, where the new band 

appears at lower frequency (∆νBH = −26 ÷ −48 cm−1) (Figure 7). The decrease of the B–N 

distance upon H-bond formation results in the increase of νBN stretching vibration frequency 

regardless of the complex type. 

The computed frequencies can be used to estimate the hydrogen bond formation enthalpy 

(∆Htheor(∆ν), Table 6) and the basicity factor of BH-ligand. This value calculated by Eq. 1 and 

Eq. 3 and ∆H11=6.4 kcal/mol in gas phase79 is in perfect agreement with the experimental value 

of the proton donating ability (Ej = 0.62 ± 0.02). The Ej calculated for INH–BH complexes is 0.54 ± 

0.05 what is significantly lower than the experimental value. The calculated value of Pi for NH in 

complexes INH (Table S10) is 0.48 ± 0.02, that is close to the experimental data (Pi = 0.45 ± 

0.01). 

So, the complexes of type IBH-NH conform to the experimental observations by a number of 

criteria (energetic, spectral).  

Electron-density analysis. Electron density redistribution, which occurs upon DHB formation, 

was analyzed using different approaches, namely, natural population analysis (NPA),92 Wiberg 

bond indexes (WBIs),93 Bader’s Quantum Theory of “Atoms in Molecules” (QTAIM)94-96 and 
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analysis of non-covalent interaction indexes (NCIs).97-98 All these methods provide a powerful 

tool to recognizing hydrogen bond from other types of non-covalent interaction.99-101
 

As expected, upon DHB formation the charge on the proton of HOR becomes more positive, 

whereas the charge on the interacting hydridic hydrogen(s) becomes more negative (Table S14). 

The charge of NH group proton becomes more positive upon bonding with O atom in complexes 

INH, IBH-NH and IIBH-NH.  

Within the framework of the QTAIM theory, a hydrogen bond is characterized by the presence 

of (3, −1) critical point that allows one to distinguish it from other types of interaction.102 The 

NH···O(H) interaction in complexes INH, IBH-NH and IIBH-NH always possess a (3, −1) critical 

point (ρc = 0.01–0.03 au, εNH···O = 0.09–0.31, Table S17). In bifurcate complexes (IIBH and IIBH-

NH), the (3, −1) critical point was found only for the closest contact with the most linear 

O−H···H(B) arrangement (Figure 8a) despite the presence of secondary OH···HB contact. The 

values of the electron density at the (3, −1) bond critical point (ρc, Table S17) depend slightly on 

the proton donor strength being in the range 0.01–0.03 au. The presence of additional 

interactions causes deviation of the OH···H moiety from linearity and reflected in the values of 

the H···H bond ellipticity (εH···H= 0.19–0.26 in IBH-NH and IIBH-NH) (Figure 12a). Extremely high 

εH···H ellipticity values (0.92–3.54) are observed for bifurcate DHB complexes of type IIBH.  

From the analysis of non-covalent interactions (NCI)97-98 we obtained NCI isosurfaces (Figure 

8b, Figures S24, S26 and S28) which are similar to the QTAIM molecular graphs (Figures S24, 

S26 and S28) except for the IIBH complexes. The NCI analysis gives in this case two negative 

values of sign of (λ2)ρ(r) (−0.015 and −0.014, Table S18) indicating attractive (dihydrogen 

bonding) interaction between the proton and both BH ligands, which are spotted in blue color on 

gradient isosurfaces (Figure 8b). One positive value of sign (λ2)ρ(r) (+0.014) evidences the 

nonbonding overlap and is depicted in red color (Figure 12b). Thus NCI analysis allows 

assigning the IIBH complexes as bifurcate dihydrogen bond despite only one H-bond path in 

terms of QTAIM theory. In case of IINH-BH complexes, which geometrical parameters are typical 
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for bifurcate H-bond, the analysis of electron density (NBO, QTAIM, NCI) shows only one 

XH···HB interaction. 

