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ABSTRACT: A divergent and efficient one-pot sequence allowing direct access to 3-arylbenzofuran derivatives has been developed.
The process, involving N-tosylhydrazones and bromophenols, proceeds via a palladium-catalyzed Barluenga−Valdeś cross-coupling,
followed by an aerobic, copper-catalyzed, radical cyclization to form Csp2−Csp2 and O−Csp2 bonds. 3-Arylated benzofurans bearing
various substituents were obtained with good to excellent yields (up to 90%). Mechanistic investigation strongly supports a radical
process for the cyclization step.

■ INTRODUCTION

The benzofuran skeleton constitutes an essential class of
compounds and is widely present in many pharmaceuticals,1

biologically active compounds,2 and natural products.3 For
instance, the related drugs amiodarone and dronedarone
showing antiarrhythmic effects, lifitegrast, a recently FDA-
approved drug for the treatment of keratoconjunctivitis sicca4

(dry eye syndrome), methoxsalen, a naturally occurring
furocoumarin compound found in several species of plants
including Psoralea corylifolia, showing activity in case of
psoriasis and vitiligo, vilazodone, a novel active compound
combining high-affinity and selectivity for the 5-hydroxytrypt-
amine (5-HT) transporter and 5-HT(1A) receptors5 and
indicated for the treatment of the major depressive disorder, all
display a benzofuran core (Figure 1).
Over recent years, many effective strategies, including

heteroannulation6 and transition-metal-catalyzed reactions,7

have been described for the synthesis of 2-arylbenzofurans or
polysubstituted benzofurans. However, and contrary to the 2-
arylated benzofuran derivatives, only a few methods for the
synthesis of 3-arylbenzofurans 3 (Scheme 1) are known in the
literature. Some of these synthetic strategies are shown in
Scheme 1.
A typical method involves the Suzuki cross-coupling starting

from 3-brominated benzofurans8 or the Larock coupling
between 2-iodophenols and internal alkynes.9 Zeolite-catalyzed
direct cyclization of α-aryloxyketones is also a notable strategy;

however, bulky derivatives tend to rearrange into the 2-
substituted isomer.10 Copper(II) acetate and 8-hydroxyquino-
line are efficient to promote the formation of 3-phenyl-
benzofurans from 2-hydroxyacetophenones and dimethylace-
tamide (DMA).112-Hydroxy-arylstyrenes were also used to
obtain the corresponding benzofurans in moderate to good
yields. Maiti et al. developed a Pd-catalyzed intermolecular
annulation of cinnamic acids and phenols for the selective
synthesis of 3-substituted benzofurans (Scheme 1).12 Anbar-
asan et al. reported a cobalt(III)-catalyzed intramolecular
cross-dehydrogenative C−H/O−H coupling of ortho-alkenyl-
phenols using O2 as an oxidant.13 Finally, the C3-selective
direct C−H activation of benzofurans has been rarely achieved
because, in addition to obtaining mixtures of C2 and C3
isomers, low to modest yields were observed.14

Consequently, there is considerable interest from the
synthetic organic point of view to obtain the 3-arylbenzofuran
motif by efficient methodologies. In the past decade, N-
tosylhydrazones (NTH) have been well recognized as powerful
cross-coupling partners for several transformations,15 especially
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their application as metal carbene precursors in the efficient

construction of carbon−carbon and carbon−heteroatom
bonds.16 It is still highly desirable to explore NTH as

substrates to enable the concise preparation of complex

molecules, leading to crucial molecular diversity. Herein, we

present a one-pot approach to access a series of 3-
arylbenzofurans from NTHs and bromophenol derivatives.

■ RESULTS AND DISCUSSION
Before optimizing the one-pot sequence of this transformation,
initial studies were devoted to finding the best conditions for

Figure 1. Approved drugs containing the benzofuran moiety.

Scheme 1. Synthesis of 3-Arylbenzofuran Derivatives

Table 1. Optimization of the Reaction Conditions for Pd-Catalyzed Coupling of NTH and Bromophenola

entry [Pd] [L] solvent yield (%)

1 Pd(OAc)2 Xphos dioxane 55
2 Pd(OAc)2 Sphos dioxane 67
3 Pd(OAc)2 Sphos DMF 40
4 Pd(OAc)2 Sphos toluene 30
5 Pd(OAc)2 Sphos DMA 0
6 Pd2dba3·CHCl3 Sphos dioxane 95
7 Pd2dba3·CHCl3 Sphos toluene 50
8 CuOAc 8-HQ dioxane ndb

aReaction conditions: NTH 1a (1.5 mmol), 2-bromophenol 2a (1 mmol), [Pd] source (5 mol %), ligand (10 mol %), base (1.6 mmol), solvent
(5.0 mL), sealed tube, 100 °C, and 3 h. bnd: not detected.
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each step: the formation of the C−C and then the C−O bond.
Thus, we began our investigations by studying the cross-
coupling between NTH derivative 1a and bromophenol 2a.
The challenge of this coupling was to find optimal conditions
that tolerate the presence of free phenol, since NTH could
react with alcohols or phenols, leading to the corresponding
ethers.17 As a consequence, to avoid the formation of an ether
bond, we first prepared the NTH salt and then realized the
coupling with the bromophenol partner (Table 1). Coupling
conditions using Pd(OAc)2 as a palladium source and XPhos
as a ligand in dioxane led to the desired product 3a in a
moderate 55% yield. The reaction with a catalyst based on the
Sphos ligand exhibited better efficiency, the 1,1-diarylethylene
product being obtained in a 67% yield (entry 2). Changing
dioxane for other solvents such as dimethylformamide (DMF),
toluene, or DMA led to a dramatic decrease of the yield
(entries 3−5). Next, we turned our attention to the palladium
source, and we observed a significant improvement of the yield
to 95% using Pd2dba3·CHCl3 instead of Pd(OAc)2 in dioxane
(entry 6). In toluene, the product was isolated in a 50% yield
using the same catalytic system (entry 7). Performing the
reaction in the presence of a copper catalyst did not afford the
desired compound 3a.
Next, we turned our attention to the cyclization reaction to

