CHEMISTRY LETTERS, pp. 1141-1144, 1980.

REDUCTIVE COUPLING OF AROMATIC ALDEHYDES BY OCTACARBONYL DIFERRATE

Keiji ITO,* Saburo NAKANISHI,** and Yoshio OTSUJI**
*Department of Industrial Chemistry, Osaka Prefectural Technical
College, Saiwaicho, Neyagawa, Osaka 572
**Department of Applied Chemistry, College of Engineering,
University of Osaka Prefecture, Mozu-Umemachi, Sakai, Osaka 591

The reaction of aromatic aldehydes with $Fe(CO)_5$ or $Fe_3(CO)_{12}$ in pyridine gives the corresponding 1,2-diaryl-1,2-ethanediols as major products in good yields. A reactive species of this reaction is octacarbonyl diferrate $[Fe_2(CO)_8]^{2-}$.

Recently, mononuclear carbonyl ferrates such as $[Fe(CO)_4]^{2-}$ and $[HFe(CO)_4]^{-}$ have been proved to be useful reagents in organic synthesis.^{1,2)} However, the synthetic utility of polynuclear carbonyl ferrates have little been developed.³⁾ Previously, we reported that a polynuclear ferrate, which was prepared from $Fe_3(CO)_{12}$ and pyridine N-oxide, effectively promotes the reductive coupling of benzylic and allylic halides.⁴⁾ We now report that a dinuclear carbonyl ferrate, which is prepared by treating iron carbonyls with pyridine,⁵⁾ induces the reductive coupling of aromatic aldehydes to give the corresponding 1,2-diaryl-1,2-ethanediols.⁶⁾

A solution of $\operatorname{Fe}_3(\operatorname{CO})_{12}$ (2.0 mmol) and benzaldehyde [1a] (20 mmol) in pyridine (10 ml) was heated at 80°C under N₂ atmosphere for 1.5 h. Water (10 mmol) was added, and the mixture was heated again at 80°C for 18.5 h and then treated with 6 M hydrochloric acid (10 ml) at room temperature for 30 min.⁷⁾ The resulting mixture was extracted with benzene (10 ml). The extract was washed with water and dried over Na₂SO₄. Upon adding petroleum ether to the extract, 1,2-diphenyl-1,2-ethanediol [2a] (5.1 mmol) precipitated as crystals which were separated by filtration. The filtrate was concentrated and chromatographed on silica gel. Elution with benzene gave recovered [1a] (7.1 mmol). Subsequent elution with benzene-ether afforded [2a] (0.72 mmol) and benzyl alcohol [3a] (0.78 mmol). The total yield of [2a] based on the reacted [1a] was 91%, and that based on Fe₃(CO)₁₂ used was 294%.

$$\begin{array}{c} \begin{array}{c} 1) \quad \text{Fe}\left(\text{CO}\right)_{5}, \quad \text{Fe}_{3}\left(\text{CO}\right)_{12}/\text{Pyridine} \\ \hline \\ \text{RC}_{6}\text{H}_{4}\text{CHO} & & \\ \hline \\ 2) \quad \text{H}_{2}\text{O} \text{ and } \text{H}_{3}\text{O}^{+} & \\ \hline \\ \text{[la-f]} & & \\ \text{a: R=H, b: } \text{R=o-CH}_{3}, \quad \text{c: } \text{R=m-CH}_{3}, \quad \text{d: } \text{R=p-CH}_{3}, \quad \text{e: } \text{R=p-Cl}, \quad \text{f: } \text{R=p-CH}_{3}\text{O} \end{array}$$

Run	Aromatic	Iron	Time	Products,	Yield % ^{b)}	
	Substrate	Carbonyl	(h)	[2]	[3]	
1	[la]	Fe(CO) ₅	14	88 (88)	11 (5.5)	
2	[la]	Fe ₃ (CO) ₁₂	20 ^{C)}	294 (91)	39 (6.0)	
3	[1b]	Fe (CO) 5	20 ^{C)}	82 (81)	22 (11)	
4	[1b]	Fe ₃ (CO) ₁₂	20 ^{C)}	274 (80)	89 (14)	
5	[lc]	Fe (CO) 5	20 ^{C)}	76 (76)	25 (13)	
6	[lc]	Fe ₃ (CO) ₁₂	20 ^{C)}	233 (72)	90 (13)	
7	[1d]	Fe (CO) 5	20 ^{C)}	85 (79)	34 (16)	
8	[1d]	Fe ₃ (CO) ₁₂	20 ^{C)}	252 (78)	122 (19)	
9	[le]	Fe (CO) 5	20	77 (74)	26 (13)	
10	[le]	Fe ₃ (CO) ₁₂	20	262 (84)	63 (10)	
11	[1f]	Fe (CO) 5	20 ^{C)}	31 (95)		
12	[1f]	Fe ₃ (CO) ₁₂	20 ^{C)}	134 (96)		
13	C6H5COCH3	$Fe_{3}(CO)_{12}$	20	no reaction		
14	C ₆ H ₅ COC ₆ H ₅	Fe ₃ (CO) ₁₂	20	no reaction		

