A Short-Step Synthesis of (2*S*,3*R*)-3-Hydroxy-3-methylproline, a Component of Polyoxypeptins, Using a Tandem Michael–Aldol Reaction and Optical Resolution

Kazuishi Makino, Tatsuya Suzuki, and Yasumasa Hamada*

Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522

Received December 4, 2003; E-mail: hamada@p.chiba-u.ac.jp

A short-step synthesis of (2S,3R)-3-hydroxy-3-methylproline, a component of polyoxypeptins, using a tandem Michael-aldol reaction followed by its optical resolution using (-)-cinchonidine has been achieved.

Polyoxypeptins A (1) and B (2) are novel 19-membered cyclic hexadepsipeptides isolated from the culture broth of Streptomyces species by Umezawa and co-workers in 1998 (Fig. 1).¹ They are known to show strong anticancer activity through the induction of apoptosis against apoptosis-resistant human pancreatic adenocarcinoma AsPC-1 cells. In addition to their potent biological activities, the structural complexity containing a novel (2S,3R)-3-hydroxy-3-methylproline (3, HOMePro) and other unusual amino acids have led several groups.² including ours,³ to investigate the total synthesis of polyoxypeptins and structurally related cyclodepsipeptides. We and others have already reported the stereoselective synthesis of HOMe-Pro.^{3e} However, these methods require multi steps and give low overall yields, and there is still need of a concise method for large-scale production of this unique component. Recently, we explored a concise synthetic route to racemic HOMePro utilizing a tandem Michael-aldol reaction (Scheme 1).⁴ The reaction was originally reported by Terry in 1962^{5a} and subsequently Lash in 1991^{5b} as a part of pyrrole synthesis. However, no further investigation on the stereoselectivity and/or the transformation to optically active HOMePro derivatives was made. Herein, we describe a short-step synthesis of (2S,3R)-3-hydroxy-3-methylproline from N-tosylglycine esters through optical resolution using (-)-cinchonidine.

Fig. 1. Structure of polyoxypeptins.

Results and Discussion

Our synthetic plan for racemic HOMePro is shown in Scheme 1. The key reaction is the diastereoselective construction of the multi-substituted pyrrolidine ring in a single step using a tandem Michael-aldol reaction between N-protected glycine ester and 3-buten-2-one. We first searched for this type of reaction under several conditions utilizing a phase-transfer catalyst or a combination of various Lewis acids and bases. All attempts failed, however, the reaction progressed in the presence of a base (Table 1). Thus, the reaction of N-tosylglycine ethyl ester and 3-buten-2-one using a catalytic amount of t-BuOK (0.2 eq) in t-BuOH-Et₂O afforded the Michael-aldol adducts as a diastereomeric mixture of 55:45 in 49% combined yield (entry 1). It is crucial to protect the amino group as a sulfonamide in this reaction (entry 2). To improve the chemical yield and diastereoselectivity, the effect of the ester group was examined. The use of N-tosylglycine t-butyl ester was effective in terms of yield (68%) but no diastereoselectivity was observed (entry 3). The introduction of a benzyl group to N-tosylglycine increased the product selectivity (5c:6c = 69:31) in good yield (entry 4). The treatment of 4c with 1,8-diazabicyclo[5.4.0]undec-7-ene^{5b} (DBU, 1.0 equivalent) instead of t-BuOK provided the Michael-aldol adducts with some improvement in yield (82% yield, 5c:6c = 69:31, entry 5). Furthermore, we observed that this reaction progressed with a catalytic amount of DBU (0.2 eq) with a similar yield (81%) and diastereoselectivity (5c:6c = 66:34, entry 6). We also investigated various solvents under conditions using DBU as a base. Besides THF, other solvents such as PhCH₃, DME, and 1,4-dioxane could be used for this reaction with similar results (en-

Table 1. Diastereoselective Construction of Pyrrolidine Ring Using Tandem Michael-Aldol Reaction