form the benzofuran derivatives. For this purpose, we have first
treated the 2-hydroxyarylstyrene 3a under the conditions
developed by Dominguez et al.:11 Cu(OAc)2 (50 mol %), O2,
and 8-hydroxyquinoline (8-HQ) at 140 °C for 24 h (Table 2,
entry 1).
Under these standard conditions, the desired product 4a was

obtained in a moderate 50% yield, which is incompatible with
the development of a one-pot reaction. Performing the

reaction in dry DMA reduced the yield to 33% (entry 2).
On the other hand, adding a controlled amount of 40 equiv of
H2O to the reaction medium promoted a significant increase of
the yield to 77% (entry 3). Screening of different solvents
revealed that the best yield was obtained in toluene or dioxane
in the presence of 40 equiv of H2O (entries 4 and 5).
Then, a variety of reaction conditions were screened to show

the importance of each parameter of this copper catalyst
system (entries 6−10). Surprisingly, the results of the control
experiments showed that the formation of the benzofuran ring
could occur in the absence of ligand and base (entries 6 and 7).
However, no formation of the desired compound 4a was
observed when the reaction was performed without a copper
source (entry 8). It is important to note that dioxygen also
plays an important role in this process, with a dramatic
decrease in the yield when the reaction was carried out under
N2 (entry 9). Finally, we rechecked the role of water in this
transformation, and we observed a significant decrease in the
yield when the reaction was carried out in dry toluene (entry
10).
Based on these interesting results (Tables 1 and 2), we

attempted the one-pot sequential reaction to form the 3-
arylbenzofuran 4a starting from NTH 1a and bromophenol 2a
(Table 3). Contrary to our expectations, performing the
reaction sequence under the best-obtained conditions: dioxane
for the first step (solvent 1), then H2O 40 equiv (solvent 2) for
the second step, afforded a low yield unfortunately (entry 1).
As the cyclization step worked better in toluene, we tried to
add toluene as a cosolvent: dioxane/toluene 1:2 V/V (entry
2), but again a low yield of 4a was obtained. Inversion of the
ratio between dioxane and toluene (dioxane/toluene 2:1)
provided a slight increase in the yield (entry 3). This
observation led us to conduct the first step of the coupling
(C−C bond formation) only in anhydrous dioxane, and we
added toluene for the second step with a ratio of dioxane/
toluene of 2:1 (entries 4−5).
Without the addition of water for the second step, the

reaction was not totally completed (entry 4), whereas the
addition of 40 equiv of H2O resulted in a 90% isolated yield
(entry 5).
With the optimized conditions in hand, the generality of this

sequential one-pot reaction was examined using a series of
NTHs 1 and different 2-hydroxy-bromoaryls 2 (Scheme 2).
Gratifyingly, the reaction works efficiently, affording the

coupling products in good to high yields (46−90%). The Pd/
Cu system catalyzes the coupling of 2-hydroxybromophenol 2a
using neutral (4a, 4b), electron-rich (4c−4e), and -deficient
(4f−4g) NTHs. In addition, this transformation tolerates the
coupling of heterocyclic NTHs, affording the corresponding
products in good yields (compounds 4h−i).
Encouraged by these results, we further examined the

substrate scope with respect to the bromophenol. Thus, we
explored modifications on the electrophilic partner 2. It should
be noted that the reaction proceeded successfully when using
bromophenols bearing electron-donating groups (compounds
4j−o). Lastly, we were interested in the application of this
method to the synthesis of benzofuran 4a in a millimole
quantity. Performing the reaction in a large sealed tube under
the standard conditions afforded compound 4a in a 62% yield
(Scheme 2).
In addition, bromophenols with different R2 electron-

withdrawing substituents underwent the reaction to afford
the desired compounds (4p−r) in good yields (52−72%). Our

Table 2. Optimization of the Cyclization Stepa

entry ligand base solvent additive yield (%)b

1 8-HQc K2CO3 DMA 50
2 8-HQ K2CO3 anhyd DMA 33
3 8-HQ K2CO3 DMA H2O 40 equivd 77
4 8-HQ K2CO3 dioxane H2O 40 equiv 70
5 8-HQ K2CO3 toluene H2O 40 equiv 88e

