Accepted Manuscript

Proton transfer assisted facile encapsulation of picric acid in sol-gel derived silica decorated with azo-azomethine hosts

Ruchi Mutneja, Raghubir Singh, Varinder Kaur, Jörg Wagler, Edwin Kroke, Sushil Kumar Kansal

PII: S0143-7208(16)30701-X

DOI: 10.1016/j.dyepig.2016.12.060

Reference: DYPI 5687

To appear in: Dyes and Pigments

Received Date: 10 September 2016

Revised Date: 25 November 2016

Accepted Date: 21 December 2016

Please cite this article as: Mutneja R, Singh R, Kaur V, Wagler J, Kroke E, Kansal SK, Proton transfer assisted facile encapsulation of picric acid in sol-gel derived silica decorated with azo-azomethine hosts, *Dyes and Pigments* (2017), doi: 10.1016/j.dyepig.2016.12.060.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Proton transfer assisted facile encapsulation of picric acid in sol-gel derived silica decorated
2	with azo-azomethine hosts
3	Ruchi Mutneja ^a , Raghubir Singh ^{b*} , Varinder Kaur ^{a*} , Jörg Wagler ^c , Edwin Kroke ^c , Sushil
4	Kumar Kansal ^a
5	"Department of Chemistry, Panjab University, Chandigarh – 160 014, India
6	^b DAV College, Sector 10, Chandigarh – 160 010, India
7	^c Institut für Anorganische Chemie, Technische Universität Bergakademie, Freiberg – 09596
8	Freiberg, Germany
9	^d Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab
10	University, Chandigarh-160014, India
11	Abstract:
12	An azo-azomethine host has been synthesized and incorporated onto sol-gel derived
13	silica via hydrolysis of its tricyclic silanizing unit (i.e., a silatrane moiety). The azo-
14	azomethine functionalized silatrane (the "host") was studied by various spectroscopic
15	techniques, elemental analysis, single crystal X-ray diffraction and thermogravimetric
16	analysis. Upon application to silica, significant change in surface area, pore diameter and

17 pore volume of the product confirmed the incorporation of azo-azomethine pendants in the

18 channels of the silica gel. Scanning electron microscopy and high resolution-transmission 19 electron microscopy were used to analyse the surface morphology and porous nature of the

19 electron microscopy were used to analyse the surface morphology and porous nature of the 20 sorbent. The azo-azomethine functionalized silica was further utilized for the uptake of picric

21 acid (PA) assisted by proton transfer. PA (the "guest") being highly acidic interacts with the

22 electron rich site of the host via proton transfer. As a consequence electrostatic interactions

23 between host and guest molecules result in the fast uptake of PA onto the sorbent. Formation

of the host-guest complex was studied by NMR spectroscopy of the host/guest solutions and
host solutions with related dummy guest molecules. The maximum adsorption capacity of the

sorbent for PA was found to be 68.5 mg.g^{-1} calculated on the basis of a Langmuir model.

27 Key words: Azo-azomethine, silatrane, proton transfer interaction, picric acid

- 28 **Corresponding author:**
- 29 raghu_chem2006@yahoo.com, var_ka04@yahoo.co.in
- 30 Contact no. 09872313583 (R. Singh), 09815065809 (V. Kaur)
- 31 32

1 1. Introduction

The pervasive utilization of picric acid (PA), e.g., as antiseptic in pharmaceutical drugs, in electric batteries, leather industry, dye industries and as an explosive in fireworks and weapons [1-6], caused (and still causes) its continuous release in the environment. Being non-biodegradable, its sustained exposure to living beings may cause headache, nausea, dizziness, difficulty in swallowing, diarrhoea, vomiting, shock, convulsions and disorders in central nervous system, liver and kidneys [7-9]. Thus, development of new hosts for the uptake of PA is most desirable for environment and health safety.

9 The electron deficient and highly acidic nature of PA (caused by its three electron 10 withdrawing nitro groups) is responsible for its active participation in charge transfer (CT) 11 and proton transfer (PT) reactions [10-13], thereby providing opportunities for development 12 of hosts for its detection/recognition. Based upon CT interactions, i.e., where electrons from 13 π electron rich molecular systems (as a "host") are transferred to electron deficient PA (as a 14 "guest") to form electron donor-acceptor (host-guest) interactions, various tweezers have 15 been developed in the past for the encapsulation and chemosensing of PA [14-19]. In hosts 16 involving CT accompanied by PT, formation of intermolecular hydrogen bond takes place 17 between hydroxyl group of PA (guest) with the electron rich site of a "host", thereby 18 transferring its acidic proton. This generates picrate ions and a positively charged host site, 19 which augments the ionic host-guest interactions [20-22]. Previously, this type of molecular 20 hosts for PA have been developed utilizing proton accepting sites such as pyridine substituted 21 *p*-phenylenevinylene, dimethylamine group of N,N-dimethylaminocinnamaldehyde, and 22 1,3,5-tris(4'-(N,N-dimethylamino)phenyl)benzene [23-25]. It is envisaged herein that such 23 host-guest interactions may be probed for the adsorption of PA using a solid sorbent 24 functionalized with hosts having either proton accepting sites and/or π -electron rich sites.

25 Till date, some materials have been designed for the adsorption of PA such as 26 uncalcined MCM-14 [26] (with hydrophobic sites created by the surfactant template), and 27 cetyltrimethylammonium bromide (CTAB) coated magnetic iron oxide nanoparticles [27] 28 where ion pair formation between CTA⁺ and picrate ions is responsible for adsorption under 29 acidic and basic conditions, respectively. Besides, electrostatic interactions are also 30 responsible in almond shell non-magnetic and magnetic activated carbon [28], and different 31 inorganic surfaces [29,30]. However, in Amberlite IRA-67 (a weakly basic gel-type 32 polyacrylic resin having tertiary amine functional group), acid-amine complex formation 33 through the transfer of acidic proton to the amine is accountable for the PA adsorption [31].

2

1 Amongst sorbents silica surfaces have been devoted major attention due to their 2 biocompatibility, large surface area as well as high thermal and chemical stability [32-35]. 3 Because of its in general large adsorption capacity, tunable pore size, simple synthetic 4 accessibility and cost effectiveness [36,37], grafted mesoporous silica has been recognized as 5 efficient sorbent for the removal of heavy metal ions and toxic organic compounds [38-42]. 6 Especially monolithic silica varieties with hierarchical porosity have gained much attention 7 due to their fascinating structure and wide application in chromatographic columns, 8 adsorption, enzyme immobilization, and catalytic supports [43-46]. Recently, Huesing et.al 9 reviewed and reported different strategies to synthesize monolithic materials with diverse 10 dimensions [47-50]. In porous silica surfaces, tethering of specific organic components is 11 generally achieved either by direct co-condensation method or post synthesis method 12 (grafting) [51-53]. In addition to condensation approaches, thiol-ene chemistry between an 13 olefin and a thiol [54] and functionalization via addition reactions [55] have also been studied 14 to enhance efficiency of modification.

