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Abstract 

Six different barbituric acid derivatives using ethyl, propyl, butyl, pentyl, hexyl and 

heptyl groups as hydrophobic substituents were prepared. Molecular dynamics 

simulation was carried out to study the effect of different carbon chain lengths on the 

aggregation-induced emission process. Among the compounds, the CB-5 containing a 

hexyl substituent exhibited the strongest Aggregation induced emission (AIE) effect, 

not the CB-6 with longest carbon chain. The aggregates of CB-5 was used to detect the 

2, 4, 6-trinitrotoluene (TNT) in aqueous media, exhibiting a maximum quenching 

constant of 3.1×10
5 
M

-1
. The paper sensor based on CB-5 showed a superior sensitivity 

toward TNT both in vapor and solution. This provided a clear strategy for designing 

compounds that utilize the hydrophobic interaction of long-chain alkyl chains to 

enhance the AIE effect.  

Key words: Aggregation induced emission; Molecular dynamics simulation; 

Hydrophobic interaction; Alkyl chain length 
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1. Introduction 

Materials with aggregation induced emission (AIE) effect have attracted considerable 

research attention due to their enhanced fluorescence intensity at solid state [1, 2]. 

Several mechanisms have been proposed to explain the AIE phenomenon, such as 

restricted intramolecular rotation (RIR) [3, 4]. According to the RIR mechanism, the 

channel of non-radiative decay of exciton was restained due to that the intramolecular 

rotation was restricted in aggregate of fluorophore molecules, thus, the emission 

intensity of the fluorophore was enhanced. The intermolecular actions in the aggregate, 

such as hydrophobic interaction, intermolecular electrostatic attraction, et al, have great 

impact on the RIR mechanism [5, 6].  

The substituent group of alkyl has complex effect on the intermolecular action, which 

provides the flexibility, large steric hindrance for the molecule. In aqueous medium, the 

alkyl chain exhibits hydrophobic interaction between molecules. All these features 

contributes to the intermolecular action in the aggregate, which may have great 

influence on the the AIE effect by affecting the RIR mechanism. Several research about 

the effect of alkyl groups on the fluorescence have been reported [7-9]. Chen's team 

found that, as the length of the alkyl chain increases, the steric hindrance of the 

molecules increased and the π-π stacking of intermolecular was hindered, thus the 

spectral shift increased and the color transition temperature decreased [10]. Wei's group 

discussed the effect of alkyl length on mechanofluorochromic. As the length of the 

alkyl chain increases, the degree of bending and deformation of the alkyl group is 

higher, and the crystallinity of mechanofluorochromic compounds is destroyed, 
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therefore the micro-morphology of aggregate remains almost unchanged before and 

after the grinding, which weakens the property of mechanofluorochromic [11]. These 

reports mainly discussed about the influence of the flexibility and steric hindrance of 

alkyl groups on the optical properties of the AIE aggregate. However, the effect of 

hydrophobic interaction of the alkyl group on the AIE activity of aggregate in aqueous 

medium have seldom been reported. 

In this work, a series of barbituric acid derivatives by conjugating carbazole and 

barbituric acid have been synthesized, in which, various alkyl substituents were 

attached on the N-atom of carbazole (Scheme 1). In these compounds, two kinds of 

intermolecular actions may exist: i) the intermolecular electrostatic attraction between 

the carbazole and the barbituric acid moieties is due to that the carbazole moiety is 

electron-rich aromatic ring and the barbituric acid moiety is electron-deficient; ii) the 

alkyl chain struction of the compounds induce the intermolecular hydrophobic action. 

To study the relationship between AIE effect and molecule structure will provide useful 

strategy for designing molecule with excellent AIE effect. Additionally, one of the 

compounds synthesized in this work (CB-5) showed excellent sensing performance to 

2,4,6-trinitrotoluene (TNT), which may be a promising candidate for TNT sensor. 

2. Experimental section 

2.1. Materials 

1,3-dimethyl-barbituric acid, Carbazole, 1-Bromoethane, 1-Bromopropane, 

1-Bromobutane, 1-Bromopentane, 1-Bromohexane and 1-Bromononane (A.R., 99%) 

were purchased from Energy, and which were used without further purification. DMF 
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was dried sequentially by molecular sieves (4 Å), CaH2, odium sand and distilled prior 

to use. 