6 K2CO3 toluene H2O 40 equiv 82
7 toluene H2O 40 equiv 80
8 toluene H2O 40 equiv 0f

9 toluene H2O 40 equiv 12g

10 toluene 35

aAll of the reactions were carried out in a sealed tube using 3a (1
mmol), CuOAc (50 mol %), 8-HQ (50 mol %), K2CO3 (1 mmol),
and solvent (5 mL). bIsolated yield. c8-Hydroxyquinoline. dReaction
in the presence of 20 and 60 equiv of H2O gave 66 and 76% yields,
respectively. eA low yield (25%) was obtained when the reaction was
performed in toluene without the addition of water. fThe reaction was
carried out without CuOAc. gThe reaction was degassed with N2
(without O2).
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standard conditions were used to realize the coupling between
NTH derived from 2-phenylacetophenone (Scheme 3). The
first coupling led to a mixture of the E/Z isomer with a 60/40
ratio. Only the E-isomer undergoes cyclization, and the
diphenylbenzofuran derivative 4s was obtained in a 30%
yield (Scheme 3).
Mechanism. While the first step of this one-pot sequence

has a well-established mechanism (Scheme 4),14,15 the nature
of the second step was not obvious. As previously
demonstrated in Table 1, there is no need for a ligand or a
base, but O2 and H2O are required to reach a good yield, and
of course, CuOAc (50 mol %) is indispensable in all cases.
The formation of a copper vinylidene under such conditions

is unlikely. The reaction did not work with a methyl group
installed at the oxygen atom or at the terminal alkene carbon of
3a. Besides, we could not trap the carbene with TMSN3, which
is a known vinylidene scavenger (Scheme 4, eq 1).18

Interestingly, in the presence of TMSN3, the methyl-
substituted substrate 3s transformed into ketone 6s (eq 2).
Such aerobic oxidation of terminal olefins using TMSN3 as a
reagent and TEMPO as a catalyst has been reported.19 In this
case, the mechanism involves the formation of free radicals and
their reaction with O2 to give peroxide radical intermediates.
This led us to consider that perhaps TEMPO could also
catalyze the cyclization of 3a into 4a. In the absence of
TMSN3, and under similar reaction conditions as those
disclosed with copper, 4a was indeed obtained in a 63%
yield (eq 3).
The catalytic cycle postulated for this coupling (Scheme 5,

the top part) starts with the oxidative addition of the
bromophenol 2a to the Pd(0) to give the aryl−Pd complex
I. Then, the reaction of the diazo compound II (generated by
decomposition of NTH 1a in the presence of the base) with I
led to the formation of Pd−carbene complex III. The latter
complex III evolves through the migratory insertion of the
carbene and produces the alkyl−Pd complex IV. At the end of
this first cycle, β-hydride elimination provides the olefin 3a.
The results obtained in Scheme 4 strongly support a radical

mechanism, summarized in Scheme 5 (lower part).
In the presence of O2 and H2O, the copper(I) salt generates

hydroxyl radicals and hydroxides,20 while being oxidized into
Cu(II). Compound 3a reacts with a hydroxyl radical to give
phenoxyl radical A, which undergoes 5-endo-trig cyclization to

give radical B.21 The latter is oxidized by Cu(II) into
carbocation C, which is deprotonated by a hydroxide to
furnish the final product 4a.
We believe that our method can be used to obtain other

functionalized 3-arylbenzofurans and will contribute to the
discovery of new biologically active compounds.
In summary, we have developed a sequential palladium/

copper synthesis of a library of 3-arylbenzofuran derivatives.
This one-pot reaction associates a Barluenga−Valdeś cross-
coupling, followed by a radical cyclization, leading to the
formation of Csp2−Csp2 and O−Csp2 bonds. This method,
based on simple starting materials, tolerates various functional
groups. From the mechanistic point of view, this one-pot
sequence associates a transition-metal-catalyzed reaction with
an aerobic cyclization that is not disrupted by the presence of
the cross-coupling catalytic mixture.

■ EXPERIMENTAL SECTION
General Methods. Melting points (mp) were uncorrected.

Solvent peaks were used as reference values with CDCl3 at 7.26
ppm for 1H NMR and 77.16 ppm for 13C NMR, with DMSO at 2.50
ppm for 1H NMR and 39.52 ppm for 13C NMR, with CD3CN at 1.94
ppm for 1H NMR, and 1.79, 118.26 ppm for 13C NMR, with
(CD3)2CO at 2.05 ppm for 1H NMR, and 29.84 and 206.26 ppm for
13C NMR. Chemical shifts δ are given in ppm, and the following
abbreviations are used: singlet (s), doublet (d), doublet of doublet
(dd), triplet (t), quadruplet (q), and multiplet (m). High-resolution
mass spectra were recorded on a Microtof-Q II. Reaction courses and
product mixtures were routinely monitored by TLC on a silica gel,
and compounds were visualized under a UVP Mineralight UVGL-58
lamp (254 nm) and with phosphomolybdic acid/Δ, or vanillin/Δ.
Flash chromatography was performed using silica gel 60 (40−63 mm,
230−400 mesh) at medium pressure (200 mbar). Dioxane was
distilled over CaH2. Other solvents were used as received. N-
Tosylhydrazones were prepared according to the literature procedure.
Pd2(dba)3·CHCl3 was prepared according to the literature proce-
dure.22 All products reported showed 1H and 13C NMR spectra in
agreement with the assigned structures.