Table 1. Reaction of Aromatic Aldehydes and Ketones with Iron Carbonyls in Pyridine^{a)}

a) A solution of $Fe(CO)_5$ (6.0 mmol) or $Fe_3(CO)_{12}$ (2.0 mmol) and a substrate (20 mmol) in pyridine (10 ml) was heated at 80°C for 20 h except Run 1. b) The yields based on the iron carbonyl used, and those in parentheses based on aldehydes reacted. c) A small amount of water (10 mmol) was added after heating the solution at 80°C for the following periods of time; 1.5 h in Runs 2 and 8, and 5 h in the other Runs.

Similar treatment of substituted benzaldehydes [lb-f] with $\text{Fe}_3(\text{CO})_{12}$ in pyridine gave the corresponding 1,2-diaryl-1,2-ethanediols [2b-f] as major products and the corresponding benzyl alcohols [3b-f] as minor products. The reaction of [la-f] with Fe(CO)₅ in pyridine also yielded the same products, [2a-f] and [3a-f], but with lower efficiency. However, no reaction occurred when acetophenone and benzophenone were treated with Fe₃(CO)₁₂ in pyridine under similar conditions. The results are summarized in Table 1.

In order to elucidate a mechanistic feature of these reactions, the reactions of [la] with $Fe(CO)_5$ and $Fe_3(CO)_{12}$ in pyridine were conducted under the similar conditions as above. Then, amounts of [2a] produced were determined at appropriate time intervals by VPC analysis of the reaction mixture. The results are shown in Fig. 1. The induction period in the reaction using $Fe_3(CO)_{12}$ was much shorter than that in the reaction using $Fe(CO)_5$. However, amounts of [2a] produced per one Fe atom of each iron carbonyl were approximately equal for both $Fe_3(CO)_{12}$ and $Fe(CO)_5$; that is, one molar amount of [2a] was produced from one atom equiv of Fe in both cases.

Evolution of CO was observed even when pyridine solutions of Fe(CO)5 and

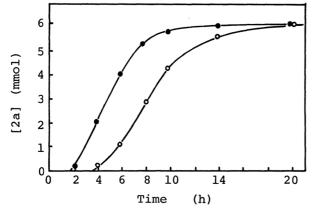
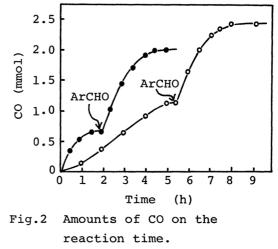
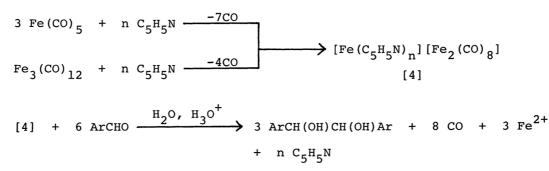



Fig.l Rates of formation of [2a]. A mixture of [1a] (20 mmol) and $Fe(CO)_5$ (6 mmol) or $Fe_3(CO)_{12}$ (2 mmol) in pyridine (10 ml) was heated at 80°C for 5 h in the case of $Fe(CO)_5$ and for 1.5 h in the case of $Fe_3(CO)_{12}$, and water (10 mmol) was added. Then, the mixture was heated at 80°C. •: $Fe(CO)_5$, •: $Fe_3(CO)_{12}$.



Fe(CO)₅=0.48 mmol, Fe₃(CO)₁₂=0.16
mmol, Pyridine=5 ml, [la]=10 mmol.
 •: Fe(CO)₅, •: Fe₃(CO)₁₂.