2.2. Measurements 

Emission spectra, UV-vis spectra, 
1
H NMR (600 MHz) spectra were recorded by 

F-4600 fluorescence spectrophotometer, UV-2500 spectrometer and AVANCE II 400 

spectrometer, respectively. FT-IR spectra were recorded by a Nicolet 380 spectrometer. 

2.3. Synthesis 

The six compounds in this paper 

1,3-dimethyl-5-((9-ethyl-9H-carbazol-3-yl)methylene)pyrimidine-2,4,6-trione (CB-1), 

1,3-dimethyl-5-((9-propyl-9H-carbazol-3-yl)methylene)pyrimidine-2,4,6-trione (CB-2), 

1,3-dimethyl-5-((9-butyl-9H-carbazol-3-yl)methylene)pyrimidine-2,4,6-trione (CB-3), 

1,3-dimethyl-5-((9-amyl-9H-carbazol-3-yl)methylene)pyrimidine-2,4,6-trione (CB-4), 

1,3-dimethyl-5-((9-hexyl-9H-carbazol-3-yl)methylene)pyrimidine-2,4,6-trione (CB-5), 

1,3-dimethyl-5-((9-nonyl-9H-carbazol-3-yl)methylene)pyrimidine-2,4,6-trione (CB-6) 

were successfully synthesized. The structure of all compounds was proved by 
1
H NMR 

spectra and FT-IR spectra. The synthesis of compounds (1) and (2) in Scheme 1 were 

according to ref. [12]. 
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Scheme 1 Synthetic routes of CB-1, -2, -3, -4, -5 and -6. 

Synthesis Procedure: A mixture of compound (2) (3 mmol) and 

1,3-dimethylbarbituric acid (3 mmol) in ethanol (10 ml) was refluxed for 4 hours, the 

filtrate was concentrated under reduced pressure and further purified by column 

chromatography (Ethyl acetate: petroleum ether =1:5; Yield: 90%).  

CB-1: 
1
H NMR (400 MHz, Chloroform-d) δ 9.28 (s, 1H), 8.81 (s, 1H), 8.55 (d, J = 8.8 

Hz, 1H), 8.22 (d, J = 7.8 Hz, 1H), 7.59-7.51 (m, 1H), 7.47 (dd, J = 8.5, 5.1 Hz, 2H), 

7.36 (t, J = 7.5 Hz, 1H), 4.43 (q, J = 7.3 Hz, 2H), 3.47 (s, 6H), 1.50 (t, J = 7.2 Hz, 3H) 

(Fig. S1). FT-IR (KBr): 3065 cm
-1 

(=C-H), 1667 cm
-1 

(C=O) (Fig. S2). 

CB-2: 
1
H NMR (400 MHz, Chloroform-d) δ 9.29 (s, 1H), 8.81 (s, 1H), 8.54 (d, J = 8.9 

Hz, 1H), 8.22 (d, J = 7.7 Hz, 1H), 7.54 (t, J = 7.7 Hz, 1H), 7.47 (dd, J = 8.6, 3.3 Hz, 

2H), 7.35 (t, J = 7.5 Hz, 1H), 4.33 (t, J = 7.1 Hz, 2H), 3.47 (s, 6H), 1.96 (p, J = 7.5 Hz, 

2H), 1.01 (t, J = 7.4 Hz, 3H) (Fig.S3). FT-IR (KBr): 3005 cm
-1 

(=C-H), 1665 cm
-1

 

(C=O) (Fig. S4). 

CB-3: 
1
H NMR (400 MHz, Chloroform-d) δ 9.28 (s, 1H), 8.81 (s, 1H), 8.55 (d, J = 8.8 

Hz, 1H), 8.21 (d, J = 7.8 Hz, 1H), 7.61-7.33 (m, 4H), 4.36 (s, 2H), 3.47 (s, 6H), 1.90 (p, 

J = 7.4 Hz, 2H), 1.43 (q, J = 7.4 Hz, 2H), 0.98 (t, J = 7.3 Hz, 3H) (Fig. S5). FT-IR 
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(KBr): 2899 cm
-1

 (=C-H), 1671 cm
-1

 (C=O) (Fig. S6). 