Entry	\mathbb{R}^1	\mathbb{R}^2	Base/eq	Solvent	Time/h	Yield/% ^{a)}	Ratio ^{b)}
							syn:anti
1	Ts	Et	t-BuOK (0.2)	t-BuOH–Et ₂ O	73	49	55:45
2	Boc	Et	t-BuOK (0.2)	t-BuOH–Et ₂ O	73	N.R. ^{c)}	_
3	Ts	t-Bu	t-BuOK (0.2)	t-BuOH–Et ₂ O	73	68	50:50
4	Ts	Bn	t-BuOK (0.2)	t-BuOH–THF	73	65	65:35
5	Ts	Bn	DBU (1.0)	THF	14	82	69:31
6	Ts	Bn	DBU (0.2)	THF	64	81	66:34
7	Ts	Bn	DBU (1.0)	CH_2Cl_2	25	75	39:61
8	Ts	Bn	DBU (1.0)	DMF	14	81	43:57
9	Ts	Bn	DBU (1.0)	PhCH ₃	22	74	66:34
10	Ts	Bn	DBU (1.0)	DME	22	82	60:40
11	Ts	Bn	DBU (1.0)	1,4-dioxane	24	81	63:37

a) Yields of isolated products. b) Determined by ¹H NMR. c) No reaction.

Scheme 2. Synthesis of rac-(2S*, 3R*)-3-hydroxy-3-methylproline.

Scheme 3. Optical resolution of rac-($2S^*$, $3R^*$)-3-hydroxy-3-methylproline.

tries 9–11). Interestingly, the use of CH₂Cl₂ or DMF gave the anti isomer **6c** as a major product (entries 7 and 8). With the Michael–aldol adducts in hand, we next examined the separation of their diastereomers and transformation to $(2S^*, 3R^*)$ -HOMePro (Scheme 2). After hydrogenolysis of the benzyl ester in quantitative yield, diastereomerical purification was achieved utilizing the difference in solubility in CHCl₃ between the syn and anti diastereomers. The syn isomer was more soluble in CHCl₃ than the anti isomer. Thus, after the mixture (syn:anti = 69:31) was suspended in CHCl₃ and heated to reflux, the insoluble solid was filtered off, and the filtrate was concentrated in vacuo to give the syn-rich mixture. This cycle was repeated five times to give the diastereomerically enriched (\pm)-**10** (syn:anti = 95:5) in 65% yield.

Deprotection of the tosyl group was attained by using sodium napthalenide in DME. After treatment of the crude mixture with Dowex 50WX4 ion exchange resin (H⁺ form) eluted with 2 M aqueous pyridine, the eluant was concentrated, and the residue was recrystallized from H₂O to give $(2S^*, 3R^*)$ -HOMePro as diastereomerically pure crystals.

Having established the short-step synthesis of 3-hydroxy-3methylproline as a racemic form, we next investigated the optical resolution using a chiral amine (Scheme 3). The resolution was carried out by dissolving 1 equivalent of racemic (\pm) -10 and 0.5 equivalent of (–)-cinchonidine in various solvents with heating, followed by precipitating by cooling. It seemed that the crystallization solvents were critical for the formation of molecular crystals. In a solvent such as MeOH, EtOH, Et₂O, THF, and acetone, no crystallization was observed. The solubility of (\pm) -10 in CH₃CN, CHCl₃, CH₂Cl₂, i-PrOH, n-PrOH, and hexane was too poor to be used as the solvent for the recrystallization. After a survey of several solvents, we found that partial optical resolution occurred with the use of ethyl acetate. The solids crystallized from ethyl acetate were collected by filtration and treated with 1 M hydrochloric acid to liberate (+)-10 ($[\alpha]_D^{23}$ +52.9 (c 0.52, CHCl₃), 61% ee) in 24% yield. The mother liquor containing the desired (2S,3R)-stereoisomer was washed with 1 M hydrochloric acid and evaporated in vacuo to yield (-)-10 ($[\alpha]_D$ -20.9 (c 1.1, CHCl₃), 24% ee) as solids in 76% yield. For further enantiomerical enrichment, (-)-10 was converted to β -lactone 12, which was recrystallized from ethyl acetate to give highly optically enriched (-)-12 with 97% ee in 25% yield. Methanolysis of the β -lactone ring under acidic conditions and the subsequent deprotection of the N-tosyl group with 6 M hydrochloric acid furnished (2S,3R)-HOMePro 13 as a p-toluenesulfonic acid salt. Purification of the crude salt with Dowex 50WX4 using 1 M aqueous pyridine as an eluant afforded pure (2S,3R)-13 in 75% yield.