General Procedure for the Synthesis of Benzofuran from
the One-Pot Reaction (Method A). To a solution in a sealed tube
of N-tosylhydrazone (0.6 mmol) in distilled dioxane (5.0 mL/mmol)
was added NaH (0.96 mmol). This resulting suspension was stirred at
rt for one hour; 2-bromophenol (0.4 mmol), Pd2dba3CHCl3 (5 mol
%), and Sphos (10 mol %) were added. The mixture was then heated
at 100 °C for 3 h in an oil bath. The reaction mixture was allowed to

Table 3. Optimization of the Sequential One-Pot Reaction: Formation of Csp2−Csp2 and then O−Csp2 Bondsa

entry solvent 1 solvent 2 yieldb

1 dioxane H2O 40 equiv 46%c

2 dioxane/toluene (1:2) H2O 40 equiv 25%
3 dioxane/toluene (2:1) H2O 40 equiv 35%
4 anhyd. dioxane dioxane/toluene = 2:1 42%
5 anhyd. dioxane dioxane/toluene = 2:1 + H2O (40 equiv) 90%

aReaction conditions: In a sealed tube, NTH 1a (0.6 mmol), NaH (0.64 mmol), and solvent 1 (2.5 mL) were reacted at RT for 1 h; then, 2-
bromophenol 2a (0.4 mmol), Pd2dba3·CHCl3 (5 mol %), and Sphos (10 mol%) were added and heated at 100 °C for 3 h. After completion of the
first step, solvent 2, CuOAc (50 mol %), was added under O2 at 140 °C for 24 h. bIsolated yield. cIn the absence of copper, 4a was not detected.

The Journal of Organic Chemistry pubs.acs.org/joc Article

https://dx.doi.org/10.1021/acs.joc.0c01835
J. Org. Chem. XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/10.1021/acs.joc.0c01835?fig=tbl3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.0c01835?fig=tbl3&ref=pdf
pubs.acs.org/joc?ref=pdf
https://dx.doi.org/10.1021/acs.joc.0c01835?ref=pdf


cool to rt. Then, toluene (2.5 mL/mmol), copper(I) acetate (0.2
mmol), and H2O (40 equiv) were added. Oxygen was then bubbled
into the reaction mixture, which was later allowed to stir at 140 °C for
24 h in an oil bath. The reaction mixture was cooled to room
temperature and filtered through Celite. The solvent was evaporated
under reduced pressure, and the crude product was purified by flash
chromatography on a silica gel.
3-Phenylbenzofuran (4a).23 4a was prepared according to method

A; column chromatography on a silica gel afforded 70 mg of the
desired compound as a colorless oil, yield 90%; Rf = 0.8 (EtOAc/

heptane, 5/95, SiO2); IR (film, cm−1) 2926, 2854, 1606, 1577, 1491,
1451, 1260, 1218, 1153, 1108, 1092, 962, 743; 1H NMR (300 MHz,
CDCl3) δ 7.86 (d, J = 7.6 Hz, 1H), 7.80 (s, 1H), 7.66 (d, J = 6.6 Hz,
2H), 7.56 (d, J = 7.1 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.41−7.30 (m,
3H); 13C NMR (75 MHz, CDCl3) δ 155.9 (C), 141.4 (CH), 132.2
(C), 129.1 (2CH), 127.7 (2CH), 127.6 (CH), 126.6 (C), 124.7
(CH), 123.1 (CH), 122.4 (C), 120.5 (CH), 111.92 (CH); HRMS
(ESI) for C14H9O (M − H)− calcd 193.0653, found 193.0656.

Synthesis of 3-Phenylbenzofuran (4a) on a 2 mmol Scale.
To a solution in a sealed tube of N-tosylhydrazone (3 mmol, 865 mg)

Scheme 2. Sequential One-Pot Reaction of NTH 1 and Bromophenol 2: Substrate Scopea

bReaction was performed using 2 mmol of 2-bromophenol and NTH. aConditions: step 1: in a sealed tube, NTH 1 (0.6 mmol), bromophenol 2
(0.4 mmol), Pd2dba3·CHCl3 (5 mol %), Sphos (10 mol %), and NaH (0.64 mmol) were added in dry dioxane (2.5 mL); step 2: after cooling,
CuOAc (50 mol %), toluene 1 mL, and H2O (40 equiv) were added under O2 and the mixture was heated at 140 °C for 24 h.
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in distilled dioxane (15.0 mL) was added NaH (4.8 mmol). This
resulting suspension was stirred at rt for one hour; 2-bromophenol (2
mmol, 342 mg), Pd2dba3CHCl3 (5 mol %, 103.5 mg), and Sphos (10
mol %, 82 mg) were added. The mixture was then heated at 100 °C
for 3 h in an oil bath. The reaction mixture was allowed to cool to rt.
Then, toluene (7.5 mL), copper(I) acetate (1 mmol, 122 mg), and
H2O (40 equiv) were added. Oxygen was then bubbled into the
reaction mixture, which was later allowed to stir at 140 °C for 24 h in
an oil bath. The reaction mixture was cooled to room temperature
and filtered through Celite. The solvent was evaporated under
reduced pressure, and the crude product was purified by flash
chromatography on a silica gel to afford 240 mg of compound 4a as a
colorless oil, yield 62%.
3-(Naphthalen-2-yl)benzofuran (4b).24 4b was prepared accord-

ing to method A; column chromatography on a silica gel afforded 71
mg of the desired compound as a colorless oil, yield 73%; Rf = 0.81
(EtOAc/heptane, 5/95, SiO2); IR (film, cm−1) 2955, 2867, 1603,
1589, 1499, 1443, 1245; 1H NMR (300 MHz, CDCl3) δ 8.17 (s, 1H),
8.05−7.87 (m, 5H), 7.78 (dd, J = 8.4, 1.7 Hz, 1H), 7.67−7.60 (m,
1H), 7.60−7.50 (m, 2H), 7.46−7.35 (m, 2H). 13C NMR (75 MHz,
CDCl3) δ 155.9 (C), 141.7 (CH), 133.8 (C), 132.7 (C), 129.5 (C),
128.6 (CH), 127.9 (CH), 127.8 (CH), 126.6 (C), 126.4 (CH), 126.0
(CH), 125.9 (CH), 125.8 (CH), 124.7 (CH), 123.1 (CH), 122.3
(C), 120.6 (CH), 111.9 (CH). HRMS (ESI) for C18H11O (M − H)−

calcd 243.0809, found 243.0805.