CB-4: 
1
H NMR (400 MHz, Chloroform-d) δ 9.28 (s, 1H), 8.81 (s, 1H), 8.55 (d, J = 8.8 

Hz, 1H), 8.21 (d, J = 7.8 Hz, 1H), 7.62-7.33 (m, 4H), 4.35 (t, J = 7.2 Hz, 2H), 3.47 (s, 

6H), 1.91 (d, J = 7.5 Hz, 2H), 1.44 - 1.31 (m, 4H), 0.91 (d, J = 6.8 Hz, 3H) (Fig. S7). 

FT-IR (KBr): 2900 cm
-1

 (=C-H), 1677 cm
-1

 (C=O) (Fig. S8). 

CB-5: 
1
H NMR (400 MHz, Chloroform-d) δ 9.28 (s, 1H), 8.81 (s, 1H), 8.55 (d, J = 8.9 

Hz, 1H), 8.21 (d, J = 7.8 Hz, 1H), 7.62 - 7.33 (m, 4H), 4.35 (t, J = 7.3 Hz, 2H), 3.47 (s, 

6H), 2.06 - 1.77 (m, 2H), 1.48 - 1.24 (m, 6H), 0.88 (t, J = 6.9 Hz, 3H) (Fig. S9). FT-IR 

(KBr): 2900 cm
-1

 (=C-H), 1665 cm
-1

 (C=O) (Fig. S10). 

CB-6: 
1
H NMR (400 MHz, Chloroform-d) δ 9.28 (s, 1H), 8.81 (s, 1H), 8.55 (d, J = 8.9 

Hz, 1H), 8.21 (d, J = 7.8 Hz, 1H), 7.47 (d, J = 3.8 Hz, 4H), 4.34 (t, J = 7.2 Hz, 2H), 

3.47 (s, 6H), 2.05 - 1.81 (m, 2H), 1.31 (d, J = 45.6 Hz, 12H), 0.87 (t, J = 6.7 Hz, 3H) 

(Fig. S11). FT-IR (KBr): 2988 cm
-1 

(=C-H), 1666 cm
-1

 (C=O) (Fig. S12). 

3. Results and discussion 

3.1 Optical properties 

 

Fig. 1 UV-visible absorption spectra of CB-1, -2, -3, -4, -5 and -6  

in THF solution (10
-4 

M) 
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The absorption spectra of the six barbituric acid derivatives are shown in Fig. 1. The 

absorption peaks in the wavelength range from 400 to 500 nm was attributed to the 

intramolecular charge transfer (ICT) from the carbazole unit to the barbituric acid unit, 

and those in the range between 250 to 350 nm are belong to π-π* electronic transition 

[13]. Additionally, the absorption peaks of the six compounds are basically similar to 

each other, indicating that the length of the hydrocarbon chains on N-atom does not 

change the conjugated system of the barbituric acid derivatives in pure THF. It is also 

noted that the absorption intensity is affected by the length of the alkyl chain, the trend 

was that as the alkyl chain grows, the absorption intensity decreases. The reason may be 

that as the length of alkyl chain grows, the host molecule is entangled by alkyl chain, 

which reduces the absorbance. However, it is also found that CB-5 exhibits the highest 

absorption intensity, which may be due to the special structure of CB-5 itself. 

3.2 AIE activity 
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Fig. 2 (a): Fluorescence spectra of CB-1, -2, -3, -4, -5, and -6 in different water content 

(fw) of THF/H2O mixture (10
-4 

M); (b): emission peak (red) and emission intensity (blue) 

relative to the water fraction in the mixture. 