Conclusion

In conclusion, we have developed a concise method to construct the multi-substituted pyrrolidine ring in one step using a tandem Michael–aldol reaction catalyzed by DBU, and achieved a short-step synthesis of racemic $(2S^*, 3R^*)$ -3-hydroxy-3methylproline. The enantiometically pure (2S, 3R)-3-hydroxy-3-methylproline was obtained by partial optical resolution using (–)-cinchonidine and enantiometical enrichment by the recrystallization of its β -lactone derivative. Further studies directed towards the total synthesis of polyoxypeptins are in progress.

Experimental

Melting points were measured with a SHIBATA General. NEL-270 melting point apparatus. IR spectra were recorded on a JASCO FT/IR-230 spectrometer. NMR spectra were recorded on JEOL JNM GSX400A and JNM ECP400 spectrometers. FAB mass spectra were obtained with a JEOL JMS-HX-110A spectrometer. Optical resolutions were determined on a JASCO DIP-140 and JASCO P-1020 polarimeter. HPLC analyses were performed using JASCO UV-970 and PU-980 high pressure liquid chromatograph with an optically active column. Column chromatography was carried out with silica gel BW-820MH (Fuji silysia). Analytical thin layer chromatography was performed on Merck Kieselgel 60F254 0.25 mm thickness plates. 3-Buten-2-one, 1,8diazabicyclo[5.4.0]undec-7-ene, potassium tert-butoxide, (-)-cinchonidine, 4-dimethylaminopyridine, acetyl chloride, and hydrochloric acid were purchased from Wako pure chemical industries, Ltd. 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (WSCI) was purchased from Kokusan Chemical, Ltd. N-Tosylglycine benzyl ester is commercially available from Sigma-Aldrich Chemical Company, Inc., or is easily prepared from glycine in 2 steps: a) TsCl, Na₂CO₃, Et₂O, H₂O, 122 h, 23 °C, 91%; b) BnOH, TsOH, PhH, reflux, 22 h, quant.