 

 a)    b) c)
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Figure 8. Topological analysis of electron density for DMAB·MeOH complex of type IIBH: 

 a) QTAIM molecular graph (ε = 1.54); b) NCI gradient isosurface for s = 0.3 au and blue-green-

red color scale from −0.01< sign(λ2)ρ(r) < +0.01 au; c) plot of the reduced density gradient 

(RDG) versus sign(λ2)ρ(r). 

DMAB protonation in non-aqueous media. 

IR study. IR study ascertains that proton transfer proceeds via the H-bonded complex: the 

presence of excess proton donors leads to the appearance of new strong band of νBH
bond 

stretching vibrations at low frequency in CH2Cl2 (Figure 9) as well as in coordinating solvents 

like MeCN, Me2CO and THF (Figures S38–S40). Above 250 K the hydrogen evolution (Scheme 

2) begins, taking several days at room temperature in low polar media (CH2Cl2, FBz). Thus, the 

reaction of DMAB with weak acid TFE (10 eqiv.) in low-polar FBz was completed in 14 days at 

room temperature. The monocrystals of [Me2NH2]
+[B(OCH2CF3)4]

− were isolated from the 

reaction mixture by slow solvent evaporation and characterized by X-ray (see below), IR and 

NMR spectroscopy. The use of coordinating solvent (MeCN, Me2CO or THF) and stronger 

proton donors reduces the reaction time to several hours. The protonation of DMAB by 2 eqiv. 

HFIP in acetone has the reaction half-time of ca. 4 h at 290–310 K. 
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Scheme 2. Mechanism of the proton transfer to DMAB. 

In the course of the reactions the gradual fall of all bands in the region of νBH stretching 

vibrations is observed (Figure 9). Simultaneously two new bands νBH
prod appear at higher 

frequencies (2402 and 2430 cm−1), corresponding to the reaction products ([Me2NH2]
+[X2BH2]

−, 

where X could be OR or Solv).103-104 In the same time the decrease of the νNH
bond band, which 

belongs to N–H group hydrogen bonded to acetone, is observed (Figure S30).  

 

0.0
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Figure 9. IR monitoring (νBH region) of the reaction between DMAB (black line, 0.06 M) and 2 

eqiv. HFIP (0.12 M) in acetone (310 K, l = 0.4 mm) over ca. 280 min. 

The experimental kinetic data obtained for DMAB reaction with 2 eqiv. HFIP in acetone obey 

a second order reaction law (Eq. 4). The values of the rate constants determined vary from (4.2 ± 

0.4)×10−5 to (1.6 ± 0.1)×10−3 mol−1·s−1 in the 190−310 K temperature range with ∆G‡ = 14.8–

22.2 kcal/mol (Table S18). 

]][[
][

HORDMABk
dt

DMABd
obs=−         (4) 

UV-Vis. The interaction of DMAB with p-NO2C6H4N=NC6H4OH (PNAP) in CH2Cl2 could be 

conveniently investigated by UV-Vis spectroscopy.  At low temperatures the spectra show strong 

blue shift of the PNAP band (λ = 423 nm, ∆λ = 45 nm) indicative of DHB formation105-106 
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(Figure 10) and above 270 K the band of PNAP anion appears at 530 nm evidencing the 

beginning of the proton transfer reaction. 

0.0

0.4

0.8

1.2

300 400 500 600

PNDP 270K

DMAB + 3PNDP 190K

DMAB + 3PNDP 210K

DMAB + 3PNDP 230K

DMAB + 3PNDP 250K

DMAB + 3PNDP 270K

DMAB + 3PNDP 290K

A

λ, nm

378 nm

423 nm

530 nm

 

Figure 10. UV-Vis spectra of PNAP (black line, 0.003 M) and PNAP in the presence of 5 eq. 

DMAB in CH2Cl2, l = 0.4 mm. 