 

All the compounds exhibited weak fluorescence intensity in pure THF. However, 

when in the mixed THF/H2O solvents, they all emitted the enhanced fluorescence, 

indicating all the compounds were AIE active. The fluorescence spectra of these 

compounds were measured in THF/H2O by changing the water fraction (fw), as shown 

in Fig. 2 (a). Moreover, the curves of fluorescence peak wavelength (λem) verse fw, as 

well as those of fluorescence peak intensity (Iem) verse fw, were analyzed in Fig. 2 (b). 
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All the six compounds are well dissolved in THF. In pure THF, the free rotation of 

certain bonds of the molecule dissipates the excited state energy, making the 

fluorescence weak. As water is added to the THF, the compounds gradually aggregates 

in the mixed solvent, due to that water is poor solvent for these compounds. Meanwhile, 

the strong interaction between the molecules in the aggregates restricted the free 

rotation of the chemical bonds in the molecules, and suppressed the non-radiative 

transition channel, thus the fluorescence is enhanced. As shown in Fig. 2, the 

fluorescence intensity of CB-3, -4, -5 and -6 increases monotonously with the fw 

increasing. Moreover, the λem of the four compounds also exhibits monotonous 

increasing trend as the water fraction of THF/H2O mixture increased. These results 

indicates that interaction between molecules in the aggregates gradually enhanced, 

resulting in AIE enhancement and red shift of the fluorescence spectra. 

However, the changing trend of fluorescence intensity of CB-1 and -2 is complicated. 

When the fw increases from 0% to 70%, the fluorescence intensity increases with the fw 

increasing, accompanied by the red shift of λem. Because interaction between molecules 

in the aggregates gradually enhanced, resulting in AIE enhancement and red shift of the 

fluorescence spectra. When fw increases from 70% to 80%, the intensity of the 

fluorescence still rises, however, accompanied by a blue shift of λem. This result is due to 

the molecules aggregate in larger size with the fw of 70% to 80%, and the intramolecular 

micropolarity is lowered, leading to blue shift of λem [14, 15]. when fw ＞80%, the 

amorphous particles forms in solution leading to red shifted of λem.  
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Fig. 3 The AIE index of CB-1, -2, -3, -4, -5 and -6. 

 

The AIE index (IA/I0) is used to quantify the AIE activity, in which, IA is the 

maximum fluorescence intensity of the molecule aggregation in THF/H2O 

(0<fw<100%), while I0 is the fluorescence intensity when fw=0%. As shown in Fig. 3, 

the AIE index of CB-1, -2, -3, -4, -5 and -6 is 16, 20, 8, 5, 49 and 6, respectively. The 

AIE index of these compounds decreases in the following sequence: 

CB-5>CB-2>CB-1>CB-3>CB-6~CB-4. Obviously, the compound CB-5 shows the 

strongest AIE activity.  

The Fluorescence quantum yields of aggregate state are determined relative to 

coumarin 307 in ethanol solution as a quantum yield standard (ΦF (Fluorescence 

quantum yield) = 56%). The coumarin 307 is selected as a standard to study the ΦF 

due to its maximum absorption and emission wavelength (395 nm and 500 nm, 

respectively), which are close to the synthesized AIE compounds in this work. As 

shown in Table 1, the fluorescence quantum yield of these compounds in the 

aggregated state decreases in the following order: CB-5> CB-2> CB-1> CB-3> CB-6 
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~CB-4. Obviously, the CB-5 with the strongest AIE activity exhibites the highest 

fluorescence quantum yield in the aggregated state. 

 Table 1 The fluorescence quantum yield of all compounds in the aggregated state. 

 CB-1 CB-2 CB-3 CB-4 CB-5 CB-6 

Aggregates ΦF (%) 7.9 8.5 3.2 2.1 11.2 1.9 

 

As shown in Fig. S13, at aggregate state, the average diameters of the 

nanoaggregates for CB-1~6 are 106.4, 103.2, 122.6, 142.5, 91.6 and 156.4 nm, 

respectively. The size of nanoaggregates in the aggregated state increases in the 

following order: CB-5< CB-2< CB-1< CB-3< CB-6 ~ CB-4. (Table 2). The results 

indicate that the size of CB-5 in the aggregated state is the smallest and the most 

tightly combined, which is confirmed by MD. The Hydrophobic and electrostatic 

interactions work together to restrict the rotation of certain bonds in CB-5, limit the 

non-radiative transition channels, and result in the strongest AIE activity and the 

highest fluorescence quantum yield. These data indicate that the enhanced emission of 

compounds is related to the formation of nanoaggregates. 