(2S*,3R*)- and (2R*,3S*)-Benzyl 3-Hydroxy-3-methyl-1-(*p*-tolylsulfonyl)-pyrrolidine-2-carboxylates (\pm)-9. To a stirred solution of Ts–Gly–OBn 7 (3.00 g, 9.39 mmol) and 3-buten-2-one (1.20 mL, 14.4 mmol) in THF (38 mL) at 23 °C was added dropwise DBU (1.40 mL, 9.38 mmol). After 14 h, the reaction was quenched with 1 M HCl, and the resulting mixture was extracted with ethyl acetate. The combined organic extracts were washed with brine, saturated aqueous NaHCO₃ solution and brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by silica-gel chromatography (hexane:ethyl acetate = 1:1) to give the Michael-aldol adducts (\pm)-9 (3.66 g. 7.70 mmol, syn:anti = 69:31, 82%) as a pale yellow oil. The analytical samples were obtained by purification using silica-gel chromatography (hexane:ethyl acetate = 20:1). Syn adduct: ¹HNMR (400 MHz, CDCl₃) δ 1.27 (3H, s, CH₃), 1.74 (1H, ddd, J = 12.5, 7.5, 6.8 Hz, CH₂), 2.08 (1H, ddd, J = 12.5, 7.3, 6.0 Hz, CH₂), 2.23 (1H, s, OH), 2.42 (3H, s, CH₃), 3.39 (1H, ddd, J = 9.9, 7.7, 6.0 Hz, CH₂), 3.56 (1H, ddd, J = 9.9, 7.3, 6.8 Hz, CH₂), 4.12 (1H, s, CH), 5.20 (2H, s, CH₂), 7.28 (2H, d, J = 8.6 Hz, Ar), 7.31–7.42 (5H, m, Ar), 7.74 (2H, dt, J = 8.4, 1.8 Hz, Ar); 13 C NMR (100 MHz, CDCl₃) δ 21.6, 26.4, 38.9, 46.2, 67.3, 69.1, 79.0, 127.5, 128.3, 128.4, 128.6, 129.7, 135.0, 135.3, 143.8, 169.8; IR (neat, cm⁻¹) 3497, 3063, 3033, 2976, 2893, 1744, 1598, 1496, 1454, 1385, 1344, 1158, 1094; HRMS (FAB); calcd for $C_{20}H_{24}NO_5S$ (M + H) 390.1375, found 390.1360. Anti adduct: ¹H NMR (400 MHz, CDCl₃) δ 1.17 (3H, s, CH₃), 1.76 (1H, s, OH), 1.82 (1H, dd, J = 13.0, 6.6 Hz, CH_2), 2.07 (1H, ddd, J = 12.8, 10.6, 8.6 Hz, CH_2), 2.40 (3H, s, CH₃), 3.41 (1H, ddd, J = 10.6, 8.8, 6.6 Hz, CH₂), 3.62 (1H, dt, J = 8.8, 1.6 Hz, CH₂), 4.11 (1H, s, CH), 5.12 (1H, d, J = 12.3Hz, CH₂), 5.17 (1H, d, J = 12.3 Hz, CH₂), 7.27 (2H, d, J = 8.1 Hz, Ar), 7.32–7.40 (5H, m, Ar), 7.72 (2H, dt, J = 8.2, 1.8 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 22.9, 38.2, 46.4, 67.2, 71.6, 79.9, 127.5, 128.5, 128.5, 128.6, 129.6, 134.7, 135.1, 143.6, 170.1; IR (neat, cm⁻¹) 3499, 3064, 3033, 2979, 2890, 1742, 1598, 1496, 1455, 1384, 1337, 1261, 1163, 1095; HRMS (FAB); calcd for $C_{20}H_{24}NO_5S$ (M + H) 390.1375, found 390.1344.

(2S*,3R*)-3-Hydroxy-3-methyl-1-(p-tolylsulfonyl)-pyrrolidine-2-carboxylic Acids (\pm) -10. A mixture of the Michael-aldol adducts (3.66 g, 9.39 mmol, syn:anti = 69:31) and 5% Pd-C (360 mg) in MeOH (38 mL) was stirred under a hydrogen atmosphere (1 atm) at 23 °C for 14 h. The reaction mixture was filtered and concentrated in vacuo to give the carboxylic acid (10, 2.81 g, 9.39 mmol, quant.) as a pale yellow solid. After the crude carboxylic acid was suspended in CHCl₃ and heated to reflux, the insoluble solid (anti product) was filtered off. The filtrate was concentrated in vacuo to give the syn-rich mixture. This cycle was repeated five times to give the syn product (\pm) -10 (1.80 g, 6.01 mmol, 64%, syn:anti = 95:5). Syn product: Mp 95–96 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.29 (3H, s, CH₃), 1.58 (1H, dt, J = 12.6, 7.7 Hz, CH₂), 2.06 (1H, ddd, J = 12.6, 6.8, 5.3 Hz, CH₂), 2.23 (1H, s, OH), 2.44 (3H, s, CH₃), 3.38 (1H, ddd, J = 10.4, 7.7, 5.1 Hz, CH₂), 3.64 (1H, dt, J = 10.4, 7.1 Hz, CH₂), 4.01 (1H, s, CH), 7.35 (2H, d, J = 8.1 Hz, Ar), 7.74 (2H, dt, J = 8.2, 2.0 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 26.1, 38.9, 46.8, 69.4, 79.5, 127.6, 129.9, 134.0, 144.3, 172.7; IR (neat, cm⁻¹) 3437, 3355, 2981, 2875, 2648, 2550, 1694, 1419, 1387, 1343, 1281, 1246, 1207, 1159; HRMS (FAB); calcd for C₁₃H₁₈NO₅S (M + H), 300.0906, found 300.0876. Anti product: Mp 195–196 °C (dec); ¹H NMR (400 MHz, DMSO- d_6) δ 1.17 $(3H, s, CH_3)$, 1.71 (1H, dd, J = 12.3, 6.0 Hz, CH₂), 1.88 (1H, dt, J = 12.1, 8.2 Hz, CH₂), 2.39 (3H, s, CH₃), 3.16 (1H, ddd, J = 11.0, 8.2, 6.4 Hz, CH₂), 3.42 (1H, t, J = 8.1 Hz, CH₂), 3.79 (1H, s, CH), 4.98 (1H, s, OH), 7.40 (2H, d, J = 8.4 Hz, Ar), 7.66 (2H, d, J = 8.2 Hz, Ar), 12.78 (1H, bs, OH); ¹³C NMR