15 Azo-azomethines offer an electron rich phenolic skeleton in combination with two 16 different Brønsted basic sites, desirable features of a PA host. The azomethine group itself 17 allows for easy incorporation of the host in a system with suitable tether (e.g., a linker 18 connected with a silanizing unit) for immobilization on silica surfaces. To the best of our 19 knowledge, solid surfaces functionalized with azo-azomethine hosts still need to be explored 20 for the adsorption of PA. Hence, an azo-azomethine host is developed for the decoration of 21 silica with its Brønsted-basic sites and π -basic moieties for proton transfer with PA to 22 eventually furnish electrostatic host-guest interactions. Being attached to a silatrane 23 functionalized linker, this host allows for convenient silanization of amorphous silica. 24 Previously, we reported silatranes (tricyclic analogues of triethoxysilanes) as modifiers for 25 functionalizing silica surfaces which are superior to related triethoxysilanes [56,57]. In the 26 present report, synthesis and characterization of the azo-azomethine host (H), the study of its 27 host-guest (H-G) interaction, functionalization of sol-gel derived silica, optimized PA 28 adsorption conditions, studies on efficiency over structurally related guests, and validation 29 parameters of the herein developed method are reported in detail.

30 2. Experimental

31 2.1 Materials

Toluene (Fischer Scientific) and diethyl ether (Fischer Scientific) were distilled from sodium/benzophenone before use and stored over molecular sieves for 24 h under nitrogen

1 atmosphere. Methanol (Finar), ethanol absolute (Merck), dichloromethane (Fischer 2 Scientific), p-nitrophenol (TCI), 2,4-dinitrophenol (Aldrich), polyethyleneglycol (Acros), 3 tetraethylorthosilicate (Acros), nitrobenzene (Sd-fine), aniline (Merck), phenol (Sd-fine), 4 picric acid (Aldrich), 2-hydroxyacetophenone (Acros), sodium carbonate (Merck), sodium 5 nitrite cetyltrimethylammonium bromide (CDH), 3-(Qualigens), 6 aminopropyl(triethoxy)silane (Aldrich), triethanolamine (Merck), concentrated hydrochloric 7 acid (National Chemical) and concentrated nitric acid (National Chemical) were used as such 8 3without any purification. 3-aminopropylsilatrane was synthesized from 9 aminopropyl(triethoxy)silane and triethanolamine as reported earlier [58].

10

2.2 Physical measurements

11 Infrared spectra were routinely obtained on Thermo scientific NICOLET IS50 FT-IR 12 and Perkin Elmer RX-I FT IR spectrophotometers. Mass spectral measurements (ESI source 13 with capillary voltage 2500 V) were carried out on a VG Analytical (70-S) spectrometer. C, 14 H, N elemental microanalyses were obtained on a FLASH-2000 organic elemental analyzer. Solution NMR (¹H, ¹³C) spectra were recorded at 25 °C on a Bruker Avance II FT NMR (AL 15 16 400 MHz) and on a JEOL (300 MHz) spectrometer. Chemical shifts in ppm are reported 17 relative to tetramethylsilane (TMS). Single-crystal X-ray structure analysis was carried out on 18 a Stoe IPDS-2T diffractometer using Mo K α -radiation (λ = 0.71073 Å). The structure was 19 solved by direct methods (SHELXS-97) and refined with full-matrix least-squares method 20 (refinement of F^2 against all reflections with SHELXL-97). Electronic spectral measurements 21 were carried out using a JASCO V-530 double beam spectrophotometer in the range 250-600 22 nm using quartz cells (1 cm). The Brunauer-Emmett-Teller (BET) surface area was 23 estimated using a NOVA 2000e BET surface area analyzer (Quantachrome, USA) using 24 multiple point measurement. Prior to BET analysis, degassing of the samples was done at 150 25 °C for 10 h. Thermogravimetric analysis was carried out in dynamic nitrogen atmosphere 26 using a TA Q600 analyzer at a heating rate of 20 K min⁻¹. Pore size distributions were 27 calculated by the Barrett-Joyner-Halenda (BJH) method. Morphology of the adsorbent was 28 investigated by SEM SU8010 and high resolution transmission electron microscope at 200 29 kV voltage using an FP 5022/22-Tecnai G2 20 S-TWIN instrument. A Supelco Visiprep solid 30 phase extraction chamber equipped with a vacuum pump (15 mmHg) was used for some 31 optimization experiments.

32 2.3 Synthesis of the azo-azomethine host (H)

The azo-azomethine host was synthesized in a two step procedure. In the first step, the azo dye was synthesized according to a well-known method [59]. In brief, aniline (2.3 mL, 25

1 mmol) was dissolved in conc. hydrochloric acid (6.0 mL) and heated in a beaker to form a 2 clear solution. This solution was cooled in an ice/salt bath (to 0-5 °C) and aqueous solution of 3 sodium nitrite (2.0 g, 28 mmol dissolved in 10 mL water) was added drop-wise keeping the 4 temperature of the reaction mixture in the same range. The contents were stirred for 30 min 5 (at 0 °C) followed by the drop-wise addition of 2-hydroxyacetophenone (2.6 mL, 25 mmol) 6 and the resulting mixture was stirred for 2 h (at 0-5 $^{\circ}$ C). The orange precipitate (azo dye) 7 thus formed was filtered and recrystallized from ethanol. In the second step (for silyl 8 functionalization) 3-aminopropylsilatrane (0.50 g, 2.15 mmol dissolved in 10 mL toluene) 9 was added to a single-neck round bottom flask fitted with a Dean-Stark trap. To this solution, 10 azo dye (0.517 g, 2.15 mmol) in toluene (30 mL) was added drop-wise using a syringe. The 11 contents were refluxed and water produced during the reaction was removed azeotropically. 12 The contents were cooled to room temperature and toluene was removed under vacuum to 13 afford a solid product. The orange solid was washed with diethyl ether and dried. Suitable 14 crystals for single-crystal X-ray diffraction were obtained from a solution of the product in 15 dichloromethane/hexane mixture by slow evaporation at room temperature.