Table 2 Average diameter of nanoaggregates in the aggregated state of compounds. 

 CB-1 CB-2 CB-3 CB-4 CB-5 CB-6 

average diameters (nm) 106.4 103.2 122.6 152.5 91.6 156.4 

 

3.3 Aggregation structures from molecular dynamics simulations 

In order to better understand the relationship between the AIE index and the 

molecule structure, the molecular dynamics (MD) simulations were performed for the 
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six compounds through the Materials Studio software (Accelrys Inc). For each 

compound (CB-1, CB-2, CB-3, CB-4, CB-5, and CB-6), four molecules of each 

compound were randomly dissolved in 200 water molecules, respectively, to form 6 

different initial systems with the same cubic simulation lattice (x = 20.83 Å, y= 20.83 Å, 

and z= 20.83 Å). The simple point charge (SPC) model [16, 17], which can accurately 

describe the water solution environment [18], is adopted for all water molecules. 

The MD simulation was performed after charges and potentials were assigned to 

each atom. The long-range electrostatic interactions have been accounted for using the 

Ewald method. The total energy is written as a combination of valence terms including 

diagonal and off-diagonal cross-coupling terms and nonbond interaction terms, the 

coulombic and Lennard-Jones functions for electrostatic and van der Waals interactions 

(eq. 1).  

bonds angles dihedrals cross VDW elecE = E E E E E E    
                       (1) 

Where EVDW and Eelec are given by the eq. 2: 

9 6

non-bond VDW elec 2 3
ij ij i j

ij

ij ij ij

q q
E E E

r r r

 


    
                

 
             (2) 

The parameters for each like-site interaction are given by the COMPASS force field 

[19, 20]. The energies of the initial configurations for each system were minimized with 

the Smart Minimizer method. After the minimization, this simulations were equilibrated 

at constant temperature (298.15 K) and volume (NVT) for 10 ns. Atomic coordinates 

were saved for every 200ps. 
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Fig. 4 Molecular dynamics simulations were performed for CB-1, -2, -3, -4, -5 and -6 

different systems through the Materials Studio software (Accelrys Inc). 

 

The aggregation structures of the six compounds are shown in Fig. 4. For the 

aggregates of the compounds CB-1 and CB-2, the alkyl chains on the N-atom are 

localized in adverse ends of two neighbouring molecules, indicating there is no 

hydrophobic interaction between molecules, due to that alkyl chain on the N-atom is 

relatively short (C2H5 and n-C3H7 for CB-1 and CB-2, respectively). However, because 

the carbazole ring is an electron-rich aromatic ring, and the barbituric acid moiety is an 

electron-deficient six-membered ring, thus the two adjacent molecules are gathered 

together by the strong intermolecular electrostatic attraction which limits the rotation of 

the intramolecular bonds and leads to the strong AIE effect. As observed in Fig. 4, the 

molecular aggregation of CB-2 is more compact than that of CB-1, indicating the 
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intermolecular electrostatic attraction in the compound CB-2 is stronger. Therefore, 

CB-2 exhibits larger AIE index than CB-1. 

Similarly, the alkyl chain on the N-atom in CB-3 and CB-4 are also localized in 

different directions, implying no strong hydrophobic interaction between molecules. 

The intermolecular electrostatic attraction between the carbazole ring and the barbituric 

acid ring also exists in the aggregates, resulting in the AIE effect of both CB-3 and 

CB-4. However, because the space volumes of the alkyl chain on the N-atom (n-C4H9 

and n-C5H11 for CB-3 and CB-4, respectively) are larger than those of CB-1 and CB-2, 

which hinders the formation of closer packing between molecules CB-3 and CB-4, thus 

CB-3 and CB-4 show relatively small AIE index than that of both CB-1 and CB-2. 