(100 MHz, DMSO- d_6) δ 19.9, 22.1, 36.7, 45.4, 70.6, 77.0, 126.1, 128.5, 133.5, 142.0, 170.8; IR (neat, cm⁻¹) 3478, 3063, 2978, 2936, 2892, 2651, 2562, 1714, 1462, 1434, 1377, 1326, 1270, 1149, 1093; HRMS (FAB); calcd for C₁₃H₁₈NO₅S (M + H), 300.0906, found 300.0886.

 $(2S^*, 3R^*)$ -3-Hydroxy-3-methylprolines (±)-11. To a dark green solution of Na (321 mg, 14.0 mmol) and napthalene (2.86 g, 22.3 mmol) in DME (14 mL) at -78 °C was added dropwise a solution of N-tosylamide (±)-10 (1.09 g, 2.79 mmol) in DME (6.0 mL). After 15 min, the reaction was quenched with H₂O, and the resulting mixture was extracted with H₂O. After the combined aqueous extracts were neutralized with conc. HCl, the mixture was charged on Dowex 50WX4 resin (H⁺ form) and eluted with 1 M aqueous pyridine to afford brown-white solids (\pm) -11 (366 mg, 2.73 mmol, 98%). The solids could be further purified by recrystallization from H₂O to give colorless crystals (243 mg, 60%, 1.67 mmol). Mp 271 °C (dec); ¹H NMR (400 MHz, D₂O, 40 °C) δ 1.60 (s, 3H, CH₃), 2.12–2.17 (2H, m, CH₂), 3.45 (1H, ddd, J = 11.0, 7.1, 4.7 Hz, CH₂N), 3.55 (1H, dt, J = 11.7, 8.8 Hz, CH₂N), 3.85 (1H, s, CH); ¹³C NMR (100 MHz, D₂O, 60 °C) δ 24.3, 39.8, 43.8, 70.2, 78.8, 171.1; IR (KBr, cm⁻¹) 3225, 3117, 2935, 2701, 2632, 2563, 1641, 1464, 1412; Anal. Calcd for C₆H₁₁NO₃: C, 49.65; H, 7.64; N, 9.65%. Found: C, 49.44; H, 7.69; N, 9.54%.

(2*R*,3*S*)- and (2*S*,3*R*)-3-Hydroxy-3-methyl-1-(*p*-tolylsulfonyl)-pyrrolidine-2-carboxylic Acids (+)-10 and (-)-10. A mixture of racemic carboxylic acid (\pm)-10 (3.99 g, 13.3 mmol) and (-)-cinchonidine (1.96 g, 6.66 mmol) was dissolved in ethyl acetate (66.6 mL) with heating. After the clear solution was left for 12 h at 23 °C, colorless solids were precipitated. The solids were collected by filtration and treated with 1 M HCl to liberate (+)-(2*R*,3*S*)-10 ([α]_D²³ +52.9 (*c* 0.52, CHCl₃), 61% ee) as colorless solids. The filtrate was washed with 1 M HCl and brine, dried over Na₂SO₄, filtered, and concentrated in vacuo to give (-)-(2*S*,3*R*)-10 (3.03 g, 10.1 mmol, 76%, 24% ee) as colorless solids, which were used for the next reaction without further purification. The enantiomeric excess was determined by chiral HPLC analysis after transformation to the β -lactone 12.