Characterization of the reaction products. The product of DMAB protonation by TFE in FBz 

– the compound [Me2NH2]
+[B(OCH2CF3)4]

− was isolated as individual monocrystals and 

characterized by X-ray diffraction (Figure 11). The 11B singlet signals of 

[Me2NH2]
+[B(OCH2CF3)4]

− dissolved in CD2Cl2 appear at 2.7 and 2.4 ppm, these values are 

consistent with previously reported 11B chemical shifts for Na+[B(OCH2CF3)4]
− (2.9 ppm) and 

Li+[B(OCH2CF3)4]
− (3.2 ppm).107 Appearance of two 11B singlets could be due to the formation 

of contact and solvent separated ion pairs in solution.108  In the presence of even small amount of 

water this compound transforms into boric acid with a broad signal at 19.5–20.3 ppm. 

  

Figure 11. General view of [Me2NH2]
+[B(OCH2CF3)4]

− structure according to XRD analysis 

(50% probability ellipsoids) (top) and M06 optimization (bottom). 
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Similar [B(OR)4]
− products were obtained previously in NH3BH3 alcoholysis by MeOH109 and 

TFE110 and in case of NaBH4 methanolysis.111 Another products were isolated by us as the result 

of DMAB interaction with quinoline and NEt3 in CCl4: B(OH)3·C9H7N·C9H7NH+Cl− (Figure 12) 

and [Me2NH2]
+Cl−. XRD study of dimethylammonium chloride revealed the same unit cell 

dimensions as published CSD-DMEACL05.112 

 

Figure 12. General view of B(OH)3·C9H7N·C9H7NH+Cl− (50% probability ellipsoids). 

NMR-monitoring of the reaction.  

The 11B NMR signal of initial DMAB in acetone-d6 appears as a quartet at −13.6 ppm (q, JBH = 

97.0 Hz). Upon the DMAB reaction with 2 eqiv. HFIP (Figure S35)  a new triplet signal appears 

at +3.1 ppm (t, JBH = 113.6 Hz) in ca. 30 min after mixing, corresponding to 

[Me2NH2][BH2(OR)2].
113 In low polar media (CH2Cl2) the reaction apparently yields Me2NH–

BH2OR (+4.0 ppm, t, 111.2 Hz) and Me2NH–BH(OR)2 (+2.4 ppm, d, 78.1 Hz) species.104, 114 

The hydrolysis products B(OH)3 and BX3 were observed at 20.3 ppm. When initial compound is 

almost consumed the new singlet signal is observed in 11B{1H} spectra at 2.2 ppm (Figure S32) 

assigned to [Me2NH2]
+ [B(OR)4]

−   

In the presence of 1 eqiv. p-nitrophenol (PNP) in acetone-d6 solution of DMAB the new triplet 

of BH2X2 species is observed at −0.6 ppm (t, JBH = 111.2 Hz) (Figure 13). The exact position of 

this signal is highly dependent on the OR− nature (Table 8), supporting its asignment to 
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[Me2NH2][BH2(OR)2] species. Similar spectral picture was observed in time for this and other 

proton donors (see Table 8 and Figures S33–S36).  

It should be noted that 11B signals in the +3 ÷ −1 ppm region could be assigned to the neutral, 

anionic or even cationic tetracoordinated boron in [BH2(X)2] species depending on the electron 

donating ability of X. In our case when RO– residue (Me2NHBH2OR115 and [BH2(OR)2]
−110 ) is 

formed as the result of proton transfer and H2 evolution, the formation of cationic species like 

[BH2X2]
+ (X = NHMe2

116 or Solv117-118) is quite unlikely.  

 

Figure 13. The 11B NMR spectra of DMAB (0.06 M) in the presence of PNP in acetone-d6 at 

297 K: a) DMAB:PNP (1:2) (black line) after 1.5 h of reaction, DMAB:PNP (1:3) (blue line) 

after 2 h of reaction, DMAB:PNP (1:4) (red line) after 2.5 h of reaction; b) DMAB:PNP (1:5) 

after 10.5 h of reaction; c) DMAB:PNP (1:5) after 3 days. 
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Table 8. Experimental values of 11B NMR chemical shifts for the reaction products and 
calculated by GIAO-MP2/IGLO III method. 