In CB-5 aggregates, the alkyl chains (n-C6H13) of three molecules closely gather each 

other, indicating strong hydrophobic interaction. Besides, there exists electrostatic 

attraction between the carbazole and the barbituric acid. These two kinds of 

intermolecular actions work together to limit the rotation of certain bonds in the 

molecules, and result in the strongest AIE effect of the six compounds. 

For compound CB-6, the aggregated form of the N-alkyl chain (n-C9H19) is relatively 

lower relative to CB-5, but there is also a weaker hydrophobic interaction. The 

backbones of the four molecules in CB-6 distribute in different way and are far from 

each other, implying no electrostatic attraction between molecules. Therefore, the 

intermolecular actions of CB-6 are much weaker relative to those of CB-5, due to that 

n-C9H19 in CB-6 is a larger alkyl chain than n-C6H13 in CB-5, which may hinder the 

close packing of molecules. In result, the relative loose aggregation of CB-6 explains 

the lower AIE index relative to CB-5. 

3.4 Detection of nitroaromatic explosives 
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Fig.5 Fluorescence quenching experiment of TNT in solution of CB-5 (fw = 90%). 

 

The aggregation of CB-5 in THF/water (fw=90%) exhibits excellent sensing 

performance to TNT. As shown in Fig. 5, with the TNT concentration increasing, the 

fluorescence intensity of CB-5 aggregation gradually decreases. What is noteworthy is 

that λem of CB-5 unchanged during TNT addition, meaning that no other compounds 

was formed. 

A quenching process can be expressed by Stern-Volmer relationship I0/I = 1 + Ksv [Q] 

[21], where, I0 and I are the initial and final fluorescence intensity after the addition of 

TNT respectively, [Q] is the concentration of TNT, and KSV is the quenching constants. 

The plots of I0/I -1 versus [Q] are shown in Fig.6. A good relationship between I0/I -1 

and [Q] was obtained with [Q] increasing from 3.2 to 4.4×10
-4 

M, which gives the KSV 

value of 3.1×10
5 

M
-1

. The detection limit is an important parameter for evaluating 

whether a sensor is sensitive. According to the formula LOD = 3S/Ksv, the limit of 

detection (LOD) of CB-5 in fw=90% mixture solution for TNT is 0.329 ppb [22, 23].  
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Fig. 6 Fluorescence quenching Stern-Volmer curve of CB-5 with TNT. 

 

As we know, most of the sensors that detect TNT are based on gas detection. It is still 

of great importance to detect NACs in wastewater, due to that the residues of TNT and 

DNT in the environment will cause serious health problems in both animals and 

humans [24-25]. Because the poor water solubility of most organic sensing material, 

relatively few fluorescent sensors have been reported for the detection of TNT in water 

solution. However, some typical AIE sensing materials, which emit strong fluorescence 

as micro aggregate in aqueous media, have been reported for detecting TNT (Table 3). 

As found, the Ksv of most of the sensing materials in Table 3 is at the order of 10
4 

Ksv/M
-1

 [26-31]. Exceptionally, the Ksv of CB-5 is among the highest value with the 

order of magnitude of 10
5
 Ksv /M

-1
. This results indicate the aggregation of CB-5 takes 

superior performance in detecting TNT in aqueous medium.  

Table 3 Performance comparison of chemosensors reported for TNT  
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Receptor Analyte 

The 

type of 

sensor 

Detecting 

system 

Ksv/M
-1

 

Limit of 

detection 

(LOD) 

Ref. 

 

TNT solution 

THF-H2O 

mixtures 

 (1 : 9 v/v) 

8.5 × 10
4
 7.4 μM [26] 

 

TNT solution 

THF-H2O 

mixtures 

 (1 : 9 v/v) 

0.8 × 10
4
  [27] 

 

TNT solution 

THF-H2O 

mixtures  

(0.5 : 9.5 v/v) 

1.37 × 10
5
 0.22 ppb [28] 

 

TNT solution 

THF-H2O 

mixtures 

 (0.5 : 9.5 v/v) 

4.45 × 10
3
 0.14 ppb  [29] 

 

TNT solution 

THF-H2O 

mixtures 

 (2 : 8 v/v) 

6.0 × 10
4
 0.25 ppb [30] 

 

TNT solution 

THF-H2O 

mixtures  

(0.5 : 9.5 v/v) 