(1S,5R)-(5-Methyl-2-(p-tolylsulfonyl)-6-oxa-2-aza-bicyclo-[3.2.0]heptan-7-one (-)-12. To a stirred solution of (-)-(2S,3R)-10 (2.96 g, 9.88 mmol) in CH₂Cl₂ (50 mL) at 0 °C was added WSCI (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride) (2.08 g, 10.9 mmol) and DMAP (4-dimethylaminopyridine) (302 mg, 2.47 mmol). After stirring the mixture for 17 h at 23 °C, the reaction was quenched with 10% citric acid and extracted with ethyl acetate. The combined organic extracts were washed with saturated aqueous NaHCO₃ solution and brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by silica-gel chromatography (hexane:ethyl acetate = 1:1) to give β -lactone as a colorless solid, which was recrystallized from ethyl acetate four times to give (-)-12 (700 mg, 2.47 mmol, 25%, 97% ee) as a colorless solid. $\left[\alpha\right]_{D}^{24}$ -128 (c 0.13, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.68 (3H, s, CH₃), 1.83 (1H, dt, J = 14.2, 11.5, 8.1 Hz, CH₂), 2.22 (1H, dd, J = 14.4, 5.9 Hz, CH₂), 2.44 (3H, s, CH₃), 3.15 (1H, dt, J = 11.5, 5.9 Hz, CH), 4.00 (1H, dd, J = 11.2, 7.6 Hz, CH), 5.08 (1H, s, CH₃), 7.34 (2H, d, J = 8.1 Hz, Ar), 7.79 (2H, d, J = 8.3 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 20.6, 21.6, 35.1, 46.7, 73.5, 87.3, 127.9, 130.0, 134.7, 144.5, 164.5; IR (neat, cm⁻¹) 3093, 3063, 2983, 2938, 1832, 1595, 1479, 1455, 1390, 1354, 1264; HRMS (FAB); calcd for C₁₃H₁₇NO₄S (M + H) 282.0800, found 282.0788. HPLC analysis: Daicel Chiralpac AD, flow 1.0 mL/min, hexane/*i*-PrOH = 65:35, retention times 10.1 min for (1S,5R)-(-)-12, 12.9 min for (1R,5S)-(+)-12.

(2S.3R)-3-Hydroxy-3-methylproline 13. To a stirred solution of (-)-12 (2.08 g, 7.39 mmol) in MeOH (37 mL) at 23 °C was added dropwise acetyl chloride (52.5 µL, 0.739 mmol). After 21 h, the reaction mixture was concentrated in vacuo. The residue was purified by silica-gel chromatography (hexane:ethyl acetate = 3:2) to give the methyl ester (2.03 g, 7.31 mmol, 99%) as a colorless solid. Mp 134–135 °C; $[\alpha]_D^{24}$ –52.5 (c 0.61, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.25 (3H, s, CH₃), 1.71 (1H, dt, J = 12.4, 6.8 Hz, CH₂), 2.10 (1H, dt, J = 12.4, 6.8 Hz, CH₂), 2.43 (3H, s, CH₃), 2.71 (1H, bs, OH), 3.35 (1H, dt, J = 11.2, 7.2 Hz, CH), 3.59 (1H, dt, J = 9.6, 8.8 Hz, CH), 3.74 (3H, s, CH_3), 4.03 (1H, s, CH), 7.33 (2H, d, J = 8.0 Hz, Ar), 7.74 (2H, d, J = 8.0 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 26.2, 38.7, 46.2, 52.3, 69.1, 78.7, 127.4, 129.6, 134.7, 143.8, 170.4; IR (neat, cm⁻¹) 3500, 2976, 2954, 2898, 1745, 1598, 1439, 1342, 1158, 1093; HRMS (FAB); calcd for C₁₄H₂₀NO₅S (M + H) 314.0984, found 314.1043.

