

Copper(I)-Catalyzed Cross-Coupling Reaction of Alkynylsilanes with 1-Chloroalkynes

Yasushi Nishihara, Kazutaka Ikegashira, Atsunori Mori,* and Tamejiro Hiyama

Research Laboratory of Resources Utilization, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan

Received 2 March 1998; revised 23 March 1998; accepted 27 March 1998

Abstract: A variety of unsymmetrical 1,4-biaryl-1,3-butadiyne derivatives are synthesized by a copper(I)-catalyzed cross-coupling reaction of alkynylsilanes with 1-chloroalkynes in moderate to good yields. These reactions are derived from the transmetalation of an alkynyl group from silicon to copper in a polar solvent. © 1998 Elsevier Science Ltd. All rights reserved.

During our study on the transformation of organosilicon compounds directed toward new carbon-carbon bond-forming reactions, we discovered that, in the presence of copper(I) salts, transmetalation of silicon to copper occurred in aprotic polar solvents such as N, N-dimethyformamide (DMF).¹ Independently, Ito and Hosomi reported that alkynylsilanes cross-coupled with acid chlorides in the presence of a catalytic amount of copper(I) chloride.² These findings prompted us to investigate a novel *sp-sp* carbon bond-forming reaction with alkynyl silanes, since the structure of conjugated diynes is common in natural products,³ particularly in antifungal agents.⁴ Due to the versatility of conjugated diynes, a variety of synthetic methods are available via a homo- or cross-coupling reaction.⁵ We alternatively report herein a convenient procedure for the formation of unsymmetrical conjugated diynes from the copper(I)-catalyzed cross-coupling reaction using alkynylsilanes and 1-chloroalkynes *under neutral conditions* (eq 1).

$$R^{1} = SiMe_{3} + R^{2} = Ci - Ci - Ci (10 \text{ mol}\%) = R^{1} = R^{2}$$
(1)
1 2 DMF, 80°C 3

First, we examined the cross-coupling reaction of trimethyl(4-methoxyphenylethynyl)silane (1a) with 1chloro-2-phenylacetylene (2a) under some different reaction conditions and the results are listed in Table 1. In the presence of a catalytic amount of CuCl (10 mol%) and $Pd(PPh_3)_2Cl_2$ (10 mol%), the desired cross-coupled product 3a was obtained in only 35% yield along with a homo-coupled product, 1,4-diphenyl-1,3-butadiyne (4), in 21% yield as shown in entry 1. To our surprise, the use of 10 mol% of CuCl, without addition of a palladium catalyst, allowed us to obtain higher yield of 3a (80%, entry 2). The reactions carried out at lower temperatures gave none (25 °C, entry 3) or <5% (60 °C, entry 4) yield of the product. When 1.5 mol of **1a** was added to **2a**, highest yield (90%) of **3a** was achieved (entries 2 vs 5). In place of CuCl, other copper(I) salts such as CuI were investigated and neither a catalytic nor a stoichometric amount was found to be effective for the present coupling reactions to proceed (entries 7 and 8). When CuOTf was used as a catalyst, a large amount of homo-coupled product **5** from **1a** was unexpectedly produced in 13% yield (entry 9). An addition of a copper catalyst is essential for the present reaction (entries 10 and 11).

Mə	p-{_}-	<u> </u>	Catalyst(s)	Catalyst(s) DMF MeO 3a				
				+ 🔇		\neg		
Entry	2a/mol	Catalyst(s)	Temp/℃	Time/h	Yield/%	Yield/%		
					<u>3a</u> ^b	4 °		
1	1.1	CuCl (10 mol%)-	80	24	35	21		
		$PdCl_2(PPh_3)_2$ (10 mol%)						
2		CuCl (10 mol%)		48	80	35		
3			25	24	0	0		
4			60		<5	<5		
5	1.5		80	48	90	29		
6 ^d	1.0				29 ^e	14		
7	1.5	CuI (10 mol%)			54	11		
8		CuI (1 mol)			58	39		
9		CuOTf (10 mol%)			43 ^f	70		
10		$PdCl_2(PPh_3)_2$ (10 mol%)			0	0		
11		none			0	0		

Table 1. Optimization of the cross-coupling reaction of 1a with 2a^a

^{*} 1a (1.0 mol) was used in DMF (5 mL). [°] GC yield based on 1a. [°] GC yield based on 2a. ^d The order of substrates was changed. [°] Symmetrical conjugated diyne 5 from 1a was formed (42%).

