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ABSTRACT: An original synthesis of Ca, Mg and Zn 2-ethylhexanoate (octoate) obtained 

by reaction between metallic powder with 2-ethylhexanoic acid was achieved. The 

activities of obtaining biocompatible catalysts of lactide polymerization were tested. The 

most active catalyst was zinc 2-ethylhexanoate (ZnOct2), and the lowest activity had 

calcium 2-ethylhexanoate (CaOct2). The ROP process was successfully optimized by 

using the design of the experiment. Polylactide with Mw=82.3 kg/mol with lactide 

conversion up to 85% and 8% content of D-lactic acid has been obtained. Thus obtained 

polylactides can be used in medical and pharmaceutical devices. 

KEYWORDS: PLA, racemization, medical devices, DOE, scale-up

INTRODUCTION

Polylactide is a "double green" polymer with high application potential.1,2 Raw materials 

for its production can be obtained from renewable resources.3 After using the product, it 

can be composted, where it decomposes into non-toxic products (CO2 and H2O).4 Non-

toxic and biocompatible PLA can be used in regenerative medicine for damaged tissues. 
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Also, PLA has found many applications: packaging materials,1,5 textiles,6 composites.68 

Medicine,7,8 and pharmacy9,10 are continually looking for new applications for polylactide. 

Researchers focused on developing new forms of drug delivery systems (DDS) and 

developing materials for regenerative medicine.11,12,13,14,15 

The monomer in PLA is lactic acid (LAc) (Scheme. 1). It is a weak, water-soluble organic 

acid with an asymmetric carbon atom.16 Lactic acid may exist in the form of two 

enantiomers: D-(-)-LAc or L-(+)- LAc. L-(+)- LAc is present in living organisms as a 

product of various metabolic changes.17 Lactic acid can be obtained as a result of 

chemical synthesis and biotechnological methods.18,19

Scheme 1. Synthesis of chiral lactic acid and chiral lactide
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In chemical synthesis, a racemic LAc mixture is obtained. Biotechnologically, however, 

both optically active enantiomers can be selectively obtained as a result of bacterial (e.g. 

using the Lactobacillus strain20,21,22) fermentation of starch and other carbohydrates 

derived from corn, sugar beet or potatoes.23

The properties of PLA depend on the stereochemical composition of the repeat units 

and their distribution along the chain.24 Homochiral PLA (PLLA or PDLA) (Fig. 1) is an 

isotactic, stereoregular and semicrystalline polymer (degree of crystallization up to 40%), 
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with Tg 55–65 °C and Tm 170–183 °C.25 Atactic PLA is made of heterochiral PLDLA units. 

It is an amorphous polymer with Tg = 59 °C, without melting point.26 A mixture of 

homochiral, isotactic PLLA and PDLA chains creates stereocomplexes with a melting 

point of approx. 230 °C.27,28

Figure 1. Chemical structure of polylactide, stereochemistry and properties

Mechanical properties characterize materials made of PLA. It can be a soft and flexible 

or hard and durable plastics.29 For homochiral PLA, as the average molar mass 

increases, the flexural strength increases, and the tensile strength does not change.30 
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However, as the PLDLA average molar mass increases, the flexural and tensile strength 

increases.31

Polylactide with strictly defined chirality can be obtained using optically active catalysts or 

mixtures of D,D-lactide and L,L-lactide with defined stoichiometry.32 The cost of 

purchasing D,D-lactide is about twice as high as L,L-lactide.33 The price of meso-lactide 

is challenging to determine because there are no suppliers of this raw material.34 

Therefore, many groups are working on catalysts that racemize lactide in situ in 

polymerization.35

Direct lactic acid condensation on tin or zinc oxide leads to PLA under 5 kg/mol.36 High 

molecular weight PLA is obtained by ring-opening polymerization (ROP).37 The most 

popular catalyst is tin(II) 2-ethylhexanoate (SnOct2).38 The high molecular weight polymer 

(Mw> 100 kg/mol) is obtained with high lactide conversion (> 95%).39,40 

Scheme 2. The synthesis of polylactide with tin(II) octoate.
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The production of PLA with tin(II) catalysts41,42, disqualify such obtained material from 

medicinal applications. Acceptable content of tin(II) residue in medical devices should not 

exceed 20 ppm of tin.43 The practical exclusion of tin content in medical devices is a 

premise to research the search for new biocompatible catalysts for lactide 

polymerization.44,45,46,47 

In the synthesis of medical PLA, it is recommended to use zirconium48 and 

titanium49,50,51 catalysts. Zirconium and titanium are used to production of bone implants, 

so they should also be non-toxic to humans in other applications. However, it has been 

found that some people may have an allergic effect. Zr and Ti catalysts are more 

expensive than the commonly used SnOct2, which increases the cost of PLA production. 