A stirred mixture of the methyl ester (2.25 g, 7.18 mmol) in 6 M HCl (35 mL) was heated to reflux for 48 h. After cooling, the reaction mixture was concentrated in vacuo. The residue was charged on Dowex 50WX4 resin (H⁺ form) and eluted with 1 M aqueous pyridine to give pure **13** (782 mg, 5.39 mmol, 75%) as a colorless solid after evaporation. $[\alpha]_D^{25}$ –42.3 (*c* 1.1, H₂O). The spectral data were identical with our previous reported values.^{3e}

This work was financially supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (A) "Exploitation of Multi-Element Cyclic Molecules" from the Ministry of Education, Culture, Sports, Science and Technology, and a Sasakawa Scientific Research Grant from Japan Science Society (to T.S.).

References

a) K. Umezawa, K. Nakazawa, T. Uemura, Y. Ikeda, S. Kondo, H. Naganawa, N. Kinoshita, H. Hashizume, M. Hamada, T. Takeuchi, and S. Ohba, *Tetrahedron Lett.*, **39**, 1389 (1998).
b) K. Umezawa, K. Nakazawa, Y. Ikeda, H. Naganawa, and S. Kondo, *J. Org. Chem.*, **64**, 3034 (1999).

2 a) Y. Noguchi, T. Yamada, H. Uchiro, and S. Kobayashi, *Tetrahedron Lett.*, 41, 7499 (2000). b) Y. Noguchi, H. Uchihiro, T. Yamada, and S. Kobayashi, *Tetrahedron Lett.*, 42, 5253 (2001). c) M. Lorca and M. Kurosu, *Tetrahedron Lett.*, 42, 2431 (2001). d) D.-G. Qin, H.-Y. Zha, and Z.-J. Yao, *J. Org. Chem.*, 67, 1038 (2002). e) D.-G. Qin and Z.-J. Yao, *Tetrahedron Lett.*, 44, 571 (2003). f) Y. Aoyagi, Y. Saitoh, T. Ueno, M. Horiguchi, K. Takeya, and R. M. Williams, *J. Org. Chem.*, 68, 6899 (2003). g) J.-W. Shen, D.-G. Qin, H.-W. Zhang, and Z.-J. Yao, *J. Org. Chem.*, 68, 7479 (2003).

3 a) N. Okamoto, O. Hara, K. Makino, and Y. Hamada, *Tetrahedron: Asymmetry*, **12**, 1353 (2001). b) K. Makino, N. Okamoto, O. Hara, and Y. Hamada, *Tetrahedron: Asymmetry*, **12**, 1757 (2001). c) K. Makino, Y. Henmi, and Y. Hamada, *Synlett*, **2002**, 613. d) N. Okamoto, O. Hara, K. Makino, and Y. Hamada, *J. Org. Chem.*, **67**, 9210 (2002). e) K. Makino, A. Kondoh, and Y. Hamada, *Tetrahedron Lett.*, **43**, 4695 (2002). f) K. Makino, T. Suzuki, S. Awane, O. Hara, and Y. Hamada, *Tetrahedron Lett.*, **43**, 9391 (2002).

4 For excellent reviews of tandem reactions and Michael-

aldol reactions, see: a) L. F. Tietze, *Chem. Rev.*, **96**, 115 (1996). b) K. Takasu, *Yakugaku Zasshi*, **121**, 887 (2001).

5 a) W. G. Terry, A. H. Jackson, G. W. Kenner, and G.

Komis, J. Chem. Soc., **1965**, 4389. b) T. D. Lash and M. C. Hoehner, J. Heterocycl. Chem., **28**, 1671 (1991).