13 × 10
5
 0.03 μM [31] 
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TNT solution 

THF-H2O 

mixtures 

(1 : 9 v/v) 

3.1×10
5
 0.33 ppb 

This 

work 

 

Generally, the mechanisms of fluorescence quenching include Förster resonance 

energy transfer (FRET) and photoinduced electron transfer (PET). To determine which 

mechanism plays the main role of quenching process, both the absorption spectrum of 

TNT and the emission spectrum of CB-5 are compared, as shown in Fig. 7. Observably, 

there is no overlap between these two spectra, meaning no FRET mechanism to 

responsible for the quenching. Therefore, the fluorescence quenching of CB-5 are 

mainly attributed to PET mechanism [32-34]. 

 

Fig. 7 Absorption spectrum of TNT and emission spectrum of CB-5. 

 

As shown in Fig. S14, the energy levels and electron cloud distributions of the 

HOMO and LUMO of TNT and CB-5 were calculated by the B3LYP/6-325 31G (d) 
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program. When the excited CB-5 is exposed to TNT, the excited electrons are 

transferred from the LUMO of CB-5 to the LUMO of TNT. The main driving force of 

PET is the difference between the LUMO value of CB-5 and TNT, which is 1.029 V. 

Paper-based sensors have attracted great interest because their economics and easy of 

preparation [35, 36]. Hence, the Paper-based sensor was obtained by soaking a round 

Whatman filter paper in a solution of CB-5 (fw = 90 % CCB-5=10
-4

M) with a following 

drying (Fig. 8A). A round glass bottle containing TNT powder, which provided 

saturated TNT vapor, was covered with the paper-based sensor. After standing for five 

minutes, the paper-based sensor were photographed, as shown in Fig. 8B. As observed, 

a quenched spot corresponding to the bottle appeared, indicating the paper sensor is 

sensitive to TNT vapor. Another paper sensor was soaked into a solution of TNT in 

THF (CTNT=10
-4 

M), as observed, the whole paper sensor was quenched thoroughly (Fig. 

8C). These results showed that this paper sensor base on CB-5 can be used to detect the 

TNT vapor.  

 

Fig. 8 A: Pape sensor based on CB-5 (fw = 90 %); B: paper sensor quenched by TNT 

vapor; C: Paper sensor after soaked in solution of TNT in THF. 
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4. Conclusion 

All the six barbituric acid derivatives with different alkyl substituents show AIE 

effect. The alkyl substituents play important role in forming aggregates of the 

compounds. In the compounds with short alkyl substituents (from CB-1 to CB-4), the 

hydrophobic interaction was negligible, while the electrostatic attraction between the 

carbazole and the barbituric acid moieties made molecules closely aggregated and 

resulted in the AIE activity. In the compounds with long alkyl substituents (CB-5 and 

CB-6), the hydrophobic interaction was remarkable, and steric hindrance of longer alkyl 

substituents hindered the closely aggregation of the CB-6. CB-5 exhibited the highest 

AIE index of 49, due to its strong hydrophobic interaction by n-hexyl substituent and 

the good intermolecular electrostatic attraction between the carbazole and the barbituric 

acid moieties. Based on the enhanced AIE effect, CB-5 showed excellent sensing 

performance in detecting TNT, which may be used as chemosensor for TNT. 

Additionally, this work revealed the effect of alkyl length on the properties of AIE, 

providing a reasonable strategy for the design of AIE molecule. 
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Graphical Abstract 

 

Molecular dynamics simulation exhibited that the hydrophobic interaction of 

the alkyl chain formed aggregates and produced a strong AIE effect. The 

aggregate CB-5 showed a superior performance in detecting TNT in aqueous 

media and vapor. 
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Highlights:  

 Six novel AIE barbituric acid derivatives were designed. 

 Visualization of AIE process was illustrated by molecular dynamics simulation. 

 The hydrophobic interaction of the alkyl chain formed aggregates. 

 The CB-5 exhibited a superior performance in detecting TNT in aqueous media. 

 The paper sensor based on CB-5 showed a superior sensitivity toward TNT. 
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