3-(p-Tolyl)benzofuran (4c).24 4c was prepared according to
method A; column chromatography on a silica gel afforded 50 mg
of the desired compound as a yellow oil, yield 60%; Rf = 0.7 (EtOAc/
heptane, 5/95, SiO2); IR (film, cm−1) 2919, 1575, 1541, 1508, 1453,
1340, 1109, 1091, 964, 746; 1H NMR (400 MHz, CDCl3) δ 7.84 (dd,
J =1.2, 7.2 Hz, 1H), 7.77 (s, 1H), 7.55 (d, J = 8.0 Hz, 3H), 7.37−7.28
(m, 4H), 2.42 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 155.9
(C), 141.2 (CH), 137.4 (C), 129.8 (2CH), 129.2 (C), 127.5 (2CH),
126.7 (C), 124.6 (CH), 123.0 (CH), 122.3 (C), 120.6 (CH), 111.9
(CH), 21.4 (CH3); HRMS (ESI) for C15H13O (M + H)+ calcd
209.0961, found 231.0960.

3-(3,5-Dimethoxyphenyl)benzofuran (4d). 4d was prepared
according to method A; column chromatography on a silica gel
afforded 78 mg of the desired compound as a yellow oil, yield 77%; Rf
= 0.4 (EtOAc/heptane, 1/9, SiO2); IR (film, cm−1) 2838, 1608, 1597,
1453, 1359, 1267, 1205, 1155, 1110, 1096, 746; 1H NMR (300 MHz,
CDCl3) δ 7.86 (d, J = 7.2 Hz, 1H), 7.80 (s, 1H), 7.56 (d, J = 8.3 Hz,
1H), 7.39−−7.29 (m, 2H), 6.81 (d, J = 2.3 Hz, 2H), 6.51 (s, 1H),
3.87 (s, 6H); 13C{1H} NMR (75 MHz, CDCl3) δ 161.4 (2C), 155.9
(C), 141.7 (CH), 134.0 (C), 126.6 (C), 124.7 (CH), 123.1 (CH),
122.5 (C), 120.6 (CH), 111.9 (CH), 105.9 (2CH), 99.7 (CH), 55.6
(2OCH3); HRMS (ESI) for C16H15O3 (M + H)+ calcd 255.1021,
found 255.1027.

3-(3,4,5-Trimethoxyphenyl)benzofuran (4e). 4e was prepared
according to method A; column chromatography on a silica gel
afforded 75 mg of the desired compound as a yellow oil, yield 66%; Rf

Scheme 3. Coupling of 2-Bromophenol with NTH Derived from 2-Phenylacetophenone: Access to 2,3-Disubstituted
Benzofurans

Scheme 4. Mechanistic Investigation
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= z0.36 (EtOAc/heptane, 2/8, SiO2); IR (film, cm−1) 2840, 1607,
1592, 1579, 1506, 1453, 1360, 1272, 1239, 1127, 747; 1H NMR (300
MHz, CDCl3) δ 7.83−7.80 (m, 1H), 7.77 (s, 1H), 7.56 (dd, J = 7.2,
1.3 Hz, 1H), 7.39−7.29 (m, 2H), 6.85 (s, 2H), 3.94 (s, 6H), 3.92 (s,
3H); 13C{1H} NMR (75 MHz, CDCl3) δ 155.9 (C), 153.9 (2C),
141.2 (CH), 137.9 (C), 127.72 (C), 126.6 (C), 124.8 (CH), 123.1
(CH), 122.5 (C), 120.3 (CH), 112.0 (CH), 105.1 (2CH), 61.1
(OCH3), 56.4 (2OCH3); HRMS (ESI) for C17H17O4 (M + H)+ calcd
285.1127, found 285.1131.
3-(4-Chlorophenyl)benzofuran (4f).24 4f was prepared according

to method A; column chromatography on a silica gel afforded 63 mg
of the desired compound as a colorless oil, yield 69%; Rf = 0.79
(EtOAc/heptane, 5/95, SiO2); IR (film, cm−1) 2922, 2866, 1606,
1588, 1495, 1451, 1272, 1220; 1H NMR (400 MHz, CDCl3) δ 7.81−
7.77 (m, 2H), 7.60−7.55 (m, 3H), 7.48−7.43 (m, 2H), 7.40−7.30
(m, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ 155.8 (C), 141.4
(CH), 133.3 (C), 130.5 (C), 129.1 (2CH), 128.7 (2CH), 126.2 (C),
124.7 (CH), 123.1 (CH), 121.2 (C), 120.1 (CH), 111.8 (CH);
HRMS for C14H10ClO (M + H)+ calcd 229.0426, found 229.0421.