 $Fe_3(CO)_{12}$ were heated at 80°C in the absence of [la]. After evolution of CO ceased, further evolution of CO commenced as soon as [la] was added to the above mixtures. Amounts of CO evolved during these reactions are shown in Fig.2. In the case of Fe(CO)₅, approximately 7/3 molar equiv of CO evolved from one molar amount of Fe(CO)₅. While, in the reaction of Fe₃(CO)₁₂, approximately 4 molar equiv of CO evolved from one molar amount of Fe₃(CO)₁₂. On the other hand, amounts of CO evolved after the addition of [la] and its evolution rates were approximately equal for Fe(CO)₅ and Fe₃(CO)₁₂.

To isolate a key intermediate of the reaction, $\text{Fe}_3(\text{CO})_{12}$ (2.0 mmol) was heated in pyridine (10 ml) at 80°C for 1 h, and then the mixture was treated with a CH_2Cl_2 solution of bis(triphenylphosphine)iminium chloride [(Ph₃P)₂N]Cl (2.44 mmol). Work-up of this mixture gave the dinuclear ferrate complex [(Ph₃P)₂N]₂[Fe₂(CO)₈].⁸

From the above results, we presumed the reaction pathways of Scheme 1 for the reactions reported in this paper. The reactions of $Fe(CO)_5$ and $Fe_3(CO)_{12}$ with pyridine give the octacarbonyl diferrate [4]. The rate of formation of [4]

Scheme 1

is faster for $\text{Fe}_3(\text{CO})_{12}$ than for $\text{Fe}(\text{CO})_5$ (see Fig.2). Complex [4] induces the reductive coupling of aromatic aldehydes with concomitant oxidation of [4] to $\text{Fe}(\Pi)$ ions and evolution of CO. In the presence of water, [4] induces the reduction of aldehydes, giving benzyl alcohols as by-products. An active species of this reaction may be a hydrido complex of [4].⁹

On the contrary, disodium tetracarbonyl ferrate $Na_2Fe(CO)_4$, a mononuclear ferrate, was shown to react with aromatic aldehydes to give the corresponding benzyl benzoates.¹⁰⁾ The reactivity of the dinuclear ferrate is apparently different from that of the mononuclear ferrate.

References and Notes

- 1) J. P. Collman, Acc. Chem. Res., <u>9</u>, 209 (1976).
- 2) Y. Watanabe and Y. Takegami, Kagaku., <u>31</u>, 678 (1976); Y. Watanabe and Y. Takegami, Yuki Gosei Kagaku Kyokai Shi., <u>35</u>, 585 (1977), and references cited therein.
- 3) J. P. Collman, R. G. Finke, P. L. Matlock, R. Wahren, R. G. Komoto, and J. I. Brauman, J. Am. Chem. Soc., <u>100</u>, 1119 (1978), and references cited therein.
- 4) S. Nakanishi, T. Oda, T. Ueda, and Y. Otsuji, Chem. Lett., 1978, 1309 .
- 5) W. Hieber and R. Werner, Chem. Ber., <u>90</u>, 286 (1957); W. Hieber and N. Kahren, ibid., 91, 2234 (1958).
- 6) Recently, it has been demonstrated that the reductive coupling of aldehydes can also be effected by low-valent titanium reagents: E. J. Corey, R. L. Danheiser, and S. Chandrasekaran, J. Org. Chem., <u>41</u>, 260 (1976), and references cited therein.
- 7) When [la] was treated with Fe₃(CO)₁₂ in pyridine at 80°C for a longer period of time (20 h) in the absence of water, benzoin and [2a] were obtained in a 3:1 ratio in the total yield of 270% based on Fe₃(CO)₁₂ used, together with a small amount of [3a].
- 8) The following analytical and spectral data were obtained for [(Ph₃P)₂N]₂[Fe₂(CO)₈]. Found: C, 67.78; H, 4.27; Fe, 7,99; N, 1.83%. Calcd. for C₈₀H₆₀Fe₂N₂O₈P₄: C, 68.00; H, 4.28; Fe, 7.91; N, 1.98%. IR (KBr), 1930 cm⁻¹, 1910 cm⁻¹, 1870 cm⁻¹.
- 9) Aromatic aldehydes are reduced by hydrido ferrates to give the corresponding alcohols: H. W. Sternberg, R. Markby, and I. Wender, J. Am. Chem. Soc., 78, 5704 (1956); H. W. Sternberg, R. Markby, and I. Wender, ibid., 79, 6116 (1957).
- 10) M. Yamashita, Y. Watanabe, T. Mitsudo, and Y. Takegami, Bull. Chem. Soc. Jpn., 49, 3597 (1976).

(Received June 13, 1980)

1144