^f Symmetrical conjugated diyne 5 from 1a was formed (13%).

A general procedure for the formation of unsymmetrical conjugated diyne (3) is as follows: To a solution of copper chloride (2.4 mg, 0.02 mmol, 10 mol%) in DMF (1.5 mL) was added 1-chloro-2-phenylacetylene (2a) (50 mg, 0.37 mmol) at room temperature. To the mixture was added trimethyl(4-methoxyphenylethynyl)silane (1a) (50 mg, 0.25 mmol). The reaction mixture was stirred for 48 h at 80 $^{\circ}$ C, quenched with 3 M HCl, and extracted with diethyl ether (25 mL x 2). The combined ethereal layer was washed with NaHCO₃ aq. solution, then with brine and dried over MgSO₄. Filtration and evaporation provided

a brown oil. Column chromatography (SiO₂, hexane : dichloromethane = 10 : 1) gave 36 mg (65%) of 3a as a colorless solid.

Results of the present coupling reaction using a variety of alkynylsilanes with 1-chloroalkynes are summarized in Table 2. This reaction is affected by the substituents in the *para*-position of an aromatic ring. Alkynylsilane 1a bearing an electron-donating group produced the coupled products in higher yield (entries 1-3) than that bearing an electron-withdrawing group, e.g., 1b (entries 4-6). Alkynylsilane (1c) reacted with 1-chloroalkynes (2b or 2c) bearing an electron-withdrawing group to give 3d and 3f in 62 and 85% yield, respectively (entries 7 and 8). Although 3a was furnished from the reaction of 1a and 2a in 90% yield as observed in entry 1, the opposite combination of 1c with 2d bearing an electron-donating group gave 3a in only 43% yield (entry 9).

Entry	Alkynylsilane (1)	1-Chloroalkyne (2)	Time/h	Product	Yield/% ^b
	$(R^1 =)$	$(R^2 =)$			_
1	$4-MeO-C_{6}H_{4}-(1a)$	C ₆ H ₅ - (2a)	48	3a	90 (65)
2		$4-MeCO-C_{6}H_{4}-(2b)$	48	3b	97 (52)
3		$4-Cl-C_{6}H_{4}-(2c)$	48	3 c	95 (54)
4	4-MeCO- C_6H_4 - (1b)	2a	96	3d	69
5		2 c	48	3e	60 (42)
6		$4-MeO-C_{6}H_{4}-(2d)$	48	3b	60
7	C ₆ H ₅ - (1 c)	2 b	48	3d	62 (56)
8		2 c	48	3f	85 (53)
9		2d	48	3a	43
10	$4-NC-C_{6}H_{4}-(1d)$	2 b	48	3 g	93 (61)
11	4-'BuMe ₂ SiO-C ₆ H ₄ - (1e)	2c	48	3h	62 (32)

Table 2. Cu(I)-catalyzed cross-coupling reaction of alkynylsilanes (1) with 1-chloroalkynes (2)^a

^a Typical procedure: 1 (1.0 mol) and 2 (1.5 mol) were used in DMF (5 mL) at 80 °C. ^b GC yield based on 1 a and isolated yields are given in parentheses.

