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Synthesis of Diverse Aromatic Ketones through C–F Cleavage of 
Trifluoromethyl Group 
 Mai Ikeda, Tsubasa Matsuzawa, Takamoto Morita, Takamitsu Hosoya, and Suguru Yoshida* 

 

Abstract: An efficient synthetic method of aromatic ketones through 
C–F cleavage of trifluoromethyl group is disclosed. The high 
functional group tolerance of the transformation and the remarkable 
stability of trifluoromethyl group in various reactions enabled 
multisubstituted aromatic ketone synthesis in an efficient route 
involving useful transformations such as ortho-lithiation, aryne 
chemistry, and cross-couplings. 

Aromatic ketones are of great importance in a wide range of 
disciplines including photochemistry, materials chemistry, 
pharmaceutical sciences, and chemical biology.[1] Despite 
enormous efforts to develop facile synthetic methods of aromatic 
ketones, it is not easy to prepare highly functionalized aromatic 
ketones in a multi-step manner due to the electrophilic carbonyl 
group. In particular, accessible ketones are quite limited in the 
conventional Friedel–Crafts reaction owing to the harsh 
conditions and the low functional group tolerance in the 
preparation of reactive acyl chlorides (Figure 1A).[1] Recent 
significant achievements have expanded the available aromatic 
ketones by virtue of the significant accessibility of starting 
materials and mild conditions.[2] For instance, a palladium-
catalyzed diaryl ketone synthesis using esters and arylboronic 
acids developed by Newman, Houk, and coworkers enhanced the 
accessibility of aromatic ketones (Figure 1B).[2d] However, a multi-
step synthesis involving these transformations toward highly 
functionalized ketones still require protecting groups or functional 
group transformations into the carbonyl group to avoid undesired 
bond formations at the electrophilic carbonyl carbon. Thus, a 
facile method to prepare aromatic ketones using a robust C1 unit 
is expected to achieve the synthesis of highly functionalized 
aromatic ketones in an efficient synthetic route involving reactive 
intermediates such as carbanions. Herein, we describe an 
efficient method to prepare aromatic ketones through C–F 
cleavage of the trifluoromethyl group (Figure 1C). 

Since trifluoromethyl group is a robust functional group in the 
presence of a broad range of compounds such as acids or 
nucleophiles, the C–F transformation of the trifluoromethyl group 
is a challenging issue in synthetic organic chemistry.[3–6] The 
synthesis of highly functionalized aromatic ketones from 
benzotrifluorides is not easy owing to the harsh conditions using 

a strong Lewis or Brønsted acid. On the basis of recent our study 
for the mild C–F transformation,[6] we at first envisioned that an 
arylation and carbonyl formation of the trifluoromethyl group of 
benzotrifluorides will furnish aromatic ketones. The 
transformation of trifluoromethyl group as a robust C1 unit under 
the mild reaction conditions would allow for an efficient synthetic 
route involving useful transformations such as ortho-lithiation, 
aryne chemistry, and cross-couplings. Considering the good 
affinity between boron and fluorine and the gentle reactivity of 
boron tribromide used in various natural product synthesis,[7] we 
attempted a reaction between 4-methylbenzotrifluoride (1a) and 
mesitylene (2a) using boron tribromide at 25 °C (Figure 1D). As a 
result, we found that the reaction followed by adding methanol 
provided diaryl ketone 3a in high yield through the cleavage of 
three C–F bonds.[8] When water was used instead of methanol, 
the desired ketone 3a was not obtained. 

 

Figure 1. Ketone syntheses. (A) Conventional methods. (B) Ketone synthesis 
from esters. (C) This work. (D) Initial attempts. 
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Figure 2. Synthesis of diaryl ketones 3 from benzotrifluoride derivatives 1. See, 
the Supporting Information for the structures of 1 and 2. (A) General scheme. 
(B) Reactions between various benzotrifluoride derivatives 1 with 2a. (C) 
Reactions between 1a with various arenes 3. (D) Synthesis of various 
benzo[b]thiophenes 3n–3p. [a] Reaction time for the first step was 12 h. [b] 
Reaction time for the first step was 21 h. [c] The procedure was changed as 
follows: 1. 1 (1.0 equiv), BBr3 (2.0 equiv), CH2Cl2, 25 °C, 3 h; 2. 2 (5.0 equiv), 
25 °C, 2 h; 3. MeOH, 25 °C, 2 h. [d] The procedure was changed as follows: 1. 
1 (1.0 equiv), BBr3 (2.0 equiv), CH2Cl2, 25 °C, 21 h; 2. 2 (5.0 equiv), 25 °C, 2 h; 
3. MeOH, 25 °C, 2 h. 