The latest trend in catalyst synthesis is the use of molecules found in metabolic 

pathways, i.e. magnesium,52,53 zinc54,55,56,57,58,59,60 and calcium.61,62 To date, scientists 

have developed dozens of catalysts based on zinc. 54,55,56,57,58,59,60 Unfortunately their use 

leads to low molecular weight PLA (Mw <15 kg/mol). Less scientific work concerns 

catalysts of magnesium and calcium.52,53 Polymerizations catalyzed with Ca and Mg salts 

have a long time of reaction (1–4 days) and polymer molar mass under 13 kg/mol. 
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Our research aimed to find new non-toxic catalysts for lactide polymerization. The next 

step was examined catalysts activity and determine optimal reaction conditions.43 

Additionally checking whether racemization of the chiral center in lactic acid occurs due 

to the use of strongly basic metals in catalysts.

Presently the most effective ROP catalyst is SnOct2. We tried to obtain its magnesium, 

zinc and calcium analogue MOct2 (M is metal).

Several methods can obtain magnesium (calcium or zinc) octoate (4). The first method 

is the reaction between 2-ethylhexanoic acid (3) and a metal oxide.63,64 The water formed 

in the reaction is azeotropically separated. The second method is the reaction between 

metal chloride65,66  and 2-ethylhexanoic acid (3). In this reaction, hydrogen chloride is 

formed in addition to the desired catalyst. The presence of hydrogen chloride is 

unfavorable due to its strong corrosive effect on steel apparatus. 

We used the design of experiments to optimize process conditions. Three variables in 

the rotatable factorial plan were examined. We tested the significance of the equation 

coefficients with the Student's test. The MS Solver add-on predicted the optimal 

conditions of polymerization.67

Page 9 of 43

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

EXPERIMENTAL SECTION

All solvents (toluene, dichloromethane) and other reagents (magnesium, zinc, calcium) 

were used without any purification. 

L,L-lactide (Boehringer Company) with high purity >99.5%, water content <80 ppm and 

free acids content under 0.3 mmol/kg was used. IR spectra were measured using a 

BRUKER ALPHA II Platinum ATR spectrometer (in ATR technics). 1H or 13C NMR spectra 

were measured using a Mercury-400BB spectrometer (400 MHz). Elemental analysis was 

measured by Perkin Elmer, model PE Seria II CHNS/O. A gel permeation 

chromatography measured molecular weights of PLA samples. The apparatus UltiMate 

3000 Dionex, with refractometric detector RIn-101 Shodex and with two Jordi Gel DVB 

Mixed Bed columns was used. Conversion of lactide was predicted using the calibration 

curve method.

The specific rotation of the product was measured with a polAAr 32 automatic 

polarimeter.

The content of D centers in the PLA chain was calculated from the formula:
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%𝐷 =
[𝛼] + 𝛼w

2 ∙ 𝛼w
∙ 100%

where:% D - the percentage of centers -D; [α] - specific rotation of the tested polymer 

αw - specific rotation of poly-D-lactide (+161.0 °)

Synthesis of calcium 2-ethylhexanoate (CaOct2, 4a). 2-ethylhexanoic acid (11 mL, 10 

g, (0.07 mol)), pellets of calcium (1.40 g, 0.035 mol, the particle size of calcium <5 mm) 

and toluene (70 mL) were agitated (200 rpm) and heated under reflux for 24 hours. 

Unreacted calcium was filtered out from the hot solution. Product was filtered at room 

temperature and washed with toluene (15 mL).  

Product was obtained with 64% yields (7.3 g, 0.022 mol) and 95.3% purity.47

CaOct2: white solid; IR (ATR, cm–1): 2962, 2936, 1685, 1561; 1H NMR (400 MHz, DMSO-

d6) δ/ppm: 0.82 (2t, 6H) 1.22 (m, 4H) 1.28 (m, 2H) 1.45 (m, 2H) 1.87 (s, 1H); elemental 

analysis (%): cal. C 58.86; H 9.26; anal. C 59.87; H 9.22.