ROH [BH2(OR)2]
 −

 [BH(OR)3]
 −

 [B(OH)4]
−
 [B(OR)4]

−
 B(OH)3 

Calculated 
for MeOH 

+4.0 

[Me2NH2]
+[BH2(OMe)2]

−  

+6.3 

[Me2NH2]
+[B(OMe)3H]− 

+1.3 +1.6 +18.0 

TFE − − − 
+2.4 (s) 

+2.7 (s) 

+19.5 

(broad s) 

HFIP 
+3.1 (t) 

JBH = 113.6 Hz 
− − +2.2(s) 

+20.3  

(broad s) 

PNP 
−0.6 (t) 

JBH = 111.2 Hz 
− +1.1 (s) 

+2.5 (s) 

+2.6 (s) 

+19.3 

(broad s) 

TFA 
−1.1 (t) 

JBH = 118.3 Hz 

+0.7(d) 

 JBH = 151.4 Hz 
− − 

+20.2 

(broad s) 

 

In 1H NMR spectra of DMAB in acetone-d6 the signal of NH-group is observed at 5.2 ppm (s), 

of CH3-group - at 2.4 (d) and BH3-group - at 1.5 (q). In the presence of 5 equiv. PNP the new 

signals appear at 5.7(s) and 2.6 (d) ppm that correspond to NH2- and CH3-groups of [Me2NH2]
+, 

respectively. The BH-signals intensity decreases and a new broad line appears at 1.4 ppm (s) that 

can be assigned to X2BH2 species. 

To predict the magnetic shielding of 11B nuclei several approaches were used (GIAO-

MP2/M06/B3LYP/BP86 with IGLO III basis set). The GIAO-MP2/IGLO III//M06/6-311++G 

(d,p) and GIAO-M06/IGLO III//M06/6-311++G(d,p) methods gave reliable results for 11B NMR 

chemical shift calculations (Table S19) and therefore were used to calculate the 11B magnetic 

shielding in [Me2NH2]
+[BH(4-x)(OR)x]

− and B(OR)3 alcoholysis products assisting the signals 

assignment in the experimental 11B NMR spectra (Table 8,Table S19–S20).  
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Mechanism of proton transfer 

Several mechanisms for amine-boranes (AB) hydrolysis were proposed in the literature.119-120 

The first pathway implies the proton transfer to BH3-group with hydrogen evolution and 

subsequent fast hydrolysis by the water present in the system.119 The second pathway involves 

electrophilic displacement of BH3 through the proton attack to nitrogen, accompanied by the 

rupture of B–N bond and fast hydrolysis of solvated BH3-group.119-121 Another pathway implies 

the dissociative activation of B–N bond.120 

However all these schemes were proposed for acid hydrolysis by strong inorganic acids (HCl, 

H2SO4) where the proton transfer reaction is fast making the intermediates observation 

impossible. We investigate the DMAB reaction with weak organic acids (fluorinated alcohols, 

substituted phenols) in the argon atmosphere in anhydrous solvents that allows observing the 

proton transfer reaction intermediates. 

As it follows from the low-temperature IR and UV-study and DFT calculations in the presence 

of weak OH acids DMAB prefers to form cyclic HB complexes of type IBH-NH rather than 

complexes of type IIBH with bifurcate BH⋅⋅⋅HX bonds. Having small difference in formation 

energy (less 4 kcal/mol) both these HB complexes can be envisaged as intermediates of the 

reaction leading to H2 evolution. So, several pathways of proton transfer were considered in our 

quantum chemical calculations with or without direct participation of a solvent molecule. The 

calculations were performed taking into account the bulk solvent effect by means of SMD 

approach. 