16 2.3.1 5-Phenylazo-1-(2-hydroxyphenyl)ethanone (Azo dye)

17 Yield: 3.88 g (16.2 mmol, 65%). M.p.: 120-125 °C; ¹H NMR (CDCl₃, 300 MHz): δ 18 (ppm) 2.75 (s, 3H, COCH₃), 7.05 (d, 1H¹¹, J = 8.7 Hz), 7.45 (m, 3H^{3,4,5}), 7.85 (d, 2H^{2,6}, J = 19 8.1 Hz), 8.08 (dd, 1H¹², J = 9 Hz), 8.32 (d, 1H⁸, J = 2.1 Hz), 12.5 (s, 1H, OH); IR (cm⁻¹): 20 1540 v (-N=N-), 1636 v (C=O), 3186 v (O-H).

2.3.2 4-Phenylazo-2-{1-[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undec-1yl)propylimino]ethyl}-phenol (H)

Yield: 0.65 g (1.44 mmol, 72%). M.p.: 150-155 °C; ¹H NMR (400 MHz, CDCl₃): δ 23 (ppm) 0.44 (m, 2H, SiCH₂), 1.83 (m, 2H, CCH₂C), 2.48 (s, 3H, NCCH₃), 2.71 (t, 6H, 24 NCH₂C, J = 5.8 Hz), 3.54 (t, 2H, CCH₂N), 3.66 (t, 6H, OCH₂, J = 5.8 Hz), 6.78 (d, H¹¹, J = 25 9.2 Hz), 7.30-7.42 (m, $3H^{3,4,5}$), 7.75 (d, $2H^{2,6}$, J = 7.4 Hz), 7.90 (dd, $1H^{12}$, J = 9.24 Hz), 8.05 26 (d, 1H⁸, J = 2.5 Hz), 17.06 (s, 1H, OH); ¹³C NMR (100.68 MHz, CDCl₃): δ (ppm) 13.77 27 28 (SiCH₂), 25.28 (CCH₂C), 49.1 (NCCH₃), 51.18 (CCH₂N), 57.78 (NCH₂), 60.73 (OCH₂), 114.8 (C¹¹), 119.8 (C^{2,6}), 122.2 (C⁸), 124.3 (C⁹), 125.8 (C¹²), 130.4 (C^{3,5}), 138.8 (C⁴), 141.3 29 (C^{7}) , 153.0 (C^{1}) , 173.3 (C=N), 177.0 (C^{10}) ; IR (solid state, cm⁻¹): 582 m (υ Si \leftarrow N) 706 s, 30 31 758 s (v_s Si–O), 847 m,873 w (v C–N), 907 m (v_s NC₃), 936 m (v C–C), 954 w, 1016 s, (v_{as} 32 NC₃), 1095 vs (υ_{as} Si–O), 1125 vs (υ C–O), 1171 m (τ CH₂O), 1273 m (ω CH₂O), 1353 m, 33 1400 w (δ CH₃C), 1464 (υ C=C), 1549 (-N=N-), 1605 vs (υ C=N), 2872 s, 3035 (υ_s CH₂), 34 3186 b (N–H---O); MS (% relative abundance, m/z fragment): 174 (3.45, N(CH₂CH₂O)₃Si)⁺, 1 455.2 (100, M + H)⁺, 477.2 (38.78, M + Na)⁺, 478.2 (9.94, M + H + Na)⁺, 931 (3.55, 2 2M+Na); Anal. Calcd for $C_{22}H_{32}N_4O_4Si$: C, 61.51; H, 6.88; N, 11.96; Found: C, 59.83; H, 3 6.63; N, 12.00. 4 Single-crystal X-ray diffraction analysis, selected parameters of data collection and 5 structure refinement: empirical formula $C_{47}H_{62}Cl_2N_8O_8Si_2$ (*FW* 994.12), *T* 180(2) K, λ

6 0.71073 Å, triclinic, *P*-1, *a* 6.7621(6), *b* 13.2927(12), *c* 14.9421(15) Å, α 65.933(7), β 7 82.804(8), γ 89.464(7) deg, *V* 1215.4(2) Å³, *Z* 1, ρ_{calc} 1.358 Mg/m³, μ_{Mokug} 0.245 mm⁻¹, *F*

8 (000) 526, Reflections collected 11328, Unique 4504 [R(int) 0.0406], θ_{max} 25.5 deg,

9 Completeness 99.7%, Data/restraint/parameters 4504/7/321, GoF on F^2 1.072, R_1 [I>2 σ (I)]

10 0.0607, R_1 (all data) 0.1419, w R_2 (all data) 0.1382.

11 Decoration of silica with host (H@SM)

The functionalized silica decorated with host sites was prepared in two steps including 12 13 1) Fabrication of the mesoporous silica monolith 2) Incorporation of azo-azomethine hosts. 14 Firstly, a mesoporous silica monolith was synthesized by the sol-gel method as reported in 15 literature [60]. Briefly, tetraethylorthosilicate (5.58 g, 26.7 mmol, 6.0 mL) was added to a 16 solution of polyethyleneglycol (5.0 g, 0.142 mmol) in aqueous nitric acid (0.165 M, 30 mL) 17 and the contents were stirred. As a clear solution had formed, CTAB (1.0 g, 2.74 mmol) was 18 added and stirring was continued until the surfactant was completely dissolved to form a sol 19 solution. The obtained sol was left for gelation and subsequently aged for 48 h at 40 °C to 20 afford a gel. To procure large textural pores, the gel was kept in 1 M NH₄OH (2 mL) solution 21 for 9 h at 90 °C and then acidified with a 0.1 M HNO₃ solution (approx. 10-15 mL). The 22 obtained solid was washed several times with water and ethanol, and dried for 3 days at 60 23 °C in an open beaker. The material was subsequently calcined at 550 °C for 5 h and was 24 thereafter ground properly.

25 In the second step, calcined mesoporous silica from a finely ground monolith (0.5 g)26 was dispersed in 20 mL ethanol followed by the addition of an ethanolic solution of host (0.5 27 g in 10 mL ethanol). To the above mixture, 0.3 mL of aqueous ammonia (25% w/v) was 28 added and the mixture was stirred at 35 °C for 24 h under inert atmosphere. The resulting 29 product was separated by centrifugation and the unreacted host was extracted with 30 dichloromethane using a Soxhlet apparatus. The obtained light yellow silica decorated with 31 azo-azomethine host sites (H@SM) was dried under vacuum for 30 min and characterized by 32 IR (as KBr pellet), SEM, HR-TEM, BET and elemental analysis.