Synthesis of magnesium 2-ethylhexanoate (MgOct2, 4b). 2-ethylhexanoic acid (22 mL, 

20 g, (0.14 mol), powdered magnesium (1.68 g, 0.07 mol, the particle size of magnesium 

<5 µm) and toluene (100 mL) were agitated (200 rpm) and heated under reflux for 20 
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hours. Unreacted magnesium was filtered out from the hot solution. Product was filtered 

at room temperature and washed with toluene (15 mL).  

Product was obtained with 80% yields (17.4 g, 0.11 mol) and 99.8% purity.68 

MgOct2: yellow solid; IR (ATR, cm–1): 2960, 2934, 1692, 1603; 1H NMR (400 MHz, 

DMSO-d6) δ/ppm: 0.84 (m, 6H) 1.26 (m, 4H) 1.59 (m, 4H) 1.89 (m, 1H); 13C NMR (100 

MHz, DMSO-d6) δ/ppm: 12.1; 14.0; 22.8; 25.4; 29.7; 31.8; 47.6; 183.9; elemental analysis 

(%): cal. C 61.8; H 9.73; anal. C 61.5; H 9.71.

Synthesis of zinc 2-ethylhexanoate (ZnOct2, 4c). 2-ethylhexanoic acid (11 mL, 10 g, 

(0.07 mol)), powder of zinc (2.246 g, 0.034 mol, the particle size of zinc <1 µm) and 

toluene (70 mL) were agitated (200 rpm) and heated under reflux for 8 h. Unreacted zinc 

was filtered out from the hot solution. Product was filtered at room temperature and 

washed with toluene (15 mL).  

Product was obtained with 87% yields (10.4 g, 0.03 mol) and 99.5% purity.47
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ZnOct2: transparent syrup; IR (ATR, cm–1): 2962, 2933, 1628, 1592; 1H NMR (400 MHz, 

DMSO-d6) δ/ppm: 0.80 (m, 6H) 1.23 (m, 4H) 1.35 (m, 2H) 1.45 (m, 2H) 2.02 (dq, 1H); 

elemental analysis (%): cal. C 54.62; H 8.59; anal. C 54.63; H 8.62.

Polymerization of L-lactide. L-lactide (8.64 g, 0.06 mol) was melted in an argon 

atmosphere with magnetic stirring (160 rpm) in a temperature range from 120 °C to 200 

°C (start of polymerization). 0.06–0.7 mL of 0.12 M solution of catalyst (MgOct2, CaOct2, 

ZnOct2) in CH2Cl2 was added (0.05–1.5 %mol. catalyst/lactide ratio). reactions were carried 

out in t = 1–32 h. The reaction products were cooled down to room temperature in an 

argon atmosphere and analyzed. Polylactides were obtained with the conversion of 

lactide 2–98.0% and Mw 1.2–34.1 kg/mol, DI 1.4–2.4, %D 0–13%. 

PLA: white or yellow solid; IR (ATR, cm–1): 1749, 1181, 868; 1H NMR (400 MHz, CDCl3) 

δ/ppm: 1.54 (d, 3H) 5.18 (q, 1H); 13C NMR (100 MHz, CDCl3) δ/ppm: 16.7; 20.5, 52.3, 

69.0, 170.3

RESULTS AND DISCUSSION
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Catalyst’s synthesis The catalyst synthesis was carried out in the direct reaction of an 

acid (3) with metal (Scheme 3). The merit of this method is the lower price of metal than 

its oxide or chloride. The second reaction product is hydrogen, which is removable from 

the reaction mixture.47 

Scheme 3. Obtaining of calcium, magnesium and zinc 2-ethylhexanoate 

OH

O
2 + + H2

 M


toluene

3 4

O

 O
-

2

M
2+

M=Ca (a); Mg (b); Zn (c)

The reaction between acid 3 with metal was carried out in reflux of toluene. The 

substrates were mixed using a magnetic stirrer for 8–24 h (yield 64–87%). The viscosity 

of the reaction mixture acid 3 to metal in molar ratio 2:1 was too high. To reduce them 

was necessary to add an appropriate volume of toluene. This treatment allowed for better 

mixing of the reaction mixture in the final stage of the process. The unreacted metal 

particles were selectively separated by hot filtration. The yellow product is crystallized 

from the toluene solution at room temperature. Then it could be separated by subsequent 

Page 14 of 43

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



15

filtration. The last step was washing a product with toluene and drying at room 

temperature. The catalyst was obtained with sufficient good purity. The most importantly 

was low content of water (<400 ppm). The presence of water in the catalyst is 

disadvantageous because it cannot be used for ring-opening polymerization.