A wide range of diaryl ketones were synthesized from various 
benzotrifluorides and aromatic compounds (Figures 2A and 2B). 
Indeed, 4-anisyl mesityl ketone (3b) was obtained through the C–
F cleavage of 4-methoxybenzotrifluoride without demethylation of 
the methoxy group. Ketones 3c and 3d were also prepared by 
treating 4-trifluoromethylbiphenyl derivatives. The reaction using 
bulky 2-methylbenzotrifluoride uneventfully took place to afford 
mesityl 2-tolyl ketone (3e) in moderate yield. Since 
benzo[b]thiophenes having a trifluoromethyl group participated in 
synthesizing ketones 3f–3i without damaging various functional 

groups, an advantage of this synthetic method was clearly shown. 
For example, the ketone synthesis using CF3-substituted 
benzo[b]thiophenes, prepared from CF3-substituted ketene 
dithioacetal monoxide with triflic anhydride,[9] successfully 
underwent to furnish 3f–3h in good to excellent yields leaving 
reactive methylthio, iodo, silyl, and triflyloxy groups untouched. 
On the other hand, transformations of the benzo[b]thiophene 
having various functional groups under reported Lewis or 
Brønsted acid conditions resulted in failure.[10] 

A broad range of aromatic compounds were applicable to the 
diaryl ketone synthesis (Figures 2A and 2C). For example, 
2,3,4,5,6-pentamethylphenyl 4-tolyl ketone (3i) was efficiently 
prepared by treatment of benzotrifluoride 1a and 1,2,3,4,5-
pentamethylbenzene with boron tribromide followed by addition of 
methanol. In addition, the reactions of 1a with o-xylene, 
cyclobutabenzene, and 3,3’,5,5’-tetramethylbiphenyl also took 
place to afford the corresponding diaryl ketones 3j–3l in moderate 
yields. Furthermore, 4-hydroxyphenyl 4-tolyl ketone (3m) was 
synthesized from benzotrifluoride 1a and phenol with a modified 
procedure.[8] It is worth noting that the synthesis of highly 
functionalized benzo[b]thiophenes 3n–3p was accomplished by 
the reaction of 7-iodo-2-methylthio-3-trifluoromethyl-6-
(triflyloxy)benzo[b]thiophene with boron tribromide followed by 
adding phenol, N,N-dimethylaniline, and 1,3,5-
trimethoxybenzene with methanol (Figure 2D).[11] Compared to 
the defluoroarylation using aromatic compounds as a solvent 
reported by Hu and coworkers,[5d] the broad scope is a benefit of 
our method. 

 

Figure 3. Synthesis of esters from benzotrifluoride derivatives 1. See, the 
Supporting Information for the structures of 1. [a] The procedure was changed 
as follows: 1. 1 (1.0 equiv), BBr3 (2.0 equiv), CH2Cl2, 50 °C, 3 h (sealed tube); 
2. MeOH, 50 °C, 2 h. [b] Reaction time for the first step was 21 h. 

Various aromatic esters possessing functional groups were 
also synthesized through the C–F cleavage (Figure 3). For 
instance, esters 4a and 4b were efficiently prepared by treatment 
of 4-methylbenzotrifluoride and 1-trifluoromethylnaphthalene, 
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respectively, with boron tribromide followed by addition of 
methanol.[12] When 6-methoxy-3-
trifloromethylbenzo[b]thiophenes were used, esters 4c and 4d 
were obtained via the C–F cleavage and demethylation. Similar 
to the ketone synthesis, the good functional group tolerance 
achieved the preparation of benzo[b]thiophene 4e or 4f having o-
iodo- or o-silylaryl triflate moiety. Benzo[b]furan-type ester 4g was 
also synthesized in moderate yield. Furthermore, ester formation 
using a range of alcohols, that is, ethanol, 2-propanol, and 
cyclopentanol, took place smoothly to provide esters 4h–4j in high 
yields without lacking iodo, triflyloxy, and methylthio groups. 

 

Figure 4. Control experiments to clarify the reaction mechanism. (A) NMR 
experiment. (B) Reactions using 4-(tribromomethyl)toluene (5). (C) Plausible 
reaction mechanisms. 

To clarify the reaction mechanism of the diaryl ketone 
synthesis involving the C–F cleavage, we then conducted a 
reaction of benzotrifluoride 1a with boron tribromide in the 
presence of mesitylene using dichloromethane-d2 as a solvent 
(Figure 4A). As a result, we observed 4-(tribromomethyl)toluene 
with unreacted mesitylene (2a) in the 1H NMR analysis of the 
resulting solution.[5c] Then, diaryl ketone 3a was observed by the 
1H NMR analysis after an addition of methanol-d4 to the reaction 
mixture. We then performed several control experiments using 4-
(tribromomethyl)toluene (5) prepared from benzotrifluoride 1a 
with boron tribromide (Figure 4B). While methanolysis of 5 
quantitatively afforded ester 4a (Figure 4B-a),[13] no direct reaction 
of 5 with mesitylene (2a) occurred (Figure 4B-b). When tribromide 
5 was treated with boron tribromide in the presence of mesitylene 
(2a), only a small amount of diaryl ketone 3a was obtained (Figure 