4-(Benzofuran-3-yl)benzonitrile (4g).25 4g was prepared accord-
ing to method A; column chromatography on a silica gel afforded 40
mg of the desired compound as a colorless oil, yield 46%; Rf = 0.66
(EtOAc/pentane, 1/9, SiO2); IR (film, cm−1) 3060, 2226, 1610, 1576,
1501, 1452, 1345, 1277, 1219, 1114, 1093, 964, 745; 1H NMR (300
MHz, CDCl3) δ 7.88 (s, 1H), 7.81 (d, J = 7.7 Hz, 1H), 7.76 (s, 4H),
7.58 (d, J = 7.9 Hz, 1H), 7.38 (m, 2H); 13C{1H} NMR (75 MHz,
CDCl3) δ 156.1 (C), 142.6 (CH), 137.1 (C), 132.9 (2CH), 127.9
(2CH), 125.6 (C), 125.3 (CH), 123.7 (CH), 121.1 (C), 120.1 (CH),
118.9 (C), 112.2 (CH), 111.1 (C). HRMS for C15H10NO (M + H)+

calcd 220.0762, found 220.0756.
3-(Benzofuran-3-yl)pyridine (4h). 4h was prepared according to

method A; column chromatography on a silica gel afforded 59 mg of
the desired compound as a yellow oil, yield 75%; Rf = 0.33 (EtOAc/
cyclohexane, 2/8, SiO2); IR (film, cm−1) 2967, 2245, 1620, 1567,
1510, 1477, 1399; 1H NMR (300 MHz, CDCl3) δ 8.97 (s, 1H), 8.67
(s, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.84 (s, 1H), 7.83−7.76 (m, 1H),
7.61−7.55 (m, 1H), 7.47−7.25 (m, 3H). 13C{1H} NMR (75 MHz,
CDCl3) δ 155.8 (C), 148.6 (CH), 148.4 (CH), 141.8 (CH), 134.5
(2CH), 125.9 (C), 125.0 (CH), 123.4 (CH), 120.0 (CH), 119.1 (C),

Scheme 5. Mechanism Proposal
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112.0 (CH). HRMS for C13H10ON (M + H)+ calcd 196.0762, found
196.0759.
6-(Benzofuran-3-yl)-2,3-dihydrobenzo[b][1,4]dioxine (4i). 4i was

prepared according to method A; column chromatography on a silica
gel afforded 61 mg of the desired compound as a colorless oil, yield
61%; Rf = 0.7 (EtOAc/pentane, 1/9, SiO2); IR (film, cm−1) 2842,
1608, 1598, 1452, 1377; 1H NMR (300 MHz, CDCl3) δ 7.86−7.79
(m, 1H), 7.73 (s, 1H), 7.57−7.51 (m, 1H), 7.39−7.27 (m, 2H),
7.21−7.10 (m, 2H), 6.98 (d, J = 8.3 Hz, 1H), 4.32 (s, 4H). 13C{1H}
NMR (75 MHz, CDCl3) δ 155.7 (C), 143.9 (C), 143.1 (C), 140.9
(CH), 126.5 (C), 125.4 (C), 124.5 (CH), 122.9 (CH), 121.7 (C),
120.7 (CH), 120.4 (CH), 117.8 (CH), 116.3 (CH), 111.7 (CH),
64.5 (2CH2). HRMS for C16H13O3 (M + H)+ calcd 253.0865, found
253.0861.
5-Methyl-3-(p-tolyl)benzofuran (4j). 4j was prepared according to

method A; column chromatography on a silica gel afforded 67 mg of
the desired compound as a colorless oil, yield 81%; Rf = 0.78 (EtOAc/
pentane, 5/95, SiO2); IR (film, cm−1) 3022, 2895, 1610, 1588, 1502,
1463; 1H NMR (300 MHz, CDCl3) δ 7.76 (s, 1H), 7.66 (s, 1H), 7.58
(d, J = 8.1 Hz, 2H), 7.47 (d, J = 8.4 Hz, 1H), 7.33 (d, J = 7.8 Hz, 2H),
7.20 (d, J = 6.8 Hz, 1H), 2.52 (s, 3H), 2.46 (s, 3H). 13C{1H} NMR
(75 MHz, CDCl3) δ 154.2 (C), 141.2 (CH), 137.2 (C), 132.4 (C),
129.7 (2CH), 129.3 (C), 127.4 (2CH), 126.7 (C), 125.7 (CH), 121.9
(C), 120.2 (CH), 111.2 (CH), 21.50 (CH3), 21.29 (CH3). HRMS for
C16H15O (M + H)+ calcd 223.1123, found 223.1119.
5-Methoxy-3-phenylbenzofuran (4k).26 4k was prepared accord-

ing to method A; column chromatography on a silica gel afforded 64
mg of the desired compound as a yellow oil, yield 71%; Rf = 0.67
(EtOAc/pentane, 5/95, SiO2); IR (film, cm−1) 3075, 2967, 2854,
1604, 1584, 1499, 1452; 1H NMR (300 MHz, acetone-d6) δ 7.37 (s,
1H), 7.34 (s, 1H), 7.14−7.05 (m, 1H), 6.97 (dd, J = 7.5, 1.8 Hz, 1H),
6.91−6.83 (m, 3H), 6.72−6.59 (m, 2H), 3.37 (s, 3H); 13C{1H} NMR
(75 MHz, acetone-d6) δ 159.6 (C), 149.2 (CH), 148.8 (C), 141.5
(2C), 136.8 (CH), 125.8 (C), 122.0 (CH), 120.4 (CH), 115.9
(2CH), 114.9 (2CH), 55.8 (OCH3). HRMS (ESI) for C15H12O2Na
(M + Na)+: calcd 247.0730, found: 247.0732.
3-(3,5-Dimethoxyphenyl)-5-methylbenzofuran (4l). 4l was pre-