Proton transfer in non-coordinating low polar solvents. Three possible mechanisms for this 

reaction were considered (Scheme 3): the proton transfer to BH3-group (TSBH1), the proton 

transfer from the alcohol to BH3-group assisted by proton transfer from NH group to the 

alcohol’s oxygen (TSNH-BH) and the insertion of proton donor into B–N bond (TSB–N). Figure 14 

presents the corresponding transition states obtained at the M06 theory level, the energy profiles 

are given on Figure 15. 
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Scheme 3. Possible pathways for DMAB protonation.  

The direct protonation of BH-site (TSBH1) proceeding via the DHB intermediate IIBH and 

yielding Me2NH–BH2OR has the highest activation barrier (∆G‡
DCM = G(TS) – G(H-bond) = 

50.3 kcal/mol for HFIP, Figure 15). This pathway is similar to the first pathway suggested for 

AB hydrolysis but is not feasible without additional BH activation or B–N bond dissociation due 

to low BH basicity and hence high activation energy. The activation energy for subsequent 

proton transfer to second and third hydride ligands (TSBH2 and TSBH3, Figure S48) is lower (37.2 

and 38.4 kcal/mol, respectively). This trend is common for boronhydrides protonation.122 

The next possible mechanism is the double proton transfer (TSNH-BH), which proceeds via 

cyclic HB complex of type IBH-NH yielding Me2N=BH2 with lower activation barrier (∆G‡
DCM = 

28.4 kcal/mol for HFIP and 24.4 kcal/mol for two HFIP molecules). The product of this process 

Me2N=BH2 is stable only at low temperatures123-124 and easily forms cyclic dimmer (Me2N–

BH2)2.
125-127 However in the presence of alcohol excess it can react with HOR by AdE 

mechanism (TSAdE
, Scheme 3; ∆G‡

DCM = 28.2 kcal/mol for HFIP and 21.2 kcal/mol for two 

HFIP molecules) yielding Me2NH–BH2OR species as in case of direct protonation of BH-site.  
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The third possible pathway is the dissociation of B–N bond (TSB–N) analogues to that proposed 

for the AB hydrolysis.119-121 It proceeds via the cyclic HB complex of type IBH-NH and implies the 

insertion of the OH-group of the proton donor into the B–N bond of DMAB (∆G‡
DCM = 32.2 

kcal/mol for HFIP) followed by proton transfer from BH3(H)OR to the nitrogen atom of Me2NH 

fragment. According to DFT calculations the activation barrier of proton transfer from 

BH3(H)OCH(CF3)2 to NH3 and Me2NH (TSPT2, Scheme 3, Figure S47) is very low (less than 2 

kcal/mol) that is less than the experimentally determined barrier for the proton transfer from 2,4-

dichlorophenol to triethylamine (activation free energy is 9.0 kcal/mol).128 The resulting 

[Me2NH2]
+[BH3(OR)]− species are 2–3 kcal/mol more stable. So, it can be assumed, that the 

equilibrium of proton transfer reaction is shifted toward [Me2NH2]
+ and, ultimately, to 

[Me2NH2]
+[B(OR)4]

−, the latter being characterized by X-ray diffraction as the reaction product.  

According to the recent study129 the spontaneous formation of [(Me2NH)BH2]
+[BH4]

– from 

DMAB at ambient conditions is quite unlikely. However the B–N dissociation is still possible 

within the DMAB dihydrogen bonded dimer, by the analogy with processes described for 

ammonia borane.130 The activation energy for B–N dissociation in dihydrogen bonded dimer 

matches the BDE value for DMAB (36.9 kcal/mol; Figure S53 and Table S23). This value is 

greater than the activation energy of B–N dissociation mediated by ROH. Indeed our 

measurements of 11B NMR spectra show that spontaneous B–N cleavage in DMAB is not 

observed. 