Table 1. Results of synthesis of calcium, magnesium and zinc octoate

2-
ethylheksanoate

time (h) yields (%) purity (%) water content (ppm)

zinc 8 87.0 99.5 350
magnesium 20 80.0 99.8 280

calcium 24 64.0 95.3 300

Catalysts activity in lactide polymerization.

L-LD polymerization was provided out at 200 °C for 24 h with 0.05%mol catalyst (Fig. 

2.). The lowest LD conversion was obtained with a calcium catalyst (58%). The 

conversion at the same high level (92%) was achieved in the case of magnesium (91.5%) 

and zinc (92.8%) catalysts. The lowest molecular weight, 19.5 kg/mol, was obtained 

against CaOct2. The polylactide obtained against MgOct2 had an average molar mass of 
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about 31 kg/mol. The highest molar mass (64 kg/mol) was obtained in a ZnOct2 catalyzed 

reaction.

CaOct2 MgOct2 ZnOct2
0

10

20

30

40

50

60

70

80

0
10
20
30
40
50
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70
80
90
100
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m
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Conversion of LD, %

Figure 2. The influence of catalyst on lactide conversion and molecular weight

Racemization of lactide in ROP.

Two methods determined the degree of racemization of lactic acid in polylactide. The 

signal surface ratio of 169.3 ppm (heterochiral PLA) to 169.5 ppm (homochiral PLA) was 

determined in the 13C NMR spectrum (Figure 3).
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Figure 3. The fragment of 13C NMR spectrum of polylactides obtained against SnOct2 

(blue), CaOct2 (green), MgOct2 (red) (169.3 ppm – PDLLA, 169.5 ppm - PLLA)

Table 2. The degree of racemization of lactic acid in PLA determined by 13C NMR and 

specific rotation measurement

RACEMIZATION DEGREE OF LACTIC ACID, %

CATALYST
13C NMR specific rotation
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SnOct2 0 0

CaOct2 32.0 31.9

MgOct2 20.3 20.8

ZnOct2 14.5 13.9

Optimization of L,L-lactide polymerization. High conversion of lactide in PLA is 

necessary for the material to be used in medicine. When residual lactide concentration in 

PLA is high, additional steps to remove it are required. This prolongs the process and 

increases its cost.69,70,71 The molecular weight of PLA significantly affects the potential 

application. The higher Mw PLA is used for implants and the lower molecular weight for 

DDS. Thus, it seems useful to link the synthesis conditions to Mw of the polymer. The 

content of D centers in PLA (% D) should not exceed 15%.72

It was checked that essential process variable, e.g. temperature and reaction time, 

catalyst concentration and mixing efficiency. During polymerization, it is challenging to 

keep the mixing speed constant. A significant increase in viscosity during the process is 
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responsible for this effect. So we established this variable at a constant level. The quality 

of the L,L-lactide substrate used in reaction determines the molecular weight of polymer. 

Too high water content (>150 ppm) and/or lactic acid decrease a molecular weight of 

PLA. Before each reaction, the content of water and free acids in the lactide was tested.68 

The optimization carried out was to indicate a relationship of lactide conversion (ŷ1) and 

average molecular weight (Mw) (ŷ2) and content of D centers in PLA (%D) (ŷ4) on reaction 

time (z1) catalyst concentration (z2) and temperature (z3), respectively. The second-

degree equation can be obtained using a rotatable compositional plane:

ŷi = b0 + Σbixi + Σbijxixj + Σbixi2

The criteria of optimization were to maximize of conversion of lactide (ŷ1) and molecular 

weight of polylactide (ŷ2). The percentage of the content of D centers in PLA should be 

below 15%, ŷ4. We tested the effect of the time z1 (1.3–4.7 h), catalyst/LD ratio z2 (0.08–

0.42 %mol) and reaction time z3 (143.2–176.8 °C) (Table 3).