Although a protocol of the Cadiot-Chodkiewicz coupling⁶ is established that involves a copper(I)-catalyzed reaction of terminal acetylenes ($R^1C\equiv CH$) with 1-haloacetylenes ($R^2C\equiv CX$) (X = Br, I) in the presence of a base such as diethylamine (Et_2NH),⁷ the reaction of 1-chloroalkynes with terminal acetylenes often furnishes unsymmetrical dignes in poor yields under the standard Cadiot-Chodkiewicz condition⁸ or a copper(I)/palladium co-catalyst system.⁹ The low reactivity is ascribed to the inertness of 1-chloroalkynes compared with 1-bromo-and 1-iodoalkynes. We also examined the reaction of 1-chloroalkynes with terminal acetylenes at 80 °C and observed that complex mixtures of unidentified products resulted.¹⁰ For success in the clean formation of the desired cross-coupled products, an appropriate combination of alkynylsilanes ($R^1C\equiv CSiMe_3$) and 1-chloroalkynes ($R^2C\equiv CCI$) is essential, as we discussed above.

In summary, we have developed a convenient route to the formation of unsymmetrical conjugated diynes using 1-chloroalkynes and alkynyltrimethylsilanes in moderate to high yields via transmetalation of an alkynylsilane to a copper(I) catalyst. Since this method can be carried out under neutral conditions without any base, it will find further applications in the synthesis of polyynes and cyclic alkynes.

Acknowledgments: The present work was partially supported by Grants-in-aid for General Scientific Research No. 07405042 and for Scientific Research in Priority Area of Inter-element Linkage No. 09239102 from the Ministry of Education, Science, Sports, and Culture, Japan.

References

- (a) Ikegashira, K.; Nishihara, Y.; Hirabayashi, K.; Mori, A.; Hiyama T. Chem. Commun. 1997, 1039-1040. (b) Nishihara, Y.; Ikegashira, K.; Mori, A.; Hiyama, H. Chem. Lett. 1997, 1233-1234. (c) Mori, A.; Fujita, A.; Nishihara, Y.; Hiyama, T. Chem. Commun. 1997, 2159-2160.
- 2. Ito, H; Arimoto, K.; Sensui, H.-o.; Hosomi, A. Tetrahedron Lett. 1997, 38, 3977-3980.
- (a) Holmes, A. B.; Jennings-White, C. L. D.; Kendrick, D. A. J. Chem. Soc., Chem. Commun. 1983, 415-417.
 (b) Crombie, L.; Hobbs, A. J. W.; Horsham, M. A. Tetrahedron Lett. 1987, 28, 4875-4878.
 (c) Holmes, A. B.; Tabor, A. B.; Baker, R. J. Chem. Soc., Perkin Trans. 1 1991, 3307-3313.
 d) Hoye, T. R.; Hanson, P. R.; Tetrahedron Lett. 1993, 34, 5043-5046.
- 4. Stütz, A. Angew, Chem., Int. Ed. Engl. 1987, 26, 320-328.
- (a) Schlubach, H. H.; Franzen, V. J. Liebigs Ann. Chem. Soc. 1951, 116-121. (b) Black, H. K.; Horn, D. H. S.; Weedon, B. C. L. J. Chem. Soc. 1954, 1704-1709. (c) Kitamura, T.; Lee, C. H.; Taniguchi, Y.; Fujiwara, Y. J. Am. Chem. Soc. 1997, 119, 619-620.
- 6. Sonogashira, K.: Coupling reaction between sp carbon centers. In *Comprehensive Organic Chemistry*; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: New York, 1991; pp. 551-561.
- (a) Cadiot, P.; Chodkiewicz, W. C. R. Hebd. Seance Acad. Sci. 1955, 241, 1055-1057. (b) Chodkiewicz, W. Ann. Chim. Paris 1957, 2, 819-869.
- 8. Philippe, J. L.; Chodkiewicz, W.; Cadiot, P. Tetrahedron Lett. 1970, 1795-1798.
- 9. Alami, M.; Ferri, F. Tetrahedron Lett. 1996, 37, 2763-2766 and references cited therein.
- 10. Hay, A. S. J. Org. Chem. 1962, 27, 3320-3321.