33 2.4 Adsorption of picric acid on H@SM

1 The H@SM obtained along the above mentioned protocol was employed as sorbent for the 2 adsorption of picric acid (PA). The batch method was used to optimize the adsorption 3 conditions such as temperature and weight of adsorbent: H@SM was stirred with 5 mL of PA 4 solution for about five min to attain equilibrium, and then filtered. Further experiments, such 5 as adsorption isotherm and recovery and reuse studies were carried out by filling the sorbent 6 in a solid phase extraction (SPE) cartridge. In this method, 5 mL of PA solution with varying concentrations (0.15 mmol·L⁻¹ to 0.65 mmol·L⁻¹) were passed through the SPE cartridge 7 packed with 20 mg of H@SM at a pressure of 15 mmHg. From the filtrate a UV/Vis 8 9 spectrum was recorded to determine the amount of PA left in the solution. The adsorption amount (Q_e , mmol·g⁻¹) was calculated according to equation (1) where C_o is the initial 10 concentration of PA (mmol·L⁻¹), C_e is the concentration of PA at adsorption equilibrium 11 (mmol·L⁻¹), V is the volume of PA solution (0.005 L), and M is the weight of the adsorbent 12 13 H@SM (0.02 g).

14

 $Q_e = V(C_e - C_o)/M$

(1)

15 2.5 Regeneration of H@SM and recovery of PA

16 To evaluate the reusability of H@SM, PA (0.15 mM solution) was passed through the 17 H@SM equipped SPE cartridge under reduced pressure (15 mmHg). The concentration of PA 18 left in the solution after passing through the SPE cartridge was measured by UV/Vis 19 spectroscopy at 353 nm. The cartridge was dried for 15 min and then acetonitrile (12 mL) 20 was passed to elute the adsorbed PA. In the eluent the amount of desorbed PA was 21 determined using UV/Vis spectrophotometry. The operation was repeated for five times using 22 the same H@SM for adsorption-desorption of PA. The data obtained was used to calculate 23 recovery of PA in acetonitrile and adsorption capacity of H@SM in the subsequent cycles.

24 **3 Result and Discussion**

Picric acid (PA) is highly acidic and thereby transfers its proton to an electron rich site of a basic scaffold to form an acid-base pair which is held together by electrostatic interaction of its ionic components and by hydrogen bonding. Based on this concept, we designed a sorbent with electron rich hosts for the uptake of PA by ion-pair formation. In this work, an azo dye was synthesized and a silanizing unit was incorporated as a side chain via azomethine linkage to obtain an azo-azomethine host (H) (Scheme 1).

The hosts were uniformly transferred into the meso-pores and attached to the surface OH groups of the silica via controlled hydrolytic cleavage of the silatrane cage in basic conditions. Thus, during silanization propyl chains with host pendants were condensed via

silanol groups and occupied sites in the meso pores of the three dimensional silica network.
These pendants bulged outwards with donor sites in such a way that they can be exposed to
the target (PA). The mesoporous nature of the silica helps in the percolation of PA through
the channels for easy access of the host, thereby enhancing the adsorption efficiency of
H@SM.

6 7

Azo-azomethine host Scheme 1 Silanization of host via azomethine linkage.

8 The adsorption of PA onto H@SM was studied by stirring (batch process) as well as 9 by loading the material in a solid phase extraction (SPE) cartridge. In both modes, uptake of 10 PA was very rapid and equilibrium was achieved very quickly. The adsorption studies using 11 SPE were preferred over batch process to prevent the loss of adsorbent during filtration, to 12 reduce the equilibration time, and to enhance the interaction between host and guest during 13 percolation in channels under vacuum. The overall operation, i.e. fabrication of H@SM, 14 loading into the SPE cartridge, adsorption and desorption of PA and regeneration of H@SM, 15 are illustrated in Figure 1.

16 **3.1 Proposed mechanism for host-guest interaction**

Various studies were carried out to propose a mechanism involved in the adsorption of PA. Firstly, the host-guest interactions were studied by mixing the azo-azomethine host (H) and picric acid (PA) in different equivalents to observe the change in a UV/Vis absorption band. The equimolar mixing of host and guest at lower concentrations (below 0.12 mM) exhibited no significant change in the UV/Vis spectrum of the mixture; however, above 0.12 mM concentration it showed origin of low energy band (at around 460 nm) as a shoulder. With the further increase in the concentration, the color of the solution changed from yellow to bright

- 1 red with the broadening of shoulder (Figure S1). This indicated the formation of ion-pairs
- 2 between PA (guest) and the azo-azomethine host (H).

3 4

Figure 1 An illustration representing the complete procedure (A) SM (B) H@SM (C) SPE
cartridge loaded with H@SM (D) Interaction between host (H) and guest (PA) (E) SPE
cartridge with H@SM after desorption of PA.

Secondly, the shifting of ¹H NMR signals of equimolar solutions of host and guest 8 9 revealed the transfer of the acidic proton from PA to the host molecule. An upfield shift (by 10 0.35 ppm) in the aromatic protons (H_a and H_b) of PA corroborated the proton transfer. The 11 disappearance of the proton signal at 17.0 ppm (azomethine O-H-N intramolecular hydrogen 12 bond) and appearance of a signal at 13.40 ppm substantiated the shifting of the proton from PA (which is also supported by various literature reports [20-23]). To confirm the protonation 13 as the cause of ¹H NMR spectroscopic observations, the interaction of trifluoroacetic acid 14 (TFA) with the host was also studied by recording ¹H NMR spectra. The similar shifting of 15 16 the proton signals in H-PA and H-TFA interactions revealed proton transfer in both cases. An 17 increasing order of downfield shift observed in the aromatic protons of host in the presence of 1 PA/TFA can be written as 2,6 H (0.06/0.08)< 3,4,5 H (0.08/0.16)< 8 H (0.13/0.19)< 12 H 2 (0.17/0.23)< 14 H (0.23/0.22)< 15 H (0.24/0.28)< 11 H (0.56/0.66). The host molecule possesses 3 three electron rich sites, and therefore the proton can be transferred either to the azomethine 4 group (C=N or OH) or to one of the N=N sites. As the shifting of 1 H NMR signals showed 5 maximum differences for the signal of 11 H, protonation of the OH site (with formation of N-6 H...O-H motif) appears most likely (**Figure 2**).

7 8

Figure 2 Change in chemical shift of aromatic signals of host and guest before and after

- 9 mixing of equimolar concentrations (A) ¹H NMR of picric acid (B) ¹H NMR of host (C)
- 10 Proposed cationic species upon proton transfer from picric acid to host.
- 11 3.2 Characterization of host, SM and H@SM

The IR spectrum of the host showed a strong C=N stretching at 1605 cm⁻¹ (at lower value due to H-bonding), broad OH stretching positioned between 3200-3400 cm⁻¹, and N=N stretching at 1549 cm⁻¹. In the ¹H NMR spectrum, characteristic peaks of the tricyclic silatranyl moiety appeared at 2.71 and 3.66 ppm due to NCH₂ and OCH₂ groups, respectively (**Figure S2-S4**).