pared according to method A; column chromatography on a silica gel
afforded 69 mg of the desired compound as a colorless oil, yield 64%;
Rf = 0.62 (EtOAc/pentane, 1/9, SiO2); IR (film) 3082, 2936, 1604,
1588, 150, 1452, 1345, 1277, 1219, 1114, 1093, 964, 745 cm−1; 1H
NMR (300 MHz, CDCl3) δ 7.77 (s, 1H), 7.64 (s, 1H), 7.44 (d, J =
8.4 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 6.80 (d, J = 2.3 Hz, 2H), 6.51
(t, J = 2.3 Hz, 1H), 3.88 (s, 6H), 2.49 (s, 3H). 13C{1H} NMR (75
MHz, CDCl3) δ 160.1 (2C), 153.1 (C), 140.6 (CH), 133.0 (C),
131.5 (C), 125.4 (C), 124.8 (CH), 121.0 (C), 119.1 (CH), 110.2
(CH), 104.7 (2CH), 98.2 (CH), 54.4 (2OCH3), 20.4 (CH3). HRMS
for C17H17O3 (M + H)+ calcd 269.1178, found 269.1176.
3-(3,5-Dimethoxyphenyl)-5-methoxybenzofuran (4m). 4m was

prepared according to method A; column chromatography on a silica
gel afforded 64 mg of the desired compound as a white solid, yield
63%; Rf = 0.56 (EtOAc/pentane, 5/95, SiO2); IR (film, cm−1) 3088,
2954, 2886, 1611, 1576, 1520, 1491, 1432; 1H NMR (300 MHz,
CDCl3) δ 7.68 (s, 1H), 7.36 (d, J = 8.9 Hz, 1H), 7.19 (d, J = 3.7 Hz,
1H), 6.88 (dd, J = 8.9, 2.6 Hz, 1H), 6.69 (d, J = 2.3 Hz, 2H), 6.42 (t, J
= 2.3 Hz, 1H), 3.79 (s, 9H). 13C{1H} NMR (75 MHz, CDCl3) δ
161.2 (2C), 156.2 (C), 150.7 (C), 142.4 (CH), 134.0 (C), 129.8 (C),
126.9 (C), 113.3 (CH), 112.2 (CH), 105.7 (2CH), 102.9 (CH), 99.4
(CH), 56.0 (OCH3), 55.4 (2OCH3). HRMS (ESI) for C17H16O4Na
(M + Na)+: calcd 307.0946, found: 307.0948.
4-(5-Methylbenzofuran-3-yl)benzonitrile (4n). 4n was prepared

according to method A; column chromatography on a silica gel
afforded 51 mg of the desired compound as a colorless oil, yield 55%;
Rf = 0.66 (EtOAc/pentane, 1/9, SiO2); IR (film, cm−1) 3042, 2933,
2228, 1624, 1577, 1512, 1487, 1452, 1277; 1H NMR (300 MHz,
CDCl3) δ 7.83 (s, 1H), 7.73 (s, 4H), 7.59 (s, 1H), 7.45 (d, J = 8.4 Hz,
1H), 7.21 (d, J = 8.4 Hz, 1H), 2.50 (s, 3H). 13C{1H} NMR (75 MHz,
CDCl3) δ 154.4 (C), 142.7 (CH), 137.2 (C), 133.1 (C), 132.7
(2CH), 127.7 (2CH), 126.4 (CH), 125.5 (C), 120.6 (C), 119.8

(CH), 118.9 (C), 111.6 (CH), 110.8 (C), 21.5 (CH3). HRMS for
C16H12ON (M + H)+ calcd 234.0919, found 234.0924.

4-(5-Methoxybenzofuran-3-yl)benzonitrile (4o). 4o was prepared
according to method A; column chromatography on a silica gel
afforded 73 mg of the desired compound as a colorless oil, yield 73%;
Rf = 0.66 (EtOAc/pentane, 1/9, SiO2); IR (film, cm−1) 3121, 2950,
2340, 1620, 1587, 1505, 1467, 1399; 1H NMR (300 MHz, CDCl3) δ
7.84 (s, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 7.47
(d, J = 9.0 Hz, 1H), 7.22 (d, J = 2.6 Hz, 1H), 7.00 (dd, J = 9.0, 2.6 Hz,
1H), 3.88 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 156.8 (C), 153.4
(C), 143.4 (CH), 140.5 (CH), 133.0 (2CH), 128.6 (C), 127.9
(2CH), 124.8 (C), 121.2 (C), 113.9 (CH), 112.7 (CH), 103.3 (CH),
102.8 (C), 56.2 (OCH3). HRMS (ESI) for C16H12O2N (M + H)+:
calcd 250.0868, found: 250.0873.