Therefore relatively high but accessible barriers for the DMAB alcoholysis (TSNH-BH) and the 

B–N bond dissociation (TSB–N) pathways allow considering them as possible pathways in non-

coordinating solvents of low polarity (CH2Cl2, FBz, toluene). Taking into account the 

cooperative effects inside the alcohol clusters131 by addition of the second alcohol molecule on 

the example of NH–BH pathway, we computed lower activation barriers (by 1.7 kcal/mol for 

MeOH, 6.8 kcal/mol for TFE, 7.8 kcal/mol for PNP and 4.0 kcal/mol for HFIP,  Table S22).  
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Figure 14. The M06-optimized geometries of transition states (TS) for different reaction 

pathways in Scheme 3. 

TS(BH)

TS(BN)

TS(NH-BH)

TS(2xHFIP)

0

28.4

7.7
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[Me2NH2]
+[BH3OCH(CF3)2]

−

32.2

−1.5

−8.0

50.3

Me2N=BH2 + H2 + HFIP

Me2NH-BH2OCH(CF3)2 + H2

[Me2NH2]
+[B(OR)4]

−

∆GDCM in kcal/mol

28.2

−7.7

24.4

10.2

−12.1

21.2

 

Figure 15. Energy profile for the reaction of DMAB with HFIP. The energy values (∆HDCM in 

kcal/mol) are presented relative to the separated starting molecules (in CH2Cl2). 

Increase of the proton donor strength reduces significantly the activation energy of the first 

(TSBH) and third (TSNH–BH) pathways, whereas the activation energy of the B–N dissociation 

changes weakly in dependence on the alcohol (Table S22).  

So in low polar media two processes are feasible – alcohol assisted double hydrogen transfer 

(TSNH–BH)  followed by AdE reaction of alcohol with B=N double bond (TSAdE
) and dissociation 

of B–N bond (TSB–N).  

Proton transfer mediated by coordinating solvents. When protonation takes place in 

coordinating organic solvents, the solvent molecule can act as a Lewis base coordinating to the 
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boron atom and assisting B–N bond dissociation.  This SN2-substitution132 (Scheme 4) of Me2NH 

in DMAB by the solvent molecule (Figure 16) has the activation enthalpies ∆G‡
solv: 20.7 (THF) 

< 24.1 (MeCN) < 24.7 (Me2CO) < 33.8 (H2O) kcal/mol. This ∆G‡
solv order is in agreement with 

the basicity (Ej) of these solvents. This process is endothermic in agreement with the DMAB 

stability in these solvents. It should be noted that the classical SN2 transition state is found only 

for aprotic solvents (THF, Me2CO, MeCN) whereas in the case of water or alcohol the transition 

state is a four-membered cycle (TSBN, Figure 14 and Scheme 4 (left)) and the active intermediate 

for such process is cyclic H-bonded complex of the type INH-BH. 

DMAB+Water

DMAB+Acetone

DMAB+Acetonitrile

DMAB+THF

0

24.7

18.3

DMAB·Solv 

TS

Solv·BH3 + Me2NH

24.1

20.7
17.514.7

∆Gsolv in kcal/mol

33.8 

13.3 

 

DMAB+HFIP+THF

DMAB+HFIP+Acetonitrile

DMAB+HFIP+Water

DMAB+HFIP+Acetone

0

19.1

24.0

12.7

27.4

DMAB·HFIP·Solv 

TS

Solv·BH3 + DMA·HFIP

29.7
29.8

16.1

11.2

∆Gsolv in kcal/mol

 

Figure 16. Energy profile for SN2 reaction of DMAB with H2O, MeCN, THF and Me2CO (top). 

Energy profile for SN2 reaction DMAB with these organic bases in presence of HFIP (bottom). 
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The energies (∆Gsolv, kcal/mol) are in the corresponding solvent (MeCN, THF, Me2CO and 

H2O).  