6 According to the proposed mode of interaction (proton transfer), both the $-NO_2$ and -OH7 groups (and the high acidity of PA, which results therefrom) are responsible for the host-8 guest interactions. Similar tests on structurally related species lacking either nitro and/or 9 hydroxyl group(s) such as 2,4-dinitrophenol (2,4-DNP), p-nitrophenol (4-NP), m-nitrophenol 10 (m-NP), phenol (PH), and nitrobenzene (NB) indicated significantly weaker interaction with 11 the host. In all the cases, very low (2,4-DNP, p-NP and m-NP) or no adsorption (PH and NB) 12 was attained (**Table S1**). Accordingly, fast uptake of PA can be ascribed to proton transfer 13 from guest (PA) to host molecule.

14 The mass spectrum of the azo-azomethine host exhibited the corresponding molecular 15 ion peak at 455.2 m/z. The molecular structure of the host was elucidated by single crystal X-16 ray diffraction (selected parameters are summarized in characterization of H). In the crystal 17 packing, long organic chains containing aromatic rings planted with azo and azomethine 18 groups are projected away from the silanizing unit (Figure 3). The molecule showed 19 stabilization as keto-enamine isomer, which could be attributed to the intramolecular proton 20 transfer. Similar orientation of donor sites could be expected for the host moieties enclosed 21 within the silica. Hence, host sites are easily accessible by the guest during adsorption.

Figure 3 Molecular structure of the host (H), [Ellipsoids are shown at the 40% (C, N, O and
Si-atoms) and 10% probability level (H-atoms)]. Selected bond lengths [Å] and angles [deg]
are summarized in Table S2 of the Supporting Information.

Ground silica monolith (SM), before and after functionalization (H@SM), was characterized by IR, TGA, SEM, TEM, BET and elemental analysis. The FT-IR spectra of SM and H@SM exhibited absorption peaks at 471, 804, 962 and 1065/1096 (SM/H@SM) cm⁻¹ corresponding to Si-O-Si bending and stretching. However, H@SM exhibited a broad

band at 3461 cm⁻¹ ascribed to the O-H stretching vibration, and sharp band at 1638 cm⁻¹ due
to C=N stretching, corroborating the functionalization of SM with azo-azomethine hosts
(Figure S5). Moreover, elemental analyses of H@SM supported the results and showed the
presence of C (5.95%) and N (1.26%), which were completely absent in SM.

5 To determine the pore volume, pore diameter and surface area, N₂ adsorption-6 desorption isotherm measurements were performed for both SM and H@SM. Both curves 7 follow the type IV adsorption behavior with H3 hysteresis loop. The upper curve follows the 8 adsorption while the lower curve follows the desorption process. The hysteresis loop of both 9 SM and H@SM demonstrates the mesoporous nature of materials, given in Figure 4. The slight decrease in surface area of H@SM (1606 m²·g⁻¹) compared to SM (1814 m²·g⁻¹) 10 depicted the immobilization of host into the SM. Pore size distribution is shown in the inset 11 12 of **Figure 4** calculated from the adsorption branch using a BJH method. The sharp peaks 13 indicate the presence of mesopores corresponding to radii 2.6 nm and 3.6 nm, and 2.2 and 3.3 14 nm for SM and H@SM, respectively. Thermogravimetric analysis (TGA) was performed to 15 investigate the content of organic functional groups grafted on the surface of the silica. 16 Weight loss below 200 °C may be attributed to loss of water from the surface of both H@SM 17 and SM. In case of H@SM, apart from water loss, 8.23% weight loss at about 200 to 750 °C 18 may be assigned to the loss of organic moieties. H@SM showed total 18% weight loss, 19 which revealed that the remaining part of the adsorbent is composed of silica only and 20 remained unaffected even at 1000 °C. The TGA curve for the host is shown in Figure S6 for 21 comparison. A similar pattern was observed for the weight loss in host and H@SM.

Figure 4 N_2 adsorption/desorption isotherms of H@SM (A) SM (B) and pore-size distribution [inset of (A), (B)].

FE-SEM images of both the functionalized and non-functionalized silica surfaces revealed homogeneity of skeleton size. Surface morphology of the silica remained the same after immobilization, which indicates uniform coating of the organic functionality on the

- 1 silica surface. A TEM image of H@SM recorded by falling electron beam perpendicular to
- 2 the pore axis represents regular parallel rows in H@SM indicating the porous nature of this
- 3 adsorbent (**Figure 5**).

4 5

Figure 5 SEM images of SM and H@SM (A and B); HR-TEM image of H@SM (C).

6 **3.3** Optimization of adsorption parameters

7 3.3.1 Effect of amount of coated adsorbent

8 For this experiment, different amounts of H@SM were stirred with 5 mL of PA 9 solution (0.075 mM) for 5 min. The effect of different quantities of adsorbent ranging from 10 0.001 to 0.02 g on the adsorption equilibrium is shown in **Figure S7A**. It clearly showed 11 increase in the adsorption of PA with the increase in the amount of H@SM from 0.001 to 12 0.015 g. The adsorption of PA became constant (nearly 99%) for the 0.015-0.02 g of H@SM. 13 Hence, the 0.02 g of H@SM was used for the further experiments.

14 **3.3.2 Effect of temperature**

The effect of the solution temperature on the adsorption of PA was investigated between 15 °C to 45 °C. The studies were performed by stirring 5 mL of PA solution (0.15 mM) with 0.02 g adsorbent for 5 min at different temperatures (**Figure S7B**). No subsequent change in the uptake of PA was observed with the increase in temperature. Therefore, further adsorption studies were performed at 30 °C.

20 3.3.2 Adsorption isotherms

Langmuir and Freundlich isotherm were studied in detail to check the surface
 properties of the adsorbent. The isotherm constants were determined using the linear
 regression method (Figure 6 bottom).

24 Langmuir Model

The adsorption capacity and equilibrium constants for the adsorption of PA were calculated from Langmuir and Freundlich adsorption isotherms. The linear form of the Langmuir isotherm can be represented as:

28
$$C_e/Q_e = C_e/Q_m + 1/K_L/Q_m$$
 (2)

where C_e (mmol·L⁻¹) and Q_e (mmol·g⁻¹) are concentration and adsorption amount of PA, respectively at adsorption equilibrium, Q_m (mmol·g⁻¹) and K_L (L·mmol⁻¹) are the theoretical maximum adsorption capacity and the Langmuir equilibrium constant related to theoretical maximum adsorption capacity and energy of adsorption, respectively. The experimental data was plotted against C_e/Q_e versus C_e according to equation (1) (Figure 6A).

6 The dimensionless constant separation factor or equilibrium parameter, R_L related to
7 the Langmuir isotherm can be defined as given in eq. (3).