4B-c).[14] Addition of mesitylene (2a), boron tribromide, and 
methanol to tribromide 5 in dichloromethane afforded ester 4a, 
and diaryl ketone 3a was not detected (Figure 4B-d).[15] These 
results in Figures 4A and 4B clearly showed that the synthesis of 
diaryl ketone 3a was accomplished by the reaction between 
tribromide 5 and mesitylene (2a) with an in situ generated 
activator such as FnBBr(3-n). Thus, we postulated a reaction 
mechanism shown in Figure 4C.[16] Firstly, a reaction between 
benzotrifluoride 1a with boron tribromide provided tribromide 5 
through the three-times defluorobromination. Then, transient 
generation of acyl bromide I by the reaction of tribromide 5 with 
methanol and Friedel–Crafts reaction between I and mesitylene 
(2a) triggered by the in situ generated FnBBr(3-n) would furnish 
diaryl ketone 3a (path a). Alternatively, the formation of 
dibromomethylene IV through the activation of C–Br bond by 
FnBBr(3-n) and subsequent transformation into the diaryl ketone 3a 
is also possible (path b). 

 

Figure 5. Multisubstituted aromatic ketone synthesis. (A) Synthesis of 
thioxanthones. (B) Synthesis of benzo[b]thiophenes. [a] Pd = SingaCycle-A1. 
See the Supporting Information for the details. 

An advantage of the diaryl ketone synthesis using the robust 
trifluoromethyl group as a C1 unit was showcased by the 
thioxanthone synthesis[17] through carbanion intermediates 
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(Figure 5A). Since the significant electron-withdrawing nature of 
the aromatic trifluoromethyl group enables ortho-lithiation with a 
base,[18] benzotrifluorides 9a and 9b were prepared by 
deprotonation of m-bromobenzotrifluoride (6) with lithium 
diisopropylamide (LDA) followed by thiolation with S-(p-tolyl) p-
toluenethiosulfonate and cross-coupling reaction with arylboronic 
acids 8a and 8b. We then attempted an intramolecular diaryl 
ketone synthesis by treatment of benzotrifluorides 9a and 9b with 
boron tribromide followed by addition of methanol. As a result, 
thioxanthones 10a and 10b were successfully synthesized 
through the C–F cleavage and cyclization. The modular synthetic 
route from m-bromobenzotrifluoride, thiosulfonate, and 
arylboronic acids would serve in the construction of diverse 
thioxanthone library. 

Since the diaryl ketone synthesis proceeded leaving a wide 
variety of transformable functional groups unreacted by virtue of 
mild reaction conditions, a wide variety of multisubstituted 
benzo[b]thiophenes 11, 12, 14, and 15 were easily prepared 
through aryne reactions and C–S transformations (Figure 5A).[19] 
Indeed, we succeeded in the synthesis of naphthothiophene 11 
and triazole-fused benzothiophene 12 via the generation of 
thienobenzyne VI at the o-iodoaryl triflate moiety and following 
[2+4] and [2+3] cycloadditions without damaging the carbonyl 
groups.[9b,9c,20,21] Furthermore, the remarkable transformability of 
the methylthio group accomplished C–C bond-forming 
reactions.[22,23] For example, diaryl ketone 14 was prepared by 
direct cross-coupling with 4-methylpyridine (13) using a 
palladium–NHC precatalyst.[23d] Additionally, S-methylation and 
palladium-catalyzed phenylation of the resulting sulfonium salt 
also proceeded to provide diaryl ketone 15 in good yield.[23b] 
These results clearly showed that diverse benzo[b]thiophenes 
can be synthesized by the combination of the diaryl ketone 
synthesis through the C–F cleavage, versatile transformations of 
aryne intermediates, and cross-coupling reactions. 

In summary, we have developed a useful synthetic method of 
diary ketones from benzotrifluorides through C–F cleavage, 
where a variety of transformable functional groups were tolerated 
under mild conditions. Since the trifluoromethyl group is a robust 
electron-withdrawing C1 unit, the advantages of the diaryl ketone 
synthesis were shown by preparing highly functionalized 
thioxanthones and benzo[b]thiophenes in a modular synthetic 
manner. Further studies to clarify the detailed reaction 
mechanism and expand the scope of the diaryl ketones involving 
cyclic ketones via intramolecular reactions are currently underway. 
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An efficient synthetic method of aromatic ketones through C–F cleavage of 
trifluoromethyl group is disclosed. The high functional group tolerance of the 
transformation and the remarkable stability of trifluoromethyl group in various 
reactions enabled multisubstituted aromatic ketone synthesis in an efficient route 
involving useful transformations such as ortho-lithiation, aryne chemistry, and 
cross-couplings. 
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