  

Figure 17. M06-optimized geometries of transition state for SN2 substitution of Me2NH by 

solvent molecule assisted by ROH (TSDHB-SN2) on the example of acetone and HFIP. 

    

Scheme 4. Possible pathways for B-N dissociation mechanisms assisted by coordinating 

solvent molecule (X, left) and non-assisted (right). 

The proton donors stabilize DMAB·Solv complex as well as the products thus shifting the 

equilibrium toward the reaction products (Scheme 4, left). Note that energies of the hydrogen 

bonded intermediate DMAB·HFIP·Solv are highly affected by the type of HFIP coordination 
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(Figure S47) which is mostly OH···O(solv) in case of THF (Ej(THF) = 1.04) but is pure 

OH···H(B) (Ej(DMAB) = 0.64) in the case of acetone (Ej(acetone) = 0.93).  Nevertheless, the TS 

energies for the SN2 process assisted by this alcohol (TSDHB-SN2, Figure 17) are ca. 1.7–6.5 

kcal/mol for PNP and  0.7–6.4 kcal/mol for HFIP  lower than those for simple substitution, while 

the products are stabilized by 0.8–10.6 kcal/mol (Figure 16). The Me2NH·HFIP complex easily 

undergoes proton transfer133 yielding dimethylammonium-cation [Me2NH2]
+ while BH3 

transforms gradually into [B(OR)4]
− by the reaction with the excess alcohol. Protonation of 

neutral BH3·Solv has higher barrier than the B-N bond dissociation (TSBH of proton transfer 

from HFIP to BH3·THF has activation energy ∆G‡
THF = 37.2 kcal/mol). The comparison of the 

activation energy values suggests that this step is followed by the ligand exchange (BH3·Solv 

transforms into BH3·(OR)) and proton transfer to [BH3·(OR)]−. Thus the data obtained show that 

the rate determining step of the DMAB reaction with alcohols in polar coordinating solvents 

should be the B–N bond dissociation. The theoretical value of the activation barrier for DMAB 

reaction with HFIP in presence of acetone ∆G‡
theor(acetone, 298 K) = 24.0 kcal/mol is agreement 

with the experimental value ∆G‡
exp (290 K) = 21.1 kcal/mol. 

Conclusions 

Analysis of the IR spectral and computational data showed the DMAB is self-associated in 

nonpolar (hexane, CCl4) and low polar non-coordinating (CH2Cl2, FBz, toluene) media; the 

association enthalpy, −∆H°assoc, estimated experimentally varies from 1.5 to 2.3 kcal/mol. In FBz 

the existence of additional NH···F “improper” (blue-shifting) H-bonding is shown experimentally 

for the first time. The experimental data show that proton accepting ability of DMAB (Ej(BH)
DMAB 

= 0.62) is lower than that of BH4
− (Ej = 1.25) and proton donating ability (Pi(NH)

DMAB= 0.45) is 

higher than that of Me2NH (Pi = 0.11). Presence of both functionalities in the DMAB molecule 

determines its ability to form diverse hydrogen bonded adducts which are directing factors of 

DMAB reactivity. According to our computational analysis the active intermediate of proton 
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transfer from OH acids to DMAB is cyclic HB complex of the type IBH-NH which features both 

B–H···H(O) and NH···O(H) bonds.  

In non-coordinating solvents the reaction of DMAB with proton donors (TFE, HFIP, PNP) is 

extremely slow (takes several days) and yields [Me2NH2]
+[B(OR)4]

− products characterized 

experimentally by X-ray, IR and NMR spectroscopy. In polar coordinating media, the solvent 

molecule assists the B–N dissociation process via SN2 mechanism, so the reaction goes 

significantly faster (with half-life ca. 4 hours).  

Supporting Information Optimized geometries (Cartesian coordinates) for the calculated 

species; detailed computational results, AIM and NCI analysis; spectral and kinetics data. This 

material is available free of charge via the Internet at http://pubs.acs.org. 
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