(3)

(4)

 $R_{L} = 1/(1 + K_{L}C_{e})$

9 For a favourable process the value of R_L should be less than 1 and more than 0. The 10 calculated R_L value for adsorption of PA on adsorbent is 0.028, which indicates the 11 favourable adsorption.

Langmuir Model				Freundlich Model		
Q _m (mgg ⁻¹)	K _L (Lmg ⁻¹)	R^2	R	K _F (L ^{1/n} mg ^(1-1/n) g ⁻¹)	n	R^2
68.5	0.03	0.99	0.028	2.56	1.37	0.98

¹² 13

Figure 6 (A) Langmuir and (B) Freundlich isotherms for the adsorption of PA on H@SM (Bottom: Adsorption isotherm parameters determined from experimental data.)

14

15 Freundlich isotherm

16 The Freundlich isotherm assumes multilayer adsorption. The linear form of the17 Freundlich model can be written as follows:

18

 $1/Q_{e} = \ln K_{f} + 1/n \ln C_{e}$

19 K_f, the constant of the Freundlich isotherm $(L^{1/n} mg^{(1-1/n)} g^{-1})$ and 1/n, the Freundlich 20 exponent, represent adsorption capacity and adsorption intensity, respectively. The constants 21 were calculated from intercept and slope of the plot between lnQ_e versus lnC_e . Regression 22 coffecient were found to be close to unity revealing the well fitting of adsoption data in 1 Freundlich adsorption isotherm (Figure 6B). The value of n is higher than 1 indicating the

2 favourable process.

3 **3.4 Recovery and reuse Studies**

To check the reusability of the adsorbent, PA (0.15 mM) was adsorbed on the mesoporous adsorbent (0.020 g) followed by the elution process using acetonitrile (for five repetitions) and adsorption efficiency was calculated for each cycle. Removal efficiency was investigated by taking the ratio of the amount of PA recovered to the amount of PA adsorbed. Each cycle showed 89-90% recovery of PA with 8 mL of acetonitrile (eluting solvent). No change was observed in the adsorption capacity of the adsorbent for at least three cycles (**Figure S8**), which indicates that the adsorbent can be reused.

11 **3.5 Adsorption of other nitro phenols**

12 Uptake of PA was compared with its structural analogues, adsorption studies of related 13 compounds such as nitrophenols (2,4-DNP, o-NP, p-NP), nitrobenzenes (p-NT, NB) and 14 phenol (PH) were carried out. NB, p-NT and PH did not show any adsorption ($Q_e=0$), while 15 ortho and para nitrophenols showed little adsoption relative to 2,4-DNP (**Figure S9**). It 16 revealed that adsorption of PA is more efficient relative to other phenols.

17 **3.6 Comparison with reported methods**

18 The presented method is compared with existing methods for PA adsorption in terms of 19 maximum adsorption capacity, time required for attaining adsorption equilibrium and 20 temperature (data are summarized in Table S3) [21-24,26,61-63]. The results revealed that 21 silica surface decorated with azo-azomethine host fabricated in the present method exhibits 22 better adsorption capacity (Q_m) than the existing adsorbents except activated carbon, 23 hydrotalcite (HT)/calcined hydrotalcite (HT-500) and uncalcined mesoporous silica. 24 However over other nitro-aromatics, the presented method is also better over existing 25 methods in terms of selectivity and the short time required to achieve adsorption eqiliblirum, 26 thus facilitating the fast uptake of PA. This sorbent is suitable for solid phase extraction of 27 PA using batch method as well as cartridge. Its use in conjunction with solid phase cartridge 28 prevents the loss of adsorbent during filtration and makes the method rapid.

29 **3.7 Conclusion**

The study illustrates the designing and engineering of sol-gel derived (initially monolithic) silica with azo-azomethine pendants for the fast uptake of picric acid (PA) via formation of intermolecular hydrogen bonding followed by proton transfer. The temperature of the test solution has no effect on the adsorption of PA and adsorption/desorption process occurs very fast at room temperature when H@SM is loaded in SPE cartridge. The adsorption

. .

~

...

. .

. .

I	isotherm follows both Freundlich and Langmuir model with maximum adsorption capacity of			
2	$68.5 \text{ mg} \cdot \text{g}^{-1}$. The adsorbed PA can be recovered from the H@SM using acetonitrile as eluent			
3	and the sorbent can be reused for the next adsorption cycle.			
4	4. Supplementary data			
5	CCDC 1441990 contains the supplementary crystallographic data for host molecule.			
6	The data can be obtained free of charge from The Cambridge Crystallographic Data Centre.			
7	5. Acknowledgement			
8	Authors are thankful to DST, New Delhi [Regd. No. CS-099/2012], DST-			
9	Purse, New Delhi and CSIR, New Delhi for providing financial support.			
10	6. References			
11	[1] Bingham E, Cohrssen B, Powell CH. Patty's Toxicology, John Wiley & Sons: New York,			
12	IIB, 980, 2000.			
13	[2] Koopmans B, Janner AM, Jonkman HT, Sawatzky GA, Van der Woude F. Phys Rev Lett			
14	1993;71:3569-72.			
15	[3] Goldman ER, Anderson GP, Lebedev N, Lingerfelt BM, Winter PT, Patterson Jr CH,			
16	Mauro JM. Analysis of aqueous 2,4,6-trinitrotoluene (TNT) using a fluorescent displacement			
17	immunoassay. Anal Bioanal Chem 2003; 375:471-75.			
18	[4] Fedoroff BT, Sheffield OE, Encyclopedia of Explosives and Related Items, US.			
19	Department of Commerce Springfield, Virginia, 1962.			
20	[5] J Akhavan, The Chemistry of Explosives, 2nd ed., Royal Society of Chemistry, London,			
21	2004.			
22	[6] Agrawal JP, High Energy Materials, Propellants Explosives and Pyrotechnics, Wiley-			
23	VCH, Germany, 2010, p. 209-330.			
24	[7] Favaro G, Leo DD, Pastore P, Magno F, Ballardin A. Quantitative determination of			
25	chlorophenols in leather by pressurized liquid extraction and liquid chromatography with			
26	diode-array detection. J Chromatogr A 2008;1177:36-42.			
27	[8] Liao CJ, Chen CP, Wang MK, Chiang PN, C W Pai. Sorption of chlorophenoxy propionic			
28	acids by organoclay complexes. Environ Toxicol 2006;21:71-79.			
29	[9] Suliman FE, Al-Kindi SS, Al-Kindy SMZ, Al-Lawati HA. Analysis of phenols in water			
30	by high-performance liquid chromatography using coumarin-6-sulfonyl chloride as a			
31	fluorogenic precolumn label. J Chromatogr A 2006;1101:179-84.			
32	[10] Demchenko AP, Tang KC, Chou PT. Excited-state proton coupled charge transfer			

33 modulated by molecular structure and media polarization. Chem Soc Rev 2013;42:1379-408.