Table 3. Polymerization of L-lactide with ZnOct2. Factorial 23 and rotatable designs: 

variables at maximum and minimum levels. 
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xi natural variable (–1.682) (-1) (0) (+1) (+1.682)

x1 time (h) 1.3 2.0 3.0 4.0 4.7

x2 catalyst/LD ratio (%mol) 0.08 0.15 0.25 0.35 0.42

x3 temperature (°C) 143.2 150 160 170 176.8

A rotatable 20-run design was used. This plan contains a 2-level factorial part (eight 

runs with three input variables at all combinations of the +1 and –1 levels). The next part 

is a star points (six runs with each of the three input variables at –1.682 and +1.682, while 

the other two were at (0)). The last is replicates at the center of the design (six runs with 

all three variables at 0). In all experiments, the remaining variables were constant (Table 

4). The experiments were performed in random order, and for each experiment, all four 

of the response variables, yi, were measured. Table 4 shows the design matrix, along 

with the measured responses.

To shorten the discussion, without the statistical analysis details are presented in this 

paper. We present here only the selected quadratic models (without insignificant 

coefficients) and the most important diagrams.
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Table 4. L-lactide polymerization with ZnOct2. Factorial rotatable design: experimental 

matrixa and resultsb

Coded variables
Conversion 

(%)
Mw

(kg/mol)

Mn 

(kg/mol
)

%D
(%)

no
.

x1 x2 x3 y1 ŷ1 y2 ŷ2 y3 y4 ŷ4

1 -1 -1 -1 25.6 26.4 58.1 53.7 42.9 11.0 10.6
2 +1 -1 -1 77.4 71.0 69.6 70.3 39.0 5.5 6.6
3 -1 +1 -1 48.3 40.5 50.5 49.9 35.5 4.9 4.7
4 +1 +1 -1 81.6 85.2 61.9 66.5 37.4 3.7 3.6
5 -1 -1 +1 30.4 26.1 33.9 30.5 31.4 2.2 2.9
6 +1 -1 +1 57.2 60.0 43.4 47.2 22.2 3.3 4.1
7 -1 +1 +1 45.6 47.0 27.7 34.3 19.9 3.9 3.4
8 +1 +1 +1 82.4 80.9 49.3 50.9 24.3 6.5 7.5

9
-

1.682
0 0 19.3 23.0 13.8 16.2 12.8 3.2 3.4

10
+1.68

2
0 0 90.3 89.0 49.3 44.2 25.4 4.5 3.4

11 0
-

1.682
0 34.0 37.4 59.8 65.6 28.2 3.6 2.6

12 0
+1.68

2
0 65.2 66.9 73.0 65.6 44.8 0.3 0.5

13 0 0
-

1.682
50.5 57.9 73.2 74.3 49.9 12.8 12.9

14 0 0
+1.68

2
51.7 54.1 45.5 41.7 30.8 10.6 9.7

15 0 0 0 55.5 56.0 67.4 65.6 34.1 4.7 4.8
16 0 0 0 55.9 56.0 65.4 65.6 36.9 5.1 4.8
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17 0 0 0 56.8 56.0 68.7 65.6 37.5 4.8 4.8
18 0 0 0 57.3 56.0 64.6 65.6 32.5 4.7 4.8
19 0 0 0 53.7 56.0 62.5 65.6 32.4 4.9 4.8
20 0 0 0 57.7 56.0 64.7 65.6 36.5 4.4 4.8

a Constant conditions: all experiments were performed using the same raw materials; 
scale: 8.64 g (0.06 mol) of L-lactide (purity >99.5%, contents of water <80 ppm and free 
acids 0.3 mmol/kg; stirring rate 160 rpm, in an argon atmosphere.  
b All ŷi have been calculated from the quadratic model. 

Conversion of lactide, ŷ1 (%).

ŷ1 = 56.0 + 19.6 x1 + 8.77 x2 – 1.12 x3 – 2.69 x1x3 – 1.69 x2x3 – 1.37 x22

Figure 4 shows the effect of conversion of lactide, ŷ1 depends on the reaction time x1 

and catalyst concentration x2, at the reaction temperature x3 = +1. 

Figure 4. The L-lactide conversion (ŷ1) effect on the reaction time (x1), and concentration 

of catalyst, (x2); temperature (x3) = +1. 

x2 (cat./LD 
ratio, % ol)
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The molecular weight of PLA (Mw) ŷ2, (kg/mol). 

ŷ2 = 65.6 + 8.32 x1 – 9.69 x3 + 1.88 x2x3 – 12.5 x12 – 2.69 x32 

Figure 5 shows the influence of PLA molecular weight (ŷ2) depends on the reaction time 

(x1) and temperature (x3), at the catalyst concentration x2 = +1.

Figure 5. The polylactide molecular weight (ŷ2) in function on the reaction time (x1) and 

temperature (x3); catalyst concentration (x2)=+1.