4-(5-Fluorobenzofuran-3-yl)benzonitrile (4p). 4p was prepared
according to method A; column chromatography on a silica gel
afforded 44 mg of the desired compound as a yellow oil, yield 52%; Rf

= 0.8 (EtOAc/pentane, 1/9, SiO2); IR (film, cm−1) 2954, 2888, 1602,
1566, 1521, 1445, 1398; 1H NMR (300 MHz, CDCl3) δ 7.91 (s, 1H),
7.77 (d, J = 8.6 Hz, 2H), 7.70 (d, J = 8.6 Hz, 2H), 7.51 (dd, J = 9.0,
3.9 Hz, 1H), 7.45 (dd, J = 8.7, 2.6 Hz, 1H), 7.11 (m, 1H). 13C{1H}
NMR (75 MHz, CDCl3) δ 161.3 (C-F,

1JC‑F = 239.6 Hz), 158.1 (C-F,
1JC‑F = 239.6 Hz), 152.1 (C), 144.1 (CH), 136.4 (C), 132.9 (2CH),
127.6 (2CH), 118.7 (2C), 113.2 (C-F, 2JC‑F = 26.5 Hz), 112.9 (C-F,
2JC‑F = 26.5 Hz), 112.9 (C-F, 3JC‑F = 9.8 Hz), 112.8 (C-F, 3JC‑F = 9.8
Hz) 111.2 (C), 106.0 (C-F, 2JC‑F = 25.8 Hz), 105.6 (C-F, 2JC‑F = 25.8
Hz). 19F NMR (188 MHz, CDCl3) δ −121.3 HRMS (ESI) for
C15H9ONF (M + H)+: calcd 238.0668, found: 238.0672.

3-(3,5-Dimethoxyphenyl)-5-fluorobenzofuran (4q). 4q was pre-
pared according to method A; column chromatography on a silica gel
afforded 67 mg of the desired compound as a colorless oil, yield 62%;
Rf = 0.69 (EtOAc/pentane, 1/9, SiO2); IR (film, cm−1) 3101, 2930,
2226, 1620, 1589, 1520, 1466, 1345; 1H NMR (400 MHz, CDCl3) δ
7.82 (s, 1H), 7.47 (td, J = 8.8, 3.4 Hz, 2H), 7.07 (td, J = 9.0, 2.6 Hz,
1H), 6.74 (d, J = 2.3 Hz, 2H), 6.50 (t, J = 2.3 Hz, 1H), 3.86 (s, 6H).
13C{1H} NMR (101 MHz, CDCl3) δ 161.4 (2C), 160.8 (C-F, 1JC‑F =
238.5 Hz), 158.4 (C-F, 1JC‑F = 238.5 Hz), 152.1 (C), 143.3 (CH),
133.4 (C), 127.4 (C-F, 3JC‑F = 10.3 Hz), 127.3 (C-F, 3JC‑F = 10.3 Hz),
122.7 (C-F, 4JC-F = 3.9 Hz), 122.7 (C-F, 4JC-F = 3.9 Hz), 112.6 (C-
F, 3JC‑F = 6.9 Hz), 112.6 (C-F, 3JC‑F = 6.9 Hz), 112.5 (C-F, 3JC‑F = 9.8
Hz), 112.4 (C-F, 3JC‑F = 9.8 Hz), 106.3 (C-F, 3JC‑F = 25.4 Hz), 106.1
(C-F, 3JC‑F = 25.4 Hz), 105.7 (2CH), 99.7 (CH), 55.6 (2OCH3). 19F
NMR (188 MHz, CDCl3) δ −120.4. HRMS (ESI) for C16H14O3F (M
+ H)+: calcd 273.0927, found: 273.0926.

3-(4-Cyanophenyl)benzofuran-5-carbonitrile (4r). 4r was pre-
pared according to method A; column chromatography on a silica gel
afforded 70 mg of the desired compound as a colorless oil, yield 72%;
Rf = 0.24 (EtOAc/cyclohexane, 3/7, SiO2); IR (film, cm−1) 2993,
2901, 2225, 1625, 1588, 1510, 1487, 1452; 1H NMR (300 MHz,
DMSO-d6) δ 8.78 (s, 1H), 8.55 (s, 1H), 8.02 (d, J = 8.3 Hz, 2H), 7.95
(d, J = 8.5 Hz, 2H), 7.93−7.83 (m, 2H). 13C{1H} NMR (75 MHz,
DMSO) δ 156.9 (C), 146.6 (CH), 135.0 (C), 132.9 (2CH), 128.8
(CH), 127.7 (2CH), 125.9 (CH), 125.4 (C), 119.8 (C), 119.0 (C),
118.6 (C), 113.4 (CH), 110.2 (C), 106.7 (C). HRMS (ESI) for
C16H9ON2 (M + H)+: calcd 245.0715, found: 245.0712.

5-Methoxy-2,3-diphenylbenzofuran (4s).27 4s was prepared
according to method A; column chromatography on a silica gel
afforded 36 mg of the desired compound as a colorless oil, yield 30%,
Rf = 0.76 (EtOAc/cyclohexane, 1/9, SiO2);

1H NMR (300 MHz,
CDCl3) δ 7.69−7.62 (m, 2H), 7.55−7.43 (m, 6H), 7.35−7.29 (m,
3H), 6.97-6.94 (m, 2H), 3.82 (s, 3H). 13C{1H} NMR (75 MHz,
CDCl3) δ 156.3 (C), 151.4 (C), 149.0 (C), 133.0 (C), 130.8 (2C),
129.8 (2CH), 129.0 (2C), 128.4 (2C), 128.3 (CH), 127.6 (CH),
126.9 (2CH), 117.7 (C), 113.6 (CH), 111.6 (CH), 102.3 (CH), 56.0
(OCH3). HRMS (ESI) for C21H17O2 (M + H)+: calcd 301.1229,
found: 301.1224
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