- 1 [11] Bhowmick S, Chakraborty S, Das A, Nallapeta S, Das N, Pyrazine Motif Containing
- 2 Hexagonal Macrocycles: Synthesis, Characterization, and Host-Guest Chemistry with Nitro
- 3 Aromatics. Inorg Chem 2015;54:8994-9001.
- 4 [12] Vishnoi P, Walawalkar MG, Sen S, Datta A, Patwari GN, Murugavel R. Selective
- 5 fluorescence sensing of polynitroaromatic explosives using triaminophenylbenzene scaffolds.
- 6 Phys Chem Chem Phys 2014;16:10651-8.
- 7 [13] Liu T, Zhao K, Liu K, Ding L, Yin S, Fang Y. Synthesis, optical properties and
- 8 explosive sensing performances of a series of novel π -conjugated aromatic end-capped
- 9 oligothiophenes. J Hazard Mater 2013;246-247:52-60.
- 10 [14] Shanmugaraju S, Mukherjee PS, π -Electron rich small molecule sensors for the 11 recognition of nitroaromatics. Chem Commun 2015;51:16014-32.

12 [15] Chowdhury A, Mukherjee PS. Electron-Rich Triphenylamine-Based Sensors for Picric

- 13 Acid Detection. J Org Chem 2015;80:4064-75.
- 14 [16] Chaudhary A, Rath SP. Encapsulation of TCNQ and the acridinium ion within a
- bisporphyrin cavity: synthesis, structure, and photophysical and HOMO–LUMO-gapmediated electron-transfer properties. Chem Eur J 2012;18:7404-17.
- 17 [17] Tanaka M, Ohkubo K, Gros CP, Guilard R, Fukuzumi S. Persistent electron-transfer
- 18 state of a ð-complex of acridinium ion inserted between porphyrin rings of cofacial
- 19 bisporphyrins. J Am Chem Soc 2006;128:14625-33.
- 20 [18] Ikbal SA, Dhamija A, Rath SP. Metal-coordination-driven mixed ligand binding in
- 21 supramolecular bisporphyrin tweezers. Chem Comm 2015;51:14107-10.
- 22 [19] Sun X, Wang Y and Lei Y, Fluorescence based explosive detection: from mechanisms to
- 23 sensory materials. Chem Soc Rev 2015;44:8019-61.
- 24 [20] Alfonso M, Espinosa A, Tarraga A, Molina P. Multifunctional benzothiadiazole-based
- 25 small molecules displaying solvatochromism and sensing Properties toward nitroarenes.
- anions, and cations, Chemistry Open 2014, 3, 242-49.
- [21] Xu Y, Li B, Li W, Zhao J, Sun S Pang Y. ICT-not-quenching' near infrared ratiometric
 fluorescent detection of picric acid in aqueous media. Chem. Commun. 2013;49:4764-66
- 29 [22] Mondal P. Rath SP. Highly Selective and Sensitive Detection of Picric Acid explosiv
- 29 [22] Mondal P, Rath SP. Highly Selective and Sensitive Detection of Picric Acid explosive
- 30 by a bisporphyrin cleft: synergistic effects of encapsulation, efficient electron transfer, and
- 31 hydrogen bonding. Eur J Inorg Chem 2015:4956-64.
- 32 [23] Dey N, Samanta SK Bhattacharya S. Selective and Efficient Detection of Nitro-
- 33 Aromatic Explosives in Multiple Media including Water, Micelles, Organogel, and Solid
- 34 Support. ACS Appl Mater Interfaces 2013;5:8394-400.

- 1 [24] Kumar M, Reja SI, Bhalla V. A charge transfer amplified fluorescent Hg²⁺ complex for
- 2 detection of picric acid and construction of logic functions. Org Lett 2012;14:6084-87.
- 3 [25] Vishnoi P, Sen S, Patwari GN, Murugavel R. Charge transfer aided selective sensing and
- 4 capture of picric acid by triphenylbenzenes. New J Chem 2015;39:886-92.
- 5 [26] Sepehrian H, Fasihi J, Mahani MK. Adsorption Behavior Studies of Picric Acid on
- 6 Mesoporous MCM-41. Ind Eng Chem Res 2009;48:6772-75.
- 7 [27] Parham H, Zargar B, Rezazadeh M. Removal, preconcentration and spectrophotometric
- 8 determination of picric acid in water samples using modified magnetic iron oxide
 9 nanoparticles as an efficient adsorbent. Mater Sci and Eng C 2012; 32:2109-14.
- 10 [28] Mohana D, Sarswata A, Singha VK, Francob MA, Jr. Pittman CU. Development of
- 11 magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem
- 12 Eng J 2011;172:1111-25.
- 13 [29] Ganigar R, Rytwo G, Gonen Y, Radian A, Mishael YG. Polymer-clay nanocomposites
- 14 for the removal of trichlorophenol and trinitrophenol from water. Appl Clay Sci 2010;
- 15 49:311-16.
- 16 [30] Parham H, Saee S. Ultrasound-assisted solid phase extraction of nitro- and chloro-
- (phenols) using magnetic iron oxide nanoparticles and Aliquat 336 ionic liquid. J Chromatogr
 A, 2014;1336:34-42.
- 19 [31] Uslu H, Demir G. Adsorption of Picric Acid from Aqueous Solution by the Weakly
- 20 Basic Adsorbent Amberlite IRA-67. J Chem Eng Data 2010;55:3290-296.
- [32] Unuabonah EI, Taubert A. Clay-polymer nanocomposites (CPNs): Adsorbents of the
 future for water treatment. Appl Clay Sci 2014;99:83-92.
- 23 [33] Jal PK, Patel S, Mishra BK. Chemical modification of silica surface by immobilization
- of functional groups for extractive concentration of metal ions. Talanta 2004;62:1005-28.
- 25 [34] Y Chen, J Shi, Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly
- 26 Organic-Inorganic Hybridization into Frameworks. Adv Mater 2016;28:3235-72.
- [35] Ma Q, Li Y, Su X. Silica-nanobead-based sensors for analytical and bioanalytical
 applications. Trend Anal Chem 2015;74:130-45.
- 29 [36] Slowing II, Escoto JLV, Trewyn BG, Lin VSY. Mesoporous silica nanoparticles:
- 30 structural design and applications. J Mater Chem 2010;20:7924-37.
- 31 [37] Hoffmann F, Cornelius M, Morell J, Froba M. Silica-based mesoporous organic-
- 32 inorganic hybrid materials. Angew Chem Int Ed 2006;45:3216-51.
- 33 [38] Walcarius A, Mercier L. Mesoporous organosilica adsorbents: nanoengineered materials
- 34 for removal of organic and inorganic pollutants. J Mater Chem 2010;20:4478-11.