Content of D centers in PLA (%D) (ŷ4).

ŷ4 = 4.79 – 0.63 x2 – 0.94 x3 + 0.73 x1x2+1.30 x2x3 + 1.60 x2x3 – 0.49 x12 – 1.16 

x22+2.29 x32 
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Figure 6 shows the influence of the content of D centre in PLA (%D) (ŷ4) on the catalyst 

concentration x2 and temperature x3, at the reaction time x1 = +1.

Figure 6. The content of D centre (ŷ4) on the concentration of catalyst (x2) and the 

temperature (x3); reaction time (x1)=+1

The experimental data was described very well by obtained equations. An optimal point 

was calculated using the Microsoft Solver. The optimization criteria were to obtain the 

maximum molar mass with lactide conversion >80% with the content of D centre <15%. 

The coordinates of the optimal point are the following: z1 = 4.7 h, z2 = 0.08%mol, z3 = 176.8 

°C. The result of the reaction under these conditions should be a polymer with Mw = 81.1 
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kg/mol and conversion of 84.5% and %D=8%. The PLA with Mw = 82.3 kg/mol and 85.0% 

conversion and %D=8.4% (Table 5) was obtained in a confirmatory experiment. The 

obtained result, in line with the forecast, testifies to the correctness of the equations 

obtained. The average molar mass of polymers was increased from 20.0 up to 70.0 

kg/mol.68

Table 5. Experimental and predicted results of  polylactide synthesis with ZnOct2 in 

optimal conditions 

Results conversion (%) Mw (kg/mol) %D (%)

calculated 84.5 81.1 8.0

experimental 85.0 82.3 8.4

Scale-up of lactide polymerization

In determining optimal conditions, a large scale laboratory process was carried out at 

50 g lactide. The reaction conditions were as follow: temperature – 175 °C, catalyst 

concentration – 0.08% and reaction time – 5 h. The reaction was conducted for 5 hours. 
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The scale of the process has been increased six times (Fig.6). The results were similar 

to those of optimization were obtained. The conversion of lactide differed approx. 1% 

(Table 6) and Mw by approx. 0.4 kg/mol. High compliance was also observed on the 

content of D centers (about 0.2%).

The scale was increased 25 times. The experiment was carried out at 2 L metal reactor. 

This apparatus can be used on a post-production medical PLA scale. The same 

proportions were tested as on the large laboratory scale. The results that were obtained 

also matched very well to those of smaller scales (lab and large laboratory). A polymer 

with a high 89.2% conversion and a higher molecular weight of 86.9 kg/mol was obtained. 

The content of D centers (9.6%) was similar to the one predicted by the optimization 

model. It can be concluded that the received models also work well on a larger scale.

Page 26 of 43

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



27

lab scale
• 8.64 g

large lab 
scale
• 52.0 g

production 
scale
• 1.3 kg

Figure 7. Process scale-up diagram

Table 6. Obtained results of L-lactide polymerization at different scales

Scale LD mass (g)
conversion 

(%)
Mw (g/mol) %D (%)

lab 8.64 85.0 82.3 8.4

large lab 52.0 85.9 81.9 8.6

production 1300 89.2 86.9 9.6

CONCLUSIONS

x 6

x 25
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An original method for synthesis biocompatible catalysts was developed. It is based on 

the reaction of 2-ethylhexanoic acid with metals, e.g. zinc, calcium and magnesium. It 

was shown that ZnOct2 is a very good, non-toxic catalyst for PLA production. The 

adequate mathematically models (conversion of lactide, PLA molecular weight and 

contents of D centre in the polymer) for lactide polymerization catalyzed by ZnOct2 were 

obtained. Polymerization conditions with ZnOct2 as catalyst were developed. The PLA 

was obtained with 85% lactide conversion and an average molecular weight of 82.3 

kg/mol, and D%=8.4%, without tin (II) residues. The obtained models have been shown 

to work well, even when scale-up. Convergent results were obtained with a 6- and 25-fold 

increase in scale. It has been shown that the developed process conditions can be 

transferred to a production scale.

ABBREVIATIONS

DoE, Design of Experiments; PLA, polylactide; SnOct2, tin 2-ethylhexanoate; CaOct2, 

calcium 2-ethylhexanoate; MgOct2, magnesium 2-ethylhexanoate; ZnOct2, zinc 2-

ethylhexanoate; Mn, number average molecular weight; Mw, weight average molecular 

weight. 
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