- 1 [39] Gibson LT. Mesosilica materials and organic pollutant adsorption: part B removal from
- 2 aqueous solution. Chem Soc Rev 2014;43:5173-82.
- 3 [40] Sierra I, Quintanilla DP. Heavy metal complexation on hybrid mesoporous silicas: an

4 approach to analytical applications. Chem Soc Rev 2013;42:3792-07.

- 5 [41] Hoffmann F, Froba M. Vitalising porous inorganic silica networks with organic
 6 functions-PMOs and related hybrid materials. Chem Soc Rev 2011;40:608-20.
- 7 [42] Park JW, Park YJ, Jun CH. Post-grafting of silica surfaces with pre-functionalized
- 8 organosilanes: new synthetic equivalents of conventional trialkoxysilanes. Chem Commun

9 2011;47:4860-71.

10 [43] Tanaka N, Kobayashi H, Nakanishi K, Minakuchi H, Ishizuka N. Hierarchically Porous

11 Aminosilica Monolith as a CO₂ Adsorbent. Anal Chem 2001;73:420A.

12 [44] Ko YG, Lee HJ, Kim JY, Choi US, ACS Appl Mater Interfaces, 2014;6:12988-96.

13 [45] Ma J, Liang Z, Qiao X, Deng Q, Tao D, Zhang L, Zhang Y. Organic-Inorganic Hybrid

14 Silica Monolith Based Immobilized Trypsin Reactor with High Enzymatic Activity. Anal

- 15 Chem 2008;80:2949-56.
- 16 [46] Taguchi A, Schuth F. Ordered mesoporous materials in catalysis. Microporous and
- 17 Mesoporous Mater 2005;77:1-45.

18 [47] Brandhuber D, Huesing N, Raab CK, Tormaa V, Peterlik H. Cellular mesoscopically

- 19 organized silica monoliths with tailored surface chemistry by one-step
- 20 drying/extraction/surface modification processes. J Mater Chem 2005;15:1801-06.
- [48] Triantafillidis C, Elsaesser MS, Huesing N. Chemical phase separation strategies
 towards silica monoliths with hierarchical porosity. Chem Soc Rev 2013;42:3833-46.
- [49] Dessources AH, Hartmann S, Baba M, Huesing N, Nedelec JM, J Mater Chem
 2012;22:13-20.
- 25 [50] Huesing N, Raab C, Torma V, Roig A, Peterlik H. Periodically Mesostructured silica
- 26 monoliths from diol-modified silanes. Chem. Mater 2003;15:2690-92.
- 27 [51] Mehdi A, Reye C, Corriu R. From molecular chemistry to hybrid nanomaterials. Design
- and functionalization. Chem Soc Rev 2011;40:563-74.
- 29 [52] Mouawia R, Mehdi A, Reye C, Corriu RJP. Bifunctional ordered mesoporous materials:
- 30 direct synthesis and study of the distribution of two distinct functional groups in the pore
- 31 channels. J Mater Chem 2008;18:4193-203.
- 32 [53] Boullanger A, Alauzun J, Mehdi A, Reye C, Corriu RJP. Generic way for functionalised
- 33 well-ordered cubic mesoporous silica via direct synthesis approach. New J Chem.
- 34 2010;34:738-43.

- 1 [54] Gobel R, Hesemann P, Friedrich A, Rothe R, Schlaad H, Taubert A. Modular Thiol–Ene
- 2 Chemistry Approach towards Mesoporous Silica Monoliths with Organically Modified Pore
- 3 Walls . Chem Eur J 2014;20:17579-89.
- 4 [55] Gobel R, Stoltenberg M, Krehl S, Biolley C, Rothe R, Schmidt B, Hesemann P, Taubert
- 5 A. A modular approach towards mesoporous silica monoliths with organically modified pore
- 6 Walls: nucleophilic addition, olefin metathesis, and cycloaddition. Eur J Inorg Chem
- 7 2016;2088-99.
- 8 [56] Mutneja R, Singh R, Kaur V, Wagler J, Kroke E. Development of new precursors for
- 9 immobilizing dyes onto silica surfaces. Dyes Pigm 2014;108:41-9.
- 10 [57] Mutneja R, Singh R, Kaur V, Wagler J, Fels S, Kroke E. Schiff base tailed silatranes for
- 11 the fabrication of functionalized silica based magnetic nano-cores possessing active sites for
- 12 the adsorption of copper ions. New J Chem 2016;40: 1640-48.
- 13 [58] Singh R, Puri JK, Sharma RP, Chahal VK, Venugopalan P. Synthesis and reactivity of
- 14 novel 3-isothiocyanatopropylsilatrane derived from aminopropylsilatrane: X-ray crystal
- 15 structure and theoretical studies. J Organomet Chem 2010;695:183-8.
- 16 [59] Albayrak C, Gumrukcuoglu IE, Odabasoglu M, Iskeleli NO, Agar E. Synthesis,
- 17 spectroscopic, and molecular structure characterizations of some azo derivatives of 2-
- 18 hydroxyacetophenone. J Mol Struct 2009;932:43-54.
- 19 [60] Smatt JH, Schunk S, Linden M. Versatile Double-Templating Synthesis Route to Silica
- 20 Monoliths Exhibiting a Multimodal Hierarchical Porosity. Chem Mater 2003;15;2354-61.
- 21 [61] Srivastava SK, Gupta VK, Johri N, Mohan D. Removal of 2,4,6 trinitrophenolusing
- 22 bagasse flyash-A sugar industry waste material. Indian J.Chem Tec1995;2:33-36.
- [62] Hermosin MC, Pavlovic I, Ulibarr MA, Cornejo J. Hydrotalcite as sorbent for
 trinitrophenol: sorption capacity and mechanism. War. Res. 1996;30:171-7.
- 25 [63] Tewari BB, Mohan D, Kamaluddin. Interaction of 2,4-dinitrophenol and 2,4,6-
- 26 trinitrophenol with copper, zinc, molybdenum and chromium ferrocyanides. Colloids and
- 27 Surfaces A: Physicochemical and Engineering Aspects 1998;131:89-93.

28

Highlights

- Fabrication of sol-gel derived silica with azo-azomethine functionality (Host) using silatranyl moiety.
- Uptake of Picric acid (guest) via electrostatic interactions between host and guest.
- The maximum adsorption capacity of the sorbent for PA was found to be 68.5 mg